diff options
Diffstat (limited to 'mathcomp/solvable/abelian.v')
| -rw-r--r-- | mathcomp/solvable/abelian.v | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 2b0ab00..f3ff7c3 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -196,7 +196,7 @@ Arguments Scope Ohm [nat_scope _ group_scope]. Arguments Scope Ohm_group [nat_scope _ group_scope]. Arguments Scope Mho [nat_scope _ group_scope]. Arguments Scope Mho_group [nat_scope _ group_scope]. -Implicit Arguments OhmPredP [n gT x]. +Arguments OhmPredP [n gT x]. Notation "''Ohm_' n ( G )" := (Ohm n G) (at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope. @@ -233,7 +233,7 @@ apply: (iffP (dvdn_biglcmP _ _ _)) => eAn x Ax. by apply/eqP; rewrite -order_dvdn eAn. by rewrite order_dvdn eAn. Qed. -Implicit Arguments exponentP [A n]. +Arguments exponentP [A n]. Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1). Proof. @@ -495,7 +495,7 @@ Qed. Lemma pElemP p A E : reflect (E \subset A /\ p.-abelem E) (E \in 'E_p(A)). Proof. by rewrite inE; apply: andP. Qed. -Implicit Arguments pElemP [p A E]. +Arguments pElemP [p A E]. Lemma pElemS p A B : A \subset B -> 'E_p(A) \subset 'E_p(B). Proof. @@ -511,7 +511,7 @@ Proof. by rewrite !inE conjSg abelemJ. Qed. Lemma pnElemP p n A E : reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)). Proof. by rewrite !inE -andbA; apply: (iffP and3P) => [] [-> -> /eqP]. Qed. -Implicit Arguments pnElemP [p n A E]. +Arguments pnElemP [p n A E]. Lemma pnElemPcard p n A E : E \in 'E_p^n(A) -> [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N. @@ -636,7 +636,7 @@ have:= EpnE; rewrite pnElemE ?(pnElem_prime EpnE) // !inE -andbA ltnS. case/and3P=> sEG _ oE; rewrite dvdn_leq // (dvdn_trans _ (cardSg sEG)) //. by rewrite (eqP oE) dvdn_exp. Qed. -Implicit Arguments nElemP [n G E]. +Arguments nElemP [n G E]. Lemma nElem0 G : 'E^0(G) = [set 1%G]. Proof. @@ -899,18 +899,18 @@ Qed. End ExponentAbelem. -Implicit Arguments LdivP [gT A n x]. -Implicit Arguments exponentP [gT A n]. -Implicit Arguments abelemP [gT p G]. -Implicit Arguments is_abelemP [gT G]. -Implicit Arguments pElemP [gT p A E]. -Implicit Arguments pnElemP [gT p n A E]. -Implicit Arguments nElemP [gT n G E]. -Implicit Arguments nElem1P [gT G E]. -Implicit Arguments pmaxElemP [gT p A E]. -Implicit Arguments pmaxElem_LdivP [gT p G E]. -Implicit Arguments p_rank_geP [gT p n G]. -Implicit Arguments rank_geP [gT n G]. +Arguments LdivP [gT A n x]. +Arguments exponentP [gT A n]. +Arguments abelemP [gT p G]. +Arguments is_abelemP [gT G]. +Arguments pElemP [gT p A E]. +Arguments pnElemP [gT p n A E]. +Arguments nElemP [gT n G E]. +Arguments nElem1P [gT G E]. +Arguments pmaxElemP [gT p A E]. +Arguments pmaxElem_LdivP [gT p G E]. +Arguments p_rank_geP [gT p n G]. +Arguments rank_geP [gT n G]. Section MorphAbelem. |
