aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/abelian.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/solvable/abelian.v')
-rw-r--r--mathcomp/solvable/abelian.v39
1 files changed, 19 insertions, 20 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v
index 7ca0bdb..5f1a013 100644
--- a/mathcomp/solvable/abelian.v
+++ b/mathcomp/solvable/abelian.v
@@ -196,7 +196,7 @@ Arguments Ohm _%N _ _%g.
Arguments Ohm_group _%N _ _%g.
Arguments Mho _%N _ _%g.
Arguments Mho_group _%N _ _%g.
-Arguments OhmPredP [n gT x].
+Arguments OhmPredP {n gT x}.
Notation "''Ohm_' n ( G )" := (Ohm n G)
(at level 8, n at level 2, format "''Ohm_' n ( G )") : group_scope.
@@ -233,7 +233,7 @@ apply: (iffP (dvdn_biglcmP _ _ _)) => eAn x Ax.
by apply/eqP; rewrite -order_dvdn eAn.
by rewrite order_dvdn eAn.
Qed.
-Arguments exponentP [A n].
+Arguments exponentP {A n}.
Lemma trivg_exponent G : (G :==: 1) = (exponent G %| 1).
Proof.
@@ -495,7 +495,7 @@ Qed.
Lemma pElemP p A E : reflect (E \subset A /\ p.-abelem E) (E \in 'E_p(A)).
Proof. by rewrite inE; apply: andP. Qed.
-Arguments pElemP [p A E].
+Arguments pElemP {p A E}.
Lemma pElemS p A B : A \subset B -> 'E_p(A) \subset 'E_p(B).
Proof.
@@ -511,7 +511,7 @@ Proof. by rewrite !inE conjSg abelemJ. Qed.
Lemma pnElemP p n A E :
reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)).
Proof. by rewrite !inE -andbA; apply: (iffP and3P) => [] [-> -> /eqP]. Qed.
-Arguments pnElemP [p n A E].
+Arguments pnElemP {p n A E}.
Lemma pnElemPcard p n A E :
E \in 'E_p^n(A) -> [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N.
@@ -636,7 +636,7 @@ have:= EpnE; rewrite pnElemE ?(pnElem_prime EpnE) // !inE -andbA ltnS.
case/and3P=> sEG _ oE; rewrite dvdn_leq // (dvdn_trans _ (cardSg sEG)) //.
by rewrite (eqP oE) dvdn_exp.
Qed.
-Arguments nElemP [n G E].
+Arguments nElemP {n G E}.
Lemma nElem0 G : 'E^0(G) = [set 1%G].
Proof.
@@ -899,18 +899,18 @@ Qed.
End ExponentAbelem.
-Arguments LdivP [gT A n x].
-Arguments exponentP [gT A n].
-Arguments abelemP [gT p G].
-Arguments is_abelemP [gT G].
-Arguments pElemP [gT p A E].
-Arguments pnElemP [gT p n A E].
-Arguments nElemP [gT n G E].
-Arguments nElem1P [gT G E].
-Arguments pmaxElemP [gT p A E].
-Arguments pmaxElem_LdivP [gT p G E].
-Arguments p_rank_geP [gT p n G].
-Arguments rank_geP [gT n G].
+Arguments LdivP {gT A n x}.
+Arguments exponentP {gT A n}.
+Arguments abelemP {gT p G}.
+Arguments is_abelemP {gT G}.
+Arguments pElemP {gT p A E}.
+Arguments pnElemP {gT p n A E}.
+Arguments nElemP {gT n G E}.
+Arguments nElem1P {gT G E}.
+Arguments pmaxElemP {gT p A E}.
+Arguments pmaxElem_LdivP {gT p G E}.
+Arguments p_rank_geP {gT p n G}.
+Arguments rank_geP {gT n G}.
Section MorphAbelem.
@@ -2023,9 +2023,8 @@ Qed.
End AbelianStructure.
-Arguments abelian_type _ _%g.
-Arguments homocyclic _ _%g.
-Prenex Implicits abelian_type homocyclic.
+Arguments abelian_type {_} _%g.
+Arguments homocyclic {_} _%g.
Section IsogAbelian.