aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/finfield.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/field/finfield.v')
-rw-r--r--mathcomp/field/finfield.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/field/finfield.v b/mathcomp/field/finfield.v
index 492aed8..19684dc 100644
--- a/mathcomp/field/finfield.v
+++ b/mathcomp/field/finfield.v
@@ -405,7 +405,7 @@ have fZ: linear f.
have /kAut_to_gal[alpha galLalpha Dalpha]: kAut 1 {:L} (linfun (Linear fZ)).
rewrite kAutfE; apply/kHomP; split=> [x y _ _ | x /idfP]; rewrite !lfunE //=.
exact: (rmorphM (RMorphism fM)).
-have{Dalpha} Dalpha: alpha =1 f by move=> a; rewrite -Dalpha ?memvf ?lfunE.
+have{} Dalpha: alpha =1 f by move=> a; rewrite -Dalpha ?memvf ?lfunE.
suffices <-: fixedField [set alpha] = 1%AS.
by rewrite gal_generated /generator; exists alpha.
apply/vspaceP=> x; apply/fixedFieldP/idfP; rewrite ?memvf // => id_x.
@@ -442,7 +442,7 @@ End FinGalois.
Lemma Fermat's_little_theorem (L : fieldExtType F) (K : {subfield L}) a :
(a \in K) = (a ^+ order K == a).
Proof.
-move: K a; wlog [{L}L -> K a]: L / exists galL : splittingFieldType F, L = galL.
+move: K a; wlog [{}L -> K a]: L / exists galL : splittingFieldType F, L = galL.
by pose galL := (FinSplittingFieldType F L) => /(_ galL); apply; exists galL.
have /galois_fixedField fixLK := finField_galois (subvf K).
have [alpha defGalLK Dalpha] := finField_galois_generator (subvf K).