diff options
Diffstat (limited to 'mathcomp/field/algC.v')
| -rw-r--r-- | mathcomp/field/algC.v | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/mathcomp/field/algC.v b/mathcomp/field/algC.v index 2e8ce3f..b045c07 100644 --- a/mathcomp/field/algC.v +++ b/mathcomp/field/algC.v @@ -152,7 +152,7 @@ have sposDl x y : lt 0 x -> le 0 y -> lt 0 (x + y). have sqrtJ z : le 0 z -> conj (sqrt z) = sqrt z. rewrite posE -{2}[z]sqrtK -subr_eq0 -mulrBr mulf_eq0 subr_eq0. by case/pred2P=> ->; rewrite ?rmorph0. - case/andP=> nz_x /sqrtJ uJ /sqrtJ vJ. + case/andP=> nz_x /sqrtJ uJ /sqrtJ vJ. set u := sqrt x in uJ; set v := sqrt y in vJ; pose w := u + i * v. have ->: x + y = w * conj w. rewrite rmorphD rmorphM iJ uJ vJ mulNr mulrC -subr_sqr sqrMi opprK. @@ -171,7 +171,7 @@ have normD x y : le (norm (x + y)) (norm x + norm y). by have /andP[]: lt 0 (u + v) by rewrite sposDl // /lt nz_u. have le_sqr u v: conj u = u -> le 0 v -> le (u ^+ 2) (v ^+ 2) -> le u v. move=> Ru v_ge0; have [-> // | nz_u] := eqVneq u 0. - have [u_gt0 | u_le0 _] := boolP (lt 0 u). + have [u_gt0 | u_le0 _] := boolP (lt 0 u). by rewrite leB (leB u) subr_sqr mulrC addrC; apply: sposM; apply: sposDl. rewrite leB posD // posE normN -addr_eq0; apply/eqP. rewrite /lt nz_u posE -subr_eq0 in u_le0; apply: (mulfI u_le0). @@ -184,7 +184,7 @@ have normD x y : le (norm (x + y)) (norm x + norm y). by rewrite rmorphD !rmorphM !conjK addrC mulrC (mulrC y). rewrite -mulr2n -mulr_natr exprMn normK -natrX mulr_natr sqrrD mulrACA. rewrite -rmorphM (mulrC y x) addrAC leB mulrnA mulr2n opprD addrACA. - rewrite subrr addr0 {2}(mulrC x) rmorphM mulrACA -opprB addrAC -sqrrB -sqrMi. + rewrite subrr addr0 {2}(mulrC x) rmorphM mulrACA -opprB addrAC -sqrrB -sqrMi. apply/posP; exists (i * (x * conj y - y * conj x)); congr (_ * _). rewrite !(rmorphM, rmorphB) iJ !conjK mulNr -mulrN opprB. by rewrite (mulrC x) (mulrC y). @@ -421,7 +421,7 @@ Lemma conjK : involutive conj. Proof. by move=> u; apply: CtoL_inj; rewrite !LtoC_K conjL_K. Qed. Fact conj_nt : ~ conj =1 id. -Proof. +Proof. have [i i2]: exists i : type, i ^+ 2 = -1. have [i] := @solve_monicpoly _ 2 (nth 0 [:: -1 : type]) isT. by rewrite !big_ord_recl big_ord0 /= mul0r mulr1 !addr0; exists i. @@ -988,7 +988,7 @@ Proof. rewrite unfold_in CintEge0 ?divr_ge0 ?invr_ge0 ?ler0n // !pnatr_eq0. have [-> | nz_p] := altP eqP; first by rewrite dvd0n. apply/CnatP/dvdnP=> [[q def_q] | [q ->]]; exists q. - by apply/eqP; rewrite -eqC_nat natrM -def_q divfK ?pnatr_eq0. + by apply/eqP; rewrite -eqC_nat natrM -def_q divfK ?pnatr_eq0. by rewrite [num in num / _]natrM mulfK ?pnatr_eq0. Qed. @@ -1213,10 +1213,10 @@ Section AutLmodC. Variables (U V : lmodType algC) (f : {additive U -> V}). -Lemma raddfZ_Cnat a u : a \in Cnat -> f (a *: u) = a *: f u. +Lemma raddfZ_Cnat a u : a \in Cnat -> f (a *: u) = a *: f u. Proof. by case/CnatP=> n ->; apply: raddfZnat. Qed. -Lemma raddfZ_Cint a u : a \in Cint -> f (a *: u) = a *: f u. +Lemma raddfZ_Cint a u : a \in Cint -> f (a *: u) = a *: f u. Proof. by case/CintP=> m ->; rewrite !scaler_int raddfMz. Qed. End AutLmodC. |
