diff options
Diffstat (limited to 'mathcomp/solvable/extraspecial.v')
| -rw-r--r-- | mathcomp/solvable/extraspecial.v | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/mathcomp/solvable/extraspecial.v b/mathcomp/solvable/extraspecial.v index 58c3cf0..2dcb1d5 100644 --- a/mathcomp/solvable/extraspecial.v +++ b/mathcomp/solvable/extraspecial.v @@ -182,7 +182,7 @@ by exists 1%R; rewrite ?inE. Qed. Lemma pX1p2_pgroup : p.-group p^{1+2}. -Proof. by rewrite /pgroup card_pX1p2 pnat_exp pnat_id. Qed. +Proof. by rewrite /pgroup card_pX1p2 pnatX pnat_id. Qed. (* This is part of the existence half of Aschbacher ex. (8.7)(1) *) Lemma pX1p2_extraspecial : extraspecial p^{1+2}. @@ -207,7 +207,7 @@ have ->: p^{1+2} = 'Ohm_1(p^{1+2}). case/existsP: (isoGrp_hom Grp_pX1p2) => [[x y]] /=. case/eqP=> <- xp yp _ _; rewrite joing_idl joing_idr genS //. by rewrite subsetI subset_gen subUset !sub1set !inE xp yp!eqxx. -rewrite exponent_Ohm1_class2 ?card_pX1p2 ?odd_exp // nil_class2. +rewrite exponent_Ohm1_class2 ?card_pX1p2 ?oddX // nil_class2. by have [[_ ->] _ ] := pX1p2_extraspecial. Qed. @@ -217,7 +217,7 @@ Lemma isog_pX1p2 (gT : finGroupType) (G : {group gT}) : Proof. move=> esG expGp oG; apply/(isoGrpP _ Grp_pX1p2). rewrite card_pX1p2; split=> //. -have pG: p.-group G by rewrite /pgroup oG pnat_exp pnat_id. +have pG: p.-group G by rewrite /pgroup oG pnatX pnat_id. have oZ := card_center_extraspecial pG esG. have [x Gx notZx]: exists2 x, x \in G & x \notin 'Z(G). apply/subsetPn; rewrite proper_subn // properEcard center_sub oZ oG. @@ -283,7 +283,7 @@ by rewrite oG oZ IHn -expnD mulKn ?prime_gt0. Qed. Lemma pX1p2n_pgroup n : prime p -> p.-group p^{1+2*n}. -Proof. by move=> p_pr; rewrite /pgroup card_pX1p2n // pnat_exp pnat_id. Qed. +Proof. by move=> p_pr; rewrite /pgroup card_pX1p2n // pnatX pnat_id. Qed. (* This is part of the existence half of Aschbacher (23.13) *) Lemma exponent_pX1p2n n : prime p -> odd p -> exponent p^{1+2*n} = p. @@ -526,7 +526,7 @@ Lemma isog_pX1p2n n (gT : finGroupType) (G : {group gT}) : Proof. move=> p_pr esG oG expG; have p_gt1 := prime_gt1 p_pr. have not_le_p3_p: ~~ (p ^ 3 <= p) by rewrite (leq_exp2l 3 1). -have pG: p.-group G by rewrite /pgroup oG pnat_exp pnat_id. +have pG: p.-group G by rewrite /pgroup oG pnatX pnat_id. have oZ := card_center_extraspecial pG esG. have{pG esG} [Es p3Es defG] := extraspecial_structure pG esG. set Z := 'Z(G) in oZ defG p3Es. @@ -614,7 +614,7 @@ by rewrite -muln_divA // mulnC -(expnD 2 2). Qed. Lemma DnQ_pgroup n : 2.-group 'D^n*Q. -Proof. by rewrite /pgroup card_DnQ pnat_exp. Qed. +Proof. by rewrite /pgroup card_DnQ pnatX. Qed. (* Final part of the existence half of Aschbacher (23.14). *) Lemma DnQ_extraspecial n : extraspecial 'D^n*Q. @@ -659,7 +659,7 @@ Proof. elim: n G => [|n IHn] G oG esG. case/negP: (extraspecial_nonabelian esG). by rewrite cyclic_abelian ?prime_cyclic ?oG. -have pG: 2.-group G by rewrite /pgroup oG pnat_exp. +have pG: 2.-group G by rewrite /pgroup oG pnatX. have oZ:= card_center_extraspecial pG esG. have: 'Z(G) \subset 'Ohm_1(G). apply/subsetP=> z Zz; rewrite (OhmE _ pG) mem_gen //. @@ -705,7 +705,7 @@ have AutZin2_1p2: Aut_in (Aut 2^{1+2}) 'Z(2^{1+2}) \isog Aut 'Z(2^{1+2}). have [isoR | isoR] := IHn R oR esR. by left; case: pX1p2S => gz isoZ; rewrite (isog_cprod_by _ defG). have n_gt0: n > 0. - have pR: 2.-group R by rewrite /pgroup oR pnat_exp. + have pR: 2.-group R by rewrite /pgroup oR pnatX. have:= min_card_extraspecial pR esR. by rewrite oR leq_exp2l // ltnS (leq_double 1). case: DnQ_P isoR => gR isoZR /=; rewrite isog_sym; case/isogP=> fR injfR im_fR. @@ -742,7 +742,7 @@ elim: n => [|n IHn]; first by rewrite p_rank_abelem ?prime_abelem ?card_pX1p2n. have oDDn: #|'D^n.+1| = (2 ^ n.+1.*2.+1)%N by apply: card_pX1p2n. have esDDn: extraspecial 'D^n.+1 by apply: pX1p2n_extraspecial. do [case: pX1p2S => gz isoZ; set DDn := [set: _]] in oDDn esDDn *. -have pDDn: 2.-group DDn by rewrite /pgroup oDDn pnat_exp. +have pDDn: 2.-group DDn by rewrite /pgroup oDDn pnatX. apply/eqP; rewrite eqn_leq; apply/andP; split. have [E EprE]:= p_rank_witness 2 [group of DDn]. have [sEDDn abelE <-] := pnElemP EprE; have [pE cEE _]:= and3P abelE. |
