diff options
Diffstat (limited to 'mathcomp/field')
| -rw-r--r-- | mathcomp/field/algebraics_fundamentals.v | 2 | ||||
| -rw-r--r-- | mathcomp/field/closed_field.v | 6 | ||||
| -rw-r--r-- | mathcomp/field/falgebra.v | 4 |
3 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/field/algebraics_fundamentals.v b/mathcomp/field/algebraics_fundamentals.v index 8a65f2b..ad2388a 100644 --- a/mathcomp/field/algebraics_fundamentals.v +++ b/mathcomp/field/algebraics_fundamentals.v @@ -260,7 +260,7 @@ Qed. Prenex Implicits alg_integral. Import DefaultKeying GRing.DefaultPred. -Arguments map_poly_inj {F R} f [x1 x2]. +Arguments map_poly_inj {F R} f [p1 p2]. Theorem Fundamental_Theorem_of_Algebraics : {L : closedFieldType & diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v index 1ae025b..0440653 100644 --- a/mathcomp/field/closed_field.v +++ b/mathcomp/field/closed_field.v @@ -54,18 +54,18 @@ Proof. by split=> /andP[]. Qed. Notation cps T := ((T -> fF) -> fF). Definition ret T1 : T1 -> cps T1 := fun x k => k x. -Arguments ret T1 x k /. +Arguments ret {T1} x k /. Definition bind T1 T2 (x : cps T1) (f : T1 -> cps T2) : cps T2 := fun k => x (fun x => f x k). -Arguments bind T1 T2 x f k /. +Arguments bind {T1 T2} x f k /. Notation "''let' x <- y ; z" := (bind y (fun x => z)) (at level 99, x at level 0, y at level 0, format "'[hv' ''let' x <- y ; '/' z ']'"). Definition cpsif T (c : fF) (t : T) (e : T) : cps T := fun k => GRing.If c (k t) (k e). -Arguments cpsif T c t e k /. +Arguments cpsif {T} c t e k /. Notation "''if' c1 'then' c2 'else' c3" := (cpsif c1%T c2%T c3%T) (at level 200, right associativity, format "'[hv ' ''if' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'"). diff --git a/mathcomp/field/falgebra.v b/mathcomp/field/falgebra.v index 0410e55..7e86d3c 100644 --- a/mathcomp/field/falgebra.v +++ b/mathcomp/field/falgebra.v @@ -620,8 +620,8 @@ End FalgebraTheory. Delimit Scope aspace_scope with AS. Bind Scope aspace_scope with aspace. Bind Scope aspace_scope with aspace_of. -Arguments asval _ _ _%AS. -Arguments clone_aspace _ _ _%VS _%AS _ _. +Arguments asval {K aT} a%AS. +Arguments clone_aspace [K aT U%VS A%AS algU] _. Notation "{ 'aspace' T }" := (aspace_of (Phant T)) : type_scope. Notation "A * B" := (prodv A B) : vspace_scope. |
