aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/finfield.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/field/finfield.v')
-rw-r--r--mathcomp/field/finfield.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/field/finfield.v b/mathcomp/field/finfield.v
index 19871cb..efe5cea 100644
--- a/mathcomp/field/finfield.v
+++ b/mathcomp/field/finfield.v
@@ -568,7 +568,7 @@ End FinFieldExists.
Section FinDomain.
-Import ssrnum ssrint algC cyclotomic Num.Theory.
+Import order ssrnum ssrint algC cyclotomic Order.Theory Num.Theory.
Local Infix "%|" := dvdn. (* Hide polynomial divisibility. *)
Variable R : finUnitRingType.
@@ -625,18 +625,18 @@ without loss n_gt1: / (1 < n)%N by rewrite ltnNge; apply: wlog_neg.
have [q_gt0 n_gt0] := (ltnW q_gt1, ltnW n_gt1).
have [z z_prim] := C_prim_root_exists n_gt0.
have zn1: z ^+ n = 1 by apply: prim_expr_order.
-have /eqP-n1z: `|z| == 1.
- by rewrite -(pexpr_eq1 n_gt0) ?normr_ge0 // -normrX zn1 normr1.
-suffices /eqP/normC_sub_eq[t n1t [Dq Dz]]: `|q%:R - z| == `|q%:R| - `|z|.
+have /eqP-n1z: `|z| == 1 by rewrite -(pexpr_eq1 n_gt0) // -normrX zn1 normr1.
+suffices /eqP/normC_sub_eq[t n1t [Dq Dz]]:
+ `|q%:R - z : algC| == `|q%:R : algC| - `|z|.
suffices z1: z == 1 by rewrite leq_eqVlt -dvdn1 (prim_order_dvd z_prim) z1.
by rewrite Dz n1z mul1r -(eqr_pmuln2r q_gt0) Dq normr_nat mulr_natl.
pose aq d : algC := (cyclotomic (z ^+ (n %/ d)) d).[q%:R].
suffices: `|aq n| <= (q - 1)%:R.
- rewrite eqr_le ler_sub_dist andbT n1z normr_nat natrB //; apply: ler_trans.
+ rewrite eq_le ler_sub_dist andbT n1z normr_nat natrB //; apply: le_trans.
rewrite {}/aq horner_prod divnn n_gt0 expr1 normr_prod.
rewrite (bigD1 (Ordinal n_gt1)) ?coprime1n //= !hornerE ler_pemulr //.
elim/big_ind: _ => // [|d _]; first exact: mulr_ege1.
- rewrite !hornerE; apply: ler_trans (ler_sub_dist _ _).
+ rewrite !hornerE; apply: le_trans (ler_sub_dist _ _).
by rewrite normr_nat normrX n1z expr1n ler_subr_addl (leC_nat 2).
have Zaq d: d %| n -> aq d \in Cint.
move/(dvdn_prim_root z_prim)=> zd_prim.