aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/commutator.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/solvable/commutator.v')
-rw-r--r--mathcomp/solvable/commutator.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/solvable/commutator.v b/mathcomp/solvable/commutator.v
index a1ffb65..904c4e9 100644
--- a/mathcomp/solvable/commutator.v
+++ b/mathcomp/solvable/commutator.v
@@ -181,7 +181,7 @@ Lemma commg_subr G H : ([~: G, H] \subset H) = (G \subset 'N(H)).
Proof.
rewrite gen_subG; apply/subsetP/subsetP=> [sRH x Gx | nGH xy].
rewrite inE; apply/subsetP=> _ /imsetP[y Ky ->].
- by rewrite conjg_Rmul groupMr // sRH // mem_imset2 ?groupV.
+ by rewrite conjg_Rmul groupMr // sRH // imset2_f ?groupV.
case/imset2P=> x y Gx Hy ->{xy}.
by rewrite commgEr groupMr // memJ_norm (groupV, nGH).
Qed.
@@ -254,7 +254,7 @@ Proof.
have R_C := sameP trivgP commG1P.
rewrite -subG1 R_C gen_subG -{}R_C gen_subG.
apply: (iffP subsetP) => [cABC x y z Ax By Cz | cABC xyz].
- by apply/set1P; rewrite cABC // !mem_imset2.
+ by apply/set1P; rewrite cABC // !imset2_f.
by case/imset2P=> _ z /imset2P[x y Ax By ->] Cz ->; rewrite cABC.
Qed.