aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/odd_order/PFsection2.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/odd_order/PFsection2.v')
-rw-r--r--mathcomp/odd_order/PFsection2.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/mathcomp/odd_order/PFsection2.v b/mathcomp/odd_order/PFsection2.v
index f92bb16..c982642 100644
--- a/mathcomp/odd_order/PFsection2.v
+++ b/mathcomp/odd_order/PFsection2.v
@@ -315,7 +315,7 @@ Section AutomorphismCFun.
Variable u : {rmorphism algC -> algC}.
Local Notation "alpha ^u" := (cfAut u alpha).
-Lemma Dade_aut alpha : (alpha^u)^\tau = (alpha^\tau)^u.
+Lemma Dade_aut alpha : (alpha^u)^\tau = (alpha^\tau)^u.
Proof.
apply/cfunP => g; rewrite cfunE.
have [/bigcupP[a Aa A1g] | notAtau_g] := boolP (g \in Atau).
@@ -325,7 +325,7 @@ Qed.
End AutomorphismCFun.
-Lemma Dade_conjC alpha : (alpha^*)^\tau = ((alpha^\tau)^*)%CF.
+Lemma Dade_conjC alpha : (alpha^*)^\tau = ((alpha^\tau)^*)%CF.
Proof. exact: Dade_aut. Qed.
(* This is Peterfalvi (2.7), main part *)
@@ -344,7 +344,7 @@ have dd1_id: {in A, forall a, dd1 (repr (a ^: L)) = dd1 a}.
by move=> a Aa /=; have [x Lx ->] := repr_class L a; apply: Dade_support1_id.
have ->: Atau = cover P_G.
apply/setP=> u; apply/bigcupP/bigcupP=> [[a Aa Fa_u] | [Fa]]; last first.
- by case/imsetP=> a /sTA Aa -> Fa_u; exists a.
+ by case/imsetP=> a /sTA Aa -> Fa_u; exists a.
by exists (dd1 a) => //; rewrite -dd1_id //; do 2!apply: mem_imset.
have [tiP_G inj_dd1]: trivIset P_G /\ {in T &, injective dd1}.
apply: trivIimset => [_ _ /imsetP[a Aa ->] /imsetP[b Ab ->] |]; last first.
@@ -507,7 +507,7 @@ have defMBx: 'M(B :^ x) = 'M(B) :^ x.
have def_aa_x y: 'aa_(B :^ x) (y ^ x) = 'aa_B y.
rewrite !rDadeE // defMBx memJ_conjg !mulrb -mulHNB defHBx defNBx.
have [[h z Hh Nz ->] | // ] := mulsgP.
- by rewrite conjMg !remgrMid ?cfunJ ?memJ_conjg // -conjIg tiHNB conjs1g.
+ by rewrite conjMg !remgrMid ?cfunJ ?memJ_conjg // -conjIg tiHNB conjs1g.
apply/cfunP=> y; have Gx := subsetP sLG x Lx.
rewrite [eq]lock !cfIndE ?sMG //= {1}defMBx cardJg -lock; congr (_ * _).
rewrite (reindex_astabs 'R x) ?astabsR //=.
@@ -542,7 +542,7 @@ Proof.
move=> dB; set LHS := 'Ind _ g.
have defMB := Dade_set_sdprod dB; have [_ mulHNB nHNB tiHNB] := sdprodP defMB.
have [sHMB sNMB] := mulG_sub mulHNB.
-have{LHS} ->: LHS = #|'M(B)|%:R^-1 * \sum_(x in calA g 'M(B)) 'aa_B (g ^ x).
+have{LHS} ->: LHS = #|'M(B)|%:R^-1 * \sum_(x in calA g 'M(B)) 'aa_B (g ^ x).
rewrite {}/LHS cfIndE ?sMG //; congr (_ * _).
rewrite (bigID [pred x | g ^ x \in 'M(B)]) /= addrC big1 ?add0r => [|x].
by apply: eq_bigl => x; rewrite inE.
@@ -551,7 +551,7 @@ pose fBg x := remgr 'H(B) 'N_L(B) (g ^ x).
pose supp_aBg := [pred b in A | g \in dd1 b].
have supp_aBgP: {in calA g 'M(B), forall x,
~~ supp_aBg (fBg x) -> 'aa_B (g ^ x)%g = 0}.
-- move=> x /setIdP[]; set b := fBg x => Gx MBgx notHGx; rewrite rDadeE // MBgx.
+- move=> x /setIdP[]; set b := fBg x => Gx MBgx notHGx; rewrite rDadeE // MBgx.
have Nb: b \in 'N_L(B) by rewrite mem_remgr ?mulHNB.
have Cb: b \in 'C_L[b] by rewrite inE cent1id; have [-> _] := setIP Nb.
rewrite (cfun_on0 CFaa) // -/(fBg x) -/b; apply: contra notHGx => Ab.
@@ -559,7 +559,7 @@ have supp_aBgP: {in calA g 'M(B), forall x,
have [sBA /set0Pn[a Ba]] := setIdP dB; have Aa := subsetP sBA a Ba.
have [|/= partHBb _] := partition_cent_rcoset nHb.
rewrite (coprime_dvdr (order_dvdG Cb)) //= ['H(B)](bigD1 a) //=.
- by rewrite (coprimeSg (subsetIl _ _)) ?coHL.
+ by rewrite (coprimeSg (subsetIl _ _)) ?coHL.
have Hb_gx: g ^ x \in 'H(B) :* b by rewrite mem_rcoset mem_divgr ?mulHNB.
have [defHBb _ _] := and3P partHBb; rewrite -(eqP defHBb) in Hb_gx.
case/bigcupP: Hb_gx => Cy; case/imsetP=> y HBy ->{Cy} Cby_gx.
@@ -571,7 +571,7 @@ have supp_aBgP: {in calA g 'M(B), forall x,
have [nsHb _ defCb _ _] := sdprod_context (defCA Ab).
have [hallHb _] := coprime_mulGp_Hall defCb (pi'H b) (piCL Ab).
rewrite (sub_normal_Hall hallHb) ?setSI // (pgroupS _ (pi'H a)) //=.
- by rewrite subIset ?sHBa.
+ by rewrite subIset ?sHBa.
split=> [notHGg | a Aa Hag].
rewrite big1 ?mulr0 // => x; move/supp_aBgP; apply; set b := fBg x.
by apply: contra notHGg; case/andP=> Ab Hb_x; apply/bigcupP; exists b.
@@ -697,7 +697,7 @@ have Ca: a \in 'C_L[a] by rewrite inE cent1id La.
have [|/= partHBa nbHBa] := partition_cent_rcoset nHa.
have [sBA] := setIdP dB; case/set0Pn=> b Bb; have Ab := subsetP sBA b Bb.
rewrite (coprime_dvdr (order_dvdG Ca)) //= ['H(B)](bigD1 b) //=.
- by rewrite (coprimeSg (subsetIl _ _)) ?coHL.
+ by rewrite (coprimeSg (subsetIl _ _)) ?coHL.
pose pHBa := mem ('H(B) :* a).
rewrite -sum1_card (partition_big (fun x => g ^ x) pHBa) /= => [|x]; last first.
by case/setIdP=> _ ->.