diff options
Diffstat (limited to 'mathcomp/solvable/abelian.v')
| -rw-r--r-- | mathcomp/solvable/abelian.v | 39 |
1 files changed, 19 insertions, 20 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 7ca0bdb..5f1a013 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -196,7 +196,7 @@ Arguments Ohm _%N _ _%g. Arguments Ohm_group _%N _ _%g. Arguments Mho _%N _ _%g. Arguments Mho_group _%N _ _%g. -Arguments OhmPredP [n gT x]. +Arguments OhmPredP {n gT x}. Notation "''Ohm_' n ( G )" := (Ohm n G) (at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope. @@ -233,7 +233,7 @@ apply: (iffP (dvdn_biglcmP _ _ _)) => eAn x Ax. by apply/eqP; rewrite -order_dvdn eAn. by rewrite order_dvdn eAn. Qed. -Arguments exponentP [A n]. +Arguments exponentP {A n}. Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1). Proof. @@ -495,7 +495,7 @@ Qed. Lemma pElemP p A E : reflect (E \subset A /\ p.-abelem E) (E \in 'E_p(A)). Proof. by rewrite inE; apply: andP. Qed. -Arguments pElemP [p A E]. +Arguments pElemP {p A E}. Lemma pElemS p A B : A \subset B -> 'E_p(A) \subset 'E_p(B). Proof. @@ -511,7 +511,7 @@ Proof. by rewrite !inE conjSg abelemJ. Qed. Lemma pnElemP p n A E : reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)). Proof. by rewrite !inE -andbA; apply: (iffP and3P) => [] [-> -> /eqP]. Qed. -Arguments pnElemP [p n A E]. +Arguments pnElemP {p n A E}. Lemma pnElemPcard p n A E : E \in 'E_p^n(A) -> [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N. @@ -636,7 +636,7 @@ have:= EpnE; rewrite pnElemE ?(pnElem_prime EpnE) // !inE -andbA ltnS. case/and3P=> sEG _ oE; rewrite dvdn_leq // (dvdn_trans _ (cardSg sEG)) //. by rewrite (eqP oE) dvdn_exp. Qed. -Arguments nElemP [n G E]. +Arguments nElemP {n G E}. Lemma nElem0 G : 'E^0(G) = [set 1%G]. Proof. @@ -899,18 +899,18 @@ Qed. End ExponentAbelem. -Arguments LdivP [gT A n x]. -Arguments exponentP [gT A n]. -Arguments abelemP [gT p G]. -Arguments is_abelemP [gT G]. -Arguments pElemP [gT p A E]. -Arguments pnElemP [gT p n A E]. -Arguments nElemP [gT n G E]. -Arguments nElem1P [gT G E]. -Arguments pmaxElemP [gT p A E]. -Arguments pmaxElem_LdivP [gT p G E]. -Arguments p_rank_geP [gT p n G]. -Arguments rank_geP [gT n G]. +Arguments LdivP {gT A n x}. +Arguments exponentP {gT A n}. +Arguments abelemP {gT p G}. +Arguments is_abelemP {gT G}. +Arguments pElemP {gT p A E}. +Arguments pnElemP {gT p n A E}. +Arguments nElemP {gT n G E}. +Arguments nElem1P {gT G E}. +Arguments pmaxElemP {gT p A E}. +Arguments pmaxElem_LdivP {gT p G E}. +Arguments p_rank_geP {gT p n G}. +Arguments rank_geP {gT n G}. Section MorphAbelem. @@ -2023,9 +2023,8 @@ Qed. End AbelianStructure. -Arguments abelian_type _ _%g. -Arguments homocyclic _ _%g. -Prenex Implicits abelian_type homocyclic. +Arguments abelian_type {_} _%g. +Arguments homocyclic {_} _%g. Section IsogAbelian. |
