diff options
Diffstat (limited to 'mathcomp/discrete/path.v')
| -rw-r--r-- | mathcomp/discrete/path.v | 890 |
1 files changed, 890 insertions, 0 deletions
diff --git a/mathcomp/discrete/path.v b/mathcomp/discrete/path.v new file mode 100644 index 0000000..804e673 --- /dev/null +++ b/mathcomp/discrete/path.v @@ -0,0 +1,890 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq. + +(******************************************************************************) +(* The basic theory of paths over an eqType; this file is essentially a *) +(* complement to seq.v. Paths are non-empty sequences that obey a progression *) +(* relation. They are passed around in three parts: the head and tail of the *) +(* sequence, and a proof of (boolean) predicate asserting the progression. *) +(* This "exploded" view is rarely embarrassing, as the first two parameters *) +(* are usually inferred from the type of the third; on the contrary, it saves *) +(* the hassle of constantly constructing and destructing a dependent record. *) +(* We define similarly cycles, for which we allow the empty sequence, *) +(* which represents a non-rooted empty cycle; by contrast, the "empty" path *) +(* from a point x is the one-item sequence containing only x. *) +(* We allow duplicates; uniqueness, if desired (as is the case for several *) +(* geometric constructions), must be asserted separately. We do provide *) +(* shorthand, but only for cycles, because the equational properties of *) +(* "path" and "uniq" are unfortunately incompatible (esp. wrt "cat"). *) +(* We define notations for the common cases of function paths, where the *) +(* progress relation is actually a function. In detail: *) +(* path e x p == x :: p is an e-path [:: x_0; x_1; ... ; x_n], i.e., we *) +(* e x_i x_{i+1} for all i < n. The path x :: p starts at x *) +(* and ends at last x p. *) +(* fpath f x p == x :: p is an f-path, where f is a function, i.e., p is of *) +(* the form [:: f x; f (f x); ...]. This is just a notation *) +(* for path (frel f) x p. *) +(* sorted e s == s is an e-sorted sequence: either s = [::], or s = x :: p *) +(* is an e-path (this is oten used with e = leq or ltn). *) +(* cycle e c == c is an e-cycle: either c = [::], or c = x :: p with *) +(* x :: (rcons p x) an e-path. *) +(* fcycle f c == c is an f-cycle, for a function f. *) +(* traject f x n == the f-path of size n starting at x *) +(* := [:: x; f x; ...; iter n.-1 f x] *) +(* looping f x n == the f-paths of size greater than n starting at x loop *) +(* back, or, equivalently, traject f x n contains all *) +(* iterates of f at x. *) +(* merge e s1 s2 == the e-sorted merge of sequences s1 and s2: this is always *) +(* a permutation of s1 ++ s2, and is e-sorted when s1 and s2 *) +(* are and e is total. *) +(* sort e s == a permutation of the sequence s, that is e-sorted when e *) +(* is total (computed by a merge sort with the merge function *) +(* above). *) +(* mem2 s x y == x, then y occur in the sequence (path) s; this is *) +(* non-strict: mem2 s x x = (x \in s). *) +(* next c x == the successor of the first occurrence of x in the sequence *) +(* c (viewed as a cycle), or x if x \notin c. *) +(* prev c x == the predecessor of the first occurrence of x in the *) +(* sequence c (viewed as a cycle), or x if x \notin c. *) +(* arc c x y == the sub-arc of the sequece c (viewed as a cycle) starting *) +(* at the first occurrence of x in c, and ending just before *) +(* the next ocurrence of y (in cycle order); arc c x y *) +(* returns an unspecified sub-arc of c if x and y do not both *) +(* occur in c. *) +(* ucycle e c <-> ucycleb e c (ucycle e c is a Coercion target of type Prop) *) +(* ufcycle f c <-> c is a simple f-cycle, for a function f. *) +(* shorten x p == the tail a duplicate-free subpath of x :: p with the same *) +(* endpoints (x and last x p), obtained by removing all loops *) +(* from x :: p. *) +(* rel_base e e' h b <-> the function h is a functor from relation e to *) +(* relation e', EXCEPT at points whose image under h satisfy *) +(* the "base" predicate b: *) +(* e' (h x) (h y) = e x y UNLESS b (h x) holds *) +(* This is the statement of the side condition of the path *) +(* functorial mapping lemma map_path. *) +(* fun_base f f' h b <-> the function h is a functor from function f to f', *) +(* except at the preimage of predicate b under h. *) +(* We also provide three segmenting dependently-typed lemmas (splitP, splitPl *) +(* and splitPr) whose elimination split a path x0 :: p at an internal point x *) +(* as follows: *) +(* - splitP applies when x \in p; it replaces p with (rcons p1 x ++ p2), so *) +(* that x appears explicitly at the end of the left part. The elimination *) +(* of splitP will also simultaneously replace take (index x p) with p1 and *) +(* drop (index x p).+1 p with p2. *) +(* - splitPl applies when x \in x0 :: p; it replaces p with p1 ++ p2 and *) +(* simulaneously generates an equation x = last x0 p. *) +(* - splitPr applies when x \in p; it replaces p with (p1 ++ x :: p2), so x *) +(* appears explicitly at the start of the right part. *) +(* The parts p1 and p2 are computed using index/take/drop in all cases, but *) +(* only splitP attemps to subsitute the explicit values. The substitution of *) +(* p can be deferred using the dependent equation generation feature of *) +(* ssreflect, e.g.: case/splitPr def_p: {1}p / x_in_p => [p1 p2] generates *) +(* the equation p = p1 ++ p2 instead of performing the substitution outright. *) +(* Similarly, eliminating the loop removal lemma shortenP simultaneously *) +(* replaces shorten e x p with a fresh constant p', and last x p with *) +(* last x p'. *) +(* Note that although all "path" functions actually operate on the *) +(* underlying sequence, we provide a series of lemmas that define their *) +(* interaction with thepath and cycle predicates, e.g., the cat_path equation *) +(* can be used to split the path predicate after splitting the underlying *) +(* sequence. *) +(******************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Section Paths. + +Variables (n0 : nat) (T : Type). + +Section Path. + +Variables (x0_cycle : T) (e : rel T). + +Fixpoint path x (p : seq T) := + if p is y :: p' then e x y && path y p' else true. + +Lemma cat_path x p1 p2 : path x (p1 ++ p2) = path x p1 && path (last x p1) p2. +Proof. by elim: p1 x => [|y p1 Hrec] x //=; rewrite Hrec -!andbA. Qed. + +Lemma rcons_path x p y : path x (rcons p y) = path x p && e (last x p) y. +Proof. by rewrite -cats1 cat_path /= andbT. Qed. + +Lemma pathP x p x0 : + reflect (forall i, i < size p -> e (nth x0 (x :: p) i) (nth x0 p i)) + (path x p). +Proof. +elim: p x => [|y p IHp] x /=; first by left. +apply: (iffP andP) => [[e_xy /IHp e_p [] //] | e_p]. +by split; [exact: (e_p 0) | apply/(IHp y) => i; exact: e_p i.+1]. +Qed. + +Definition cycle p := if p is x :: p' then path x (rcons p' x) else true. + +Lemma cycle_path p : cycle p = path (last x0_cycle p) p. +Proof. by case: p => //= x p; rewrite rcons_path andbC. Qed. + +Lemma rot_cycle p : cycle (rot n0 p) = cycle p. +Proof. +case: n0 p => [|n] [|y0 p] //=; first by rewrite /rot /= cats0. +rewrite /rot /= -{3}(cat_take_drop n p) -cats1 -catA cat_path. +case: (drop n p) => [|z0 q]; rewrite /= -cats1 !cat_path /= !andbT andbC //. +by rewrite last_cat; repeat bool_congr. +Qed. + +Lemma rotr_cycle p : cycle (rotr n0 p) = cycle p. +Proof. by rewrite -rot_cycle rotrK. Qed. + +End Path. + +Lemma eq_path e e' : e =2 e' -> path e =2 path e'. +Proof. by move=> ee' x p; elim: p x => //= y p IHp x; rewrite ee' IHp. Qed. + +Lemma eq_cycle e e' : e =2 e' -> cycle e =1 cycle e'. +Proof. by move=> ee' [|x p] //=; exact: eq_path. Qed. + +Lemma sub_path e e' : subrel e e' -> forall x p, path e x p -> path e' x p. +Proof. by move=> ee' x p; elim: p x => //= y p IHp x /andP[/ee'-> /IHp]. Qed. + +Lemma rev_path e x p : + path e (last x p) (rev (belast x p)) = path (fun z => e^~ z) x p. +Proof. +elim: p x => //= y p IHp x; rewrite rev_cons rcons_path -{}IHp andbC. +by rewrite -(last_cons x) -rev_rcons -lastI rev_cons last_rcons. +Qed. + +End Paths. + +Implicit Arguments pathP [T e x p]. +Prenex Implicits pathP. + +Section EqPath. + +Variables (n0 : nat) (T : eqType) (x0_cycle : T) (e : rel T). +Implicit Type p : seq T. + +CoInductive split x : seq T -> seq T -> seq T -> Type := + Split p1 p2 : split x (rcons p1 x ++ p2) p1 p2. + +Lemma splitP p x (i := index x p) : + x \in p -> split x p (take i p) (drop i.+1 p). +Proof. +move=> p_x; have lt_ip: i < size p by rewrite index_mem. +by rewrite -{1}(cat_take_drop i p) (drop_nth x lt_ip) -cat_rcons nth_index. +Qed. + +CoInductive splitl x1 x : seq T -> Type := + Splitl p1 p2 of last x1 p1 = x : splitl x1 x (p1 ++ p2). + +Lemma splitPl x1 p x : x \in x1 :: p -> splitl x1 x p. +Proof. +rewrite inE; case: eqP => [->| _ /splitP[]]; first by rewrite -(cat0s p). +by split; exact: last_rcons. +Qed. + +CoInductive splitr x : seq T -> Type := + Splitr p1 p2 : splitr x (p1 ++ x :: p2). + +Lemma splitPr p x : x \in p -> splitr x p. +Proof. by case/splitP=> p1 p2; rewrite cat_rcons. Qed. + +Fixpoint next_at x y0 y p := + match p with + | [::] => if x == y then y0 else x + | y' :: p' => if x == y then y' else next_at x y0 y' p' + end. + +Definition next p x := if p is y :: p' then next_at x y y p' else x. + +Fixpoint prev_at x y0 y p := + match p with + | [::] => if x == y0 then y else x + | y' :: p' => if x == y' then y else prev_at x y0 y' p' + end. + +Definition prev p x := if p is y :: p' then prev_at x y y p' else x. + +Lemma next_nth p x : + next p x = if x \in p then + if p is y :: p' then nth y p' (index x p) else x + else x. +Proof. +case: p => //= y0 p. +elim: p {2 3 5}y0 => [|y' p IHp] y /=; rewrite (eq_sym y) inE; + by case: ifP => // _; exact: IHp. +Qed. + +Lemma prev_nth p x : + prev p x = if x \in p then + if p is y :: p' then nth y p (index x p') else x + else x. +Proof. +case: p => //= y0 p; rewrite inE orbC. +elim: p {2 5}y0 => [|y' p IHp] y; rewrite /= ?inE // (eq_sym y'). +by case: ifP => // _; exact: IHp. +Qed. + +Lemma mem_next p x : (next p x \in p) = (x \in p). +Proof. +rewrite next_nth; case p_x: (x \in p) => //. +case: p (index x p) p_x => [|y0 p'] //= i _; rewrite inE. +have [lt_ip | ge_ip] := ltnP i (size p'); first by rewrite orbC mem_nth. +by rewrite nth_default ?eqxx. +Qed. + +Lemma mem_prev p x : (prev p x \in p) = (x \in p). +Proof. +rewrite prev_nth; case p_x: (x \in p) => //; case: p => [|y0 p] // in p_x *. +by apply mem_nth; rewrite /= ltnS index_size. +Qed. + +(* ucycleb is the boolean predicate, but ucycle is defined as a Prop *) +(* so that it can be used as a coercion target. *) +Definition ucycleb p := cycle e p && uniq p. +Definition ucycle p : Prop := cycle e p && uniq p. + +(* Projections, used for creating local lemmas. *) +Lemma ucycle_cycle p : ucycle p -> cycle e p. +Proof. by case/andP. Qed. + +Lemma ucycle_uniq p : ucycle p -> uniq p. +Proof. by case/andP. Qed. + +Lemma next_cycle p x : cycle e p -> x \in p -> e x (next p x). +Proof. +case: p => //= y0 p; elim: p {1 3 5}y0 => [|z p IHp] y /=; rewrite inE. + by rewrite andbT; case: (x =P y) => // ->. +by case/andP=> eyz /IHp; case: (x =P y) => // ->. +Qed. + +Lemma prev_cycle p x : cycle e p -> x \in p -> e (prev p x) x. +Proof. +case: p => //= y0 p; rewrite inE orbC. +elim: p {1 5}y0 => [|z p IHp] y /=; rewrite ?inE. + by rewrite andbT; case: (x =P y0) => // ->. +by case/andP=> eyz /IHp; case: (x =P z) => // ->. +Qed. + +Lemma rot_ucycle p : ucycle (rot n0 p) = ucycle p. +Proof. by rewrite /ucycle rot_uniq rot_cycle. Qed. + +Lemma rotr_ucycle p : ucycle (rotr n0 p) = ucycle p. +Proof. by rewrite /ucycle rotr_uniq rotr_cycle. Qed. + +(* The "appears no later" partial preorder defined by a path. *) + +Definition mem2 p x y := y \in drop (index x p) p. + +Lemma mem2l p x y : mem2 p x y -> x \in p. +Proof. +by rewrite /mem2 -!index_mem size_drop ltn_subRL; apply/leq_ltn_trans/leq_addr. +Qed. + +Lemma mem2lf {p x y} : x \notin p -> mem2 p x y = false. +Proof. exact/contraNF/mem2l. Qed. + +Lemma mem2r p x y : mem2 p x y -> y \in p. +Proof. +by rewrite -[in y \in p](cat_take_drop (index x p) p) mem_cat orbC /mem2 => ->. +Qed. + +Lemma mem2rf {p x y} : y \notin p -> mem2 p x y = false. +Proof. exact/contraNF/mem2r. Qed. + +Lemma mem2_cat p1 p2 x y : + mem2 (p1 ++ p2) x y = mem2 p1 x y || mem2 p2 x y || (x \in p1) && (y \in p2). +Proof. +rewrite [LHS]/mem2 index_cat fun_if if_arg !drop_cat addKn. +case: ifPn => [p1x | /mem2lf->]; last by rewrite ltnNge leq_addr orbF. +by rewrite index_mem p1x mem_cat -orbA (orb_idl (@mem2r _ _ _)). +Qed. + +Lemma mem2_splice p1 p3 x y p2 : + mem2 (p1 ++ p3) x y -> mem2 (p1 ++ p2 ++ p3) x y. +Proof. +by rewrite !mem2_cat mem_cat andb_orr orbC => /or3P[]->; rewrite ?orbT. +Qed. + +Lemma mem2_splice1 p1 p3 x y z : + mem2 (p1 ++ p3) x y -> mem2 (p1 ++ z :: p3) x y. +Proof. exact: mem2_splice [::z]. Qed. + +Lemma mem2_cons x p y z : + mem2 (x :: p) y z = (if x == y then z \in x :: p else mem2 p y z). +Proof. by rewrite [LHS]/mem2 /=; case: ifP. Qed. + +Lemma mem2_seq1 x y z : mem2 [:: x] y z = (y == x) && (z == x). +Proof. by rewrite mem2_cons eq_sym inE. Qed. + +Lemma mem2_last y0 p x : mem2 p x (last y0 p) = (x \in p). +Proof. +apply/idP/idP; first exact: mem2l; rewrite -index_mem /mem2 => p_x. +by rewrite -nth_last -(subnKC p_x) -nth_drop mem_nth // size_drop subnSK. +Qed. + +Lemma mem2l_cat {p1 p2 x} : x \notin p1 -> mem2 (p1 ++ p2) x =1 mem2 p2 x. +Proof. by move=> p1'x y; rewrite mem2_cat (negPf p1'x) mem2lf ?orbF. Qed. + +Lemma mem2r_cat {p1 p2 x y} : y \notin p2 -> mem2 (p1 ++ p2) x y = mem2 p1 x y. +Proof. +by move=> p2'y; rewrite mem2_cat (negPf p2'y) -orbA orbC andbF mem2rf. +Qed. + +Lemma mem2lr_splice {p1 p2 p3 x y} : + x \notin p2 -> y \notin p2 -> mem2 (p1 ++ p2 ++ p3) x y = mem2 (p1 ++ p3) x y. +Proof. +move=> p2'x p2'y; rewrite catA !mem2_cat !mem_cat. +by rewrite (negPf p2'x) (negPf p2'y) (mem2lf p2'x) andbF !orbF. +Qed. + +CoInductive split2r x y : seq T -> Type := + Split2r p1 p2 of y \in x :: p2 : split2r x y (p1 ++ x :: p2). + +Lemma splitP2r p x y : mem2 p x y -> split2r x y p. +Proof. +move=> pxy; have px := mem2l pxy. +have:= pxy; rewrite /mem2 (drop_nth x) ?index_mem ?nth_index //. +by case/splitP: px => p1 p2; rewrite cat_rcons. +Qed. + +Fixpoint shorten x p := + if p is y :: p' then + if x \in p then shorten x p' else y :: shorten y p' + else [::]. + +CoInductive shorten_spec x p : T -> seq T -> Type := + ShortenSpec p' of path e x p' & uniq (x :: p') & subpred (mem p') (mem p) : + shorten_spec x p (last x p') p'. + +Lemma shortenP x p : path e x p -> shorten_spec x p (last x p) (shorten x p). +Proof. +move=> e_p; have: x \in x :: p by exact: mem_head. +elim: p x {1 3 5}x e_p => [|y2 p IHp] x y1. + by rewrite mem_seq1 => _ /eqP->. +rewrite inE orbC /= => /andP[ey12 /IHp {IHp}IHp]. +case: ifPn => [y2p_x _ | not_y2p_x /eqP def_x]. + have [p' e_p' Up' p'p] := IHp _ y2p_x. + by split=> // y /p'p; exact: predU1r. +have [p' e_p' Up' p'p] := IHp y2 (mem_head y2 p). +have{p'p} p'p z: z \in y2 :: p' -> z \in y2 :: p. + by rewrite !inE; case: (z == y2) => // /p'p. +rewrite -(last_cons y1) def_x; split=> //=; first by rewrite ey12. +by rewrite (contra (p'p y1)) -?def_x. +Qed. + +End EqPath. + + +(* Ordered paths and sorting. *) + +Section SortSeq. + +Variable T : eqType. +Variable leT : rel T. + +Definition sorted s := if s is x :: s' then path leT x s' else true. + +Lemma path_sorted x s : path leT x s -> sorted s. +Proof. by case: s => //= y s /andP[]. Qed. + +Lemma path_min_sorted x s : + {in s, forall y, leT x y} -> path leT x s = sorted s. +Proof. by case: s => //= y s -> //; exact: mem_head. Qed. + +Section Transitive. + +Hypothesis leT_tr : transitive leT. + +Lemma subseq_order_path x s1 s2 : + subseq s1 s2 -> path leT x s2 -> path leT x s1. +Proof. +elim: s2 x s1 => [|y s2 IHs] x [|z s1] //= {IHs}/(IHs y). +case: eqP => [-> | _] IHs /andP[] => [-> // | leTxy /IHs /=]. +by case/andP=> /(leT_tr leTxy)->. +Qed. + +Lemma order_path_min x s : path leT x s -> all (leT x) s. +Proof. +move/subseq_order_path=> le_x_s; apply/allP=> y. +by rewrite -sub1seq => /le_x_s/andP[]. +Qed. + +Lemma subseq_sorted s1 s2 : subseq s1 s2 -> sorted s2 -> sorted s1. +Proof. +case: s1 s2 => [|x1 s1] [|x2 s2] //= sub_s12 /(subseq_order_path sub_s12). +by case: eqP => [-> | _ /andP[]]. +Qed. + +Lemma sorted_filter a s : sorted s -> sorted (filter a s). +Proof. exact: subseq_sorted (filter_subseq a s). Qed. + +Lemma sorted_uniq : irreflexive leT -> forall s, sorted s -> uniq s. +Proof. +move=> leT_irr; elim=> //= x s IHs s_ord. +rewrite (IHs (path_sorted s_ord)) andbT; apply/negP=> s_x. +by case/allPn: (order_path_min s_ord); exists x; rewrite // leT_irr. +Qed. + +Lemma eq_sorted : antisymmetric leT -> + forall s1 s2, sorted s1 -> sorted s2 -> perm_eq s1 s2 -> s1 = s2. +Proof. +move=> leT_asym; elim=> [|x1 s1 IHs1] s2 //= ord_s1 ord_s2 eq_s12. + by case: {+}s2 (perm_eq_size eq_s12). +have s2_x1: x1 \in s2 by rewrite -(perm_eq_mem eq_s12) mem_head. +case: s2 s2_x1 eq_s12 ord_s2 => //= x2 s2; rewrite in_cons. +case: eqP => [<- _| ne_x12 /= s2_x1] eq_s12 ord_s2. + by rewrite {IHs1}(IHs1 s2) ?(@path_sorted x1) // -(perm_cons x1). +case: (ne_x12); apply: leT_asym; rewrite (allP (order_path_min ord_s2)) //. +have: x2 \in x1 :: s1 by rewrite (perm_eq_mem eq_s12) mem_head. +case/predU1P=> [eq_x12 | s1_x2]; first by case ne_x12. +by rewrite (allP (order_path_min ord_s1)). +Qed. + +Lemma eq_sorted_irr : irreflexive leT -> + forall s1 s2, sorted s1 -> sorted s2 -> s1 =i s2 -> s1 = s2. +Proof. +move=> leT_irr s1 s2 s1_sort s2_sort eq_s12. +have: antisymmetric leT. + by move=> m n /andP[? ltnm]; case/idP: (leT_irr m); exact: leT_tr ltnm. +by move/eq_sorted; apply=> //; apply: uniq_perm_eq => //; exact: sorted_uniq. +Qed. + +End Transitive. + +Hypothesis leT_total : total leT. + +Fixpoint merge s1 := + if s1 is x1 :: s1' then + let fix merge_s1 s2 := + if s2 is x2 :: s2' then + if leT x2 x1 then x2 :: merge_s1 s2' else x1 :: merge s1' s2 + else s1 in + merge_s1 + else id. + +Lemma merge_path x s1 s2 : + path leT x s1 -> path leT x s2 -> path leT x (merge s1 s2). +Proof. +elim: s1 s2 x => //= x1 s1 IHs1. +elim=> //= x2 s2 IHs2 x /andP[le_x_x1 ord_s1] /andP[le_x_x2 ord_s2]. +case: ifP => le_x21 /=; first by rewrite le_x_x2 {}IHs2 // le_x21. +by rewrite le_x_x1 IHs1 //=; have:= leT_total x2 x1; rewrite le_x21 /= => ->. +Qed. + +Lemma merge_sorted s1 s2 : sorted s1 -> sorted s2 -> sorted (merge s1 s2). +Proof. +case: s1 s2 => [|x1 s1] [|x2 s2] //= ord_s1 ord_s2. +case: ifP => le_x21 /=. + by apply: (@merge_path x2 (x1 :: s1)) => //=; rewrite le_x21. +by apply: merge_path => //=; have:= leT_total x2 x1; rewrite le_x21 /= => ->. +Qed. + +Lemma perm_merge s1 s2 : perm_eql (merge s1 s2) (s1 ++ s2). +Proof. +apply/perm_eqlP; rewrite perm_eq_sym; elim: s1 s2 => //= x1 s1 IHs1. +elim=> [|x2 s2 IHs2]; rewrite /= ?cats0 //. +case: ifP => _ /=; last by rewrite perm_cons. +by rewrite (perm_catCA (_ :: _) [::x2]) perm_cons. +Qed. + +Lemma mem_merge s1 s2 : merge s1 s2 =i s1 ++ s2. +Proof. by apply: perm_eq_mem; rewrite perm_merge. Qed. + +Lemma size_merge s1 s2 : size (merge s1 s2) = size (s1 ++ s2). +Proof. by apply: perm_eq_size; rewrite perm_merge. Qed. + +Lemma merge_uniq s1 s2 : uniq (merge s1 s2) = uniq (s1 ++ s2). +Proof. by apply: perm_eq_uniq; rewrite perm_merge. Qed. + +Fixpoint merge_sort_push s1 ss := + match ss with + | [::] :: ss' | [::] as ss' => s1 :: ss' + | s2 :: ss' => [::] :: merge_sort_push (merge s1 s2) ss' + end. + +Fixpoint merge_sort_pop s1 ss := + if ss is s2 :: ss' then merge_sort_pop (merge s1 s2) ss' else s1. + +Fixpoint merge_sort_rec ss s := + if s is [:: x1, x2 & s'] then + let s1 := if leT x1 x2 then [:: x1; x2] else [:: x2; x1] in + merge_sort_rec (merge_sort_push s1 ss) s' + else merge_sort_pop s ss. + +Definition sort := merge_sort_rec [::]. + +Lemma sort_sorted s : sorted (sort s). +Proof. +rewrite /sort; have allss: all sorted [::] by []. +elim: {s}_.+1 {-2}s [::] allss (ltnSn (size s)) => // n IHn s ss allss. +have: sorted s -> sorted (merge_sort_pop s ss). + elim: ss allss s => //= s2 ss IHss /andP[ord_s2 ord_ss] s ord_s. + exact: IHss ord_ss _ (merge_sorted ord_s ord_s2). +case: s => [|x1 [|x2 s _]]; try by auto. +move/ltnW/IHn; apply=> {n IHn s}; set s1 := if _ then _ else _. +have: sorted s1 by exact: (@merge_sorted [::x2] [::x1]). +elim: ss {x1 x2}s1 allss => /= [|s2 ss IHss] s1; first by rewrite andbT. +case/andP=> ord_s2 ord_ss ord_s1. +by case: {1}s2=> /= [|_ _]; [rewrite ord_s1 | exact: IHss (merge_sorted _ _)]. +Qed. + +Lemma perm_sort s : perm_eql (sort s) s. +Proof. +rewrite /sort; apply/perm_eqlP; pose catss := foldr (@cat T) [::]. +rewrite perm_eq_sym -{1}[s]/(catss [::] ++ s). +elim: {s}_.+1 {-2}s [::] (ltnSn (size s)) => // n IHn s ss. +have: perm_eq (catss ss ++ s) (merge_sort_pop s ss). + elim: ss s => //= s2 ss IHss s1; rewrite -{IHss}(perm_eqrP (IHss _)). + by rewrite perm_catC catA perm_catC perm_cat2l -perm_merge. +case: s => // x1 [//|x2 s _]; move/ltnW; move/IHn=> {n IHn}IHs. +rewrite -{IHs}(perm_eqrP (IHs _)) ifE; set s1 := if_expr _ _ _. +rewrite (catA _ [::_;_] s) {s}perm_cat2r. +apply: (@perm_eq_trans _ (catss ss ++ s1)). + by rewrite perm_cat2l /s1 -ifE; case: ifP; rewrite // (perm_catC [::_]). +elim: ss {x1 x2}s1 => /= [|s2 ss IHss] s1; first by rewrite cats0. +rewrite perm_catC; case def_s2: {2}s2=> /= [|y s2']; first by rewrite def_s2. +by rewrite catA -{IHss}(perm_eqrP (IHss _)) perm_catC perm_cat2l -perm_merge. +Qed. + +Lemma mem_sort s : sort s =i s. +Proof. by apply: perm_eq_mem; rewrite perm_sort. Qed. + +Lemma size_sort s : size (sort s) = size s. +Proof. by apply: perm_eq_size; rewrite perm_sort. Qed. + +Lemma sort_uniq s : uniq (sort s) = uniq s. +Proof. by apply: perm_eq_uniq; rewrite perm_sort. Qed. + +Lemma perm_sortP : transitive leT -> antisymmetric leT -> + forall s1 s2, reflect (sort s1 = sort s2) (perm_eq s1 s2). +Proof. +move=> leT_tr leT_asym s1 s2. +apply: (iffP idP) => eq12; last by rewrite -perm_sort eq12 perm_sort. +apply: eq_sorted; rewrite ?sort_sorted //. +by rewrite perm_sort (perm_eqlP eq12) -perm_sort. +Qed. + +End SortSeq. + +Lemma rev_sorted (T : eqType) (leT : rel T) s : + sorted leT (rev s) = sorted (fun y x => leT x y) s. +Proof. by case: s => //= x p; rewrite -rev_path lastI rev_rcons. Qed. + +Lemma ltn_sorted_uniq_leq s : sorted ltn s = uniq s && sorted leq s. +Proof. +case: s => //= n s; elim: s n => //= m s IHs n. +rewrite inE ltn_neqAle negb_or IHs -!andbA. +case sn: (n \in s); last do !bool_congr. +rewrite andbF; apply/and5P=> [[ne_nm lenm _ _ le_ms]]; case/negP: ne_nm. +rewrite eqn_leq lenm; exact: (allP (order_path_min leq_trans le_ms)). +Qed. + +Lemma iota_sorted i n : sorted leq (iota i n). +Proof. by elim: n i => // [[|n] //= IHn] i; rewrite IHn leqW. Qed. + +Lemma iota_ltn_sorted i n : sorted ltn (iota i n). +Proof. by rewrite ltn_sorted_uniq_leq iota_sorted iota_uniq. Qed. + +(* Function trajectories. *) + +Notation fpath f := (path (coerced_frel f)). +Notation fcycle f := (cycle (coerced_frel f)). +Notation ufcycle f := (ucycle (coerced_frel f)). + +Prenex Implicits path next prev cycle ucycle mem2. + +Section Trajectory. + +Variables (T : Type) (f : T -> T). + +Fixpoint traject x n := if n is n'.+1 then x :: traject (f x) n' else [::]. + +Lemma trajectS x n : traject x n.+1 = x :: traject (f x) n. +Proof. by []. Qed. + +Lemma trajectSr x n : traject x n.+1 = rcons (traject x n) (iter n f x). +Proof. by elim: n x => //= n IHn x; rewrite IHn -iterSr. Qed. + +Lemma last_traject x n : last x (traject (f x) n) = iter n f x. +Proof. by case: n => // n; rewrite iterSr trajectSr last_rcons. Qed. + +Lemma traject_iteri x n : + traject x n = iteri n (fun i => rcons^~ (iter i f x)) [::]. +Proof. by elim: n => //= n <-; rewrite -trajectSr. Qed. + +Lemma size_traject x n : size (traject x n) = n. +Proof. by elim: n x => //= n IHn x //=; rewrite IHn. Qed. + +Lemma nth_traject i n : i < n -> forall x, nth x (traject x n) i = iter i f x. +Proof. +elim: n => // n IHn; rewrite ltnS leq_eqVlt => le_i_n x. +rewrite trajectSr nth_rcons size_traject. +case: ltngtP le_i_n => [? _||->] //; exact: IHn. +Qed. + +End Trajectory. + +Section EqTrajectory. + +Variables (T : eqType) (f : T -> T). + +Lemma eq_fpath f' : f =1 f' -> fpath f =2 fpath f'. +Proof. by move/eq_frel/eq_path. Qed. + +Lemma eq_fcycle f' : f =1 f' -> fcycle f =1 fcycle f'. +Proof. by move/eq_frel/eq_cycle. Qed. + +Lemma fpathP x p : reflect (exists n, p = traject f (f x) n) (fpath f x p). +Proof. +elim: p x => [|y p IHp] x; first by left; exists 0. +rewrite /= andbC; case: IHp => [fn_p | not_fn_p]; last first. + by right=> [] [[//|n]] [<- fn_p]; case: not_fn_p; exists n. +apply: (iffP eqP) => [-> | [[] // _ []//]]. +by have [n ->] := fn_p; exists n.+1. +Qed. + +Lemma fpath_traject x n : fpath f x (traject f (f x) n). +Proof. by apply/(fpathP x); exists n. Qed. + +Definition looping x n := iter n f x \in traject f x n. + +Lemma loopingP x n : + reflect (forall m, iter m f x \in traject f x n) (looping x n). +Proof. +apply: (iffP idP) => loop_n; last exact: loop_n. +case: n => // n in loop_n *; elim=> [|m /= IHm]; first exact: mem_head. +move: (fpath_traject x n) loop_n; rewrite /looping !iterS -last_traject /=. +move: (iter m f x) IHm => y /splitPl[p1 p2 def_y]. +rewrite cat_path last_cat def_y; case: p2 => // z p2 /and3P[_ /eqP-> _] _. +by rewrite inE mem_cat mem_head !orbT. +Qed. + +Lemma trajectP x n y : + reflect (exists2 i, i < n & y = iter i f x) (y \in traject f x n). +Proof. +elim: n x => [|n IHn] x /=; first by right; case. +rewrite inE; have [-> | /= neq_xy] := eqP; first by left; exists 0. +apply: {IHn}(iffP (IHn _)) => [[i] | [[|i]]] // lt_i_n ->. + by exists i.+1; rewrite ?iterSr. +by exists i; rewrite ?iterSr. +Qed. + +Lemma looping_uniq x n : uniq (traject f x n.+1) = ~~ looping x n. +Proof. +rewrite /looping; elim: n x => [|n IHn] x //. +rewrite {-3}[n.+1]lock /= -lock {}IHn -iterSr -negb_or inE; congr (~~ _). +apply: orb_id2r => /trajectP no_loop. +apply/idP/eqP => [/trajectP[m le_m_n def_x] | {1}<-]; last first. + by rewrite iterSr -last_traject mem_last. +have loop_m: looping x m.+1 by rewrite /looping iterSr -def_x mem_head. +have/trajectP[[|i] // le_i_m def_fn1x] := loopingP _ _ loop_m n.+1. +by case: no_loop; exists i; rewrite -?iterSr // -ltnS (leq_trans le_i_m). +Qed. + +End EqTrajectory. + +Implicit Arguments fpathP [T f x p]. +Implicit Arguments loopingP [T f x n]. +Implicit Arguments trajectP [T f x n y]. +Prenex Implicits traject fpathP loopingP trajectP. + +Section UniqCycle. + +Variables (n0 : nat) (T : eqType) (e : rel T) (p : seq T). + +Hypothesis Up : uniq p. + +Lemma prev_next : cancel (next p) (prev p). +Proof. +move=> x; rewrite prev_nth mem_next next_nth; case p_x: (x \in p) => //. +case def_p: p Up p_x => // [y q]; rewrite -{-1}def_p => /= /andP[not_qy Uq] p_x. +rewrite -{2}(nth_index y p_x); congr (nth y _ _); set i := index x p. +have: ~~ (size q < i) by rewrite -index_mem -/i def_p leqNgt in p_x. +case: ltngtP => // [lt_i_q | ->] _; first by rewrite index_uniq. +by apply/eqP; rewrite nth_default // eqn_leq index_size leqNgt index_mem. +Qed. + +Lemma next_prev : cancel (prev p) (next p). +Proof. +move=> x; rewrite next_nth mem_prev prev_nth; case p_x: (x \in p) => //. +case def_p: p p_x => // [y q]; rewrite -def_p => p_x. +rewrite index_uniq //; last by rewrite def_p ltnS index_size. +case q_x: (x \in q); first exact: nth_index. +rewrite nth_default; last by rewrite leqNgt index_mem q_x. +by apply/eqP; rewrite def_p inE q_x orbF eq_sym in p_x. +Qed. + +Lemma cycle_next : fcycle (next p) p. +Proof. +case def_p: {-2}p Up => [|x q] Uq //. +apply/(pathP x)=> i; rewrite size_rcons => le_i_q. +rewrite -cats1 -cat_cons nth_cat le_i_q /= next_nth {}def_p mem_nth //. +rewrite index_uniq // nth_cat /= ltn_neqAle andbC -ltnS le_i_q. +by case: (i =P _) => //= ->; rewrite subnn nth_default. +Qed. + +Lemma cycle_prev : cycle (fun x y => x == prev p y) p. +Proof. +apply: etrans cycle_next; symmetry; case def_p: p => [|x q] //. +apply: eq_path; rewrite -def_p; exact (can2_eq prev_next next_prev). +Qed. + +Lemma cycle_from_next : (forall x, x \in p -> e x (next p x)) -> cycle e p. +Proof. +case: p (next p) cycle_next => //= [x q] n; rewrite -(belast_rcons x q x). +move: {q}(rcons q x) => q n_q; move/allP. +by elim: q x n_q => //= _ q IHq x /andP[/eqP <- n_q] /andP[-> /IHq->]. +Qed. + +Lemma cycle_from_prev : (forall x, x \in p -> e (prev p x) x) -> cycle e p. +Proof. +move=> e_p; apply: cycle_from_next => x p_x. +by rewrite -{1}[x]prev_next e_p ?mem_next. +Qed. + +Lemma next_rot : next (rot n0 p) =1 next p. +Proof. +move=> x; have n_p := cycle_next; rewrite -(rot_cycle n0) in n_p. +case p_x: (x \in p); last by rewrite !next_nth mem_rot p_x. +by rewrite (eqP (next_cycle n_p _)) ?mem_rot. +Qed. + +Lemma prev_rot : prev (rot n0 p) =1 prev p. +Proof. +move=> x; have p_p := cycle_prev; rewrite -(rot_cycle n0) in p_p. +case p_x: (x \in p); last by rewrite !prev_nth mem_rot p_x. +by rewrite (eqP (prev_cycle p_p _)) ?mem_rot. +Qed. + +End UniqCycle. + +Section UniqRotrCycle. + +Variables (n0 : nat) (T : eqType) (p : seq T). + +Hypothesis Up : uniq p. + +Lemma next_rotr : next (rotr n0 p) =1 next p. Proof. exact: next_rot. Qed. + +Lemma prev_rotr : prev (rotr n0 p) =1 prev p. Proof. exact: prev_rot. Qed. + +End UniqRotrCycle. + +Section UniqCycleRev. + +Variable T : eqType. +Implicit Type p : seq T. + +Lemma prev_rev p : uniq p -> prev (rev p) =1 next p. +Proof. +move=> Up x; case p_x: (x \in p); last first. + by rewrite next_nth prev_nth mem_rev p_x. +case/rot_to: p_x (Up) => [i q def_p] Urp; rewrite -rev_uniq in Urp. +rewrite -(prev_rotr i Urp); do 2 rewrite -(prev_rotr 1) ?rotr_uniq //. +rewrite -rev_rot -(next_rot i Up) {i p Up Urp}def_p. +by case: q => // y q; rewrite !rev_cons !(=^~ rcons_cons, rotr1_rcons) /= eqxx. +Qed. + +Lemma next_rev p : uniq p -> next (rev p) =1 prev p. +Proof. by move=> Up x; rewrite -{2}[p]revK prev_rev // rev_uniq. Qed. + +End UniqCycleRev. + +Section MapPath. + +Variables (T T' : Type) (h : T' -> T) (e : rel T) (e' : rel T'). + +Definition rel_base (b : pred T) := + forall x' y', ~~ b (h x') -> e (h x') (h y') = e' x' y'. + +Lemma map_path b x' p' (Bb : rel_base b) : + ~~ has (preim h b) (belast x' p') -> + path e (h x') (map h p') = path e' x' p'. +Proof. by elim: p' x' => [|y' p' IHp'] x' //= /norP[/Bb-> /IHp'->]. Qed. + +End MapPath. + +Section MapEqPath. + +Variables (T T' : eqType) (h : T' -> T) (e : rel T) (e' : rel T'). + +Hypothesis Ih : injective h. + +Lemma mem2_map x' y' p' : mem2 (map h p') (h x') (h y') = mem2 p' x' y'. +Proof. by rewrite {1}/mem2 (index_map Ih) -map_drop mem_map. Qed. + +Lemma next_map p : uniq p -> forall x, next (map h p) (h x) = h (next p x). +Proof. +move=> Up x; case p_x: (x \in p); last by rewrite !next_nth (mem_map Ih) p_x. +case/rot_to: p_x => i p' def_p. +rewrite -(next_rot i Up); rewrite -(map_inj_uniq Ih) in Up. +rewrite -(next_rot i Up) -map_rot {i p Up}def_p /=. +by case: p' => [|y p''] //=; rewrite !eqxx. +Qed. + +Lemma prev_map p : uniq p -> forall x, prev (map h p) (h x) = h (prev p x). +Proof. +move=> Up x; rewrite -{1}[x](next_prev Up) -(next_map Up). +by rewrite prev_next ?map_inj_uniq. +Qed. + +End MapEqPath. + +Definition fun_base (T T' : eqType) (h : T' -> T) f f' := + rel_base h (frel f) (frel f'). + +Section CycleArc. + +Variable T : eqType. +Implicit Type p : seq T. + +Definition arc p x y := let px := rot (index x p) p in take (index y px) px. + +Lemma arc_rot i p : uniq p -> {in p, arc (rot i p) =2 arc p}. +Proof. +move=> Up x p_x y; congr (fun q => take (index y q) q); move: Up p_x {y}. +rewrite -{1 2 5 6}(cat_take_drop i p) /rot cat_uniq => /and3P[_ Up12 _]. +rewrite !drop_cat !take_cat !index_cat mem_cat orbC. +case p2x: (x \in drop i p) => /= => [_ | p1x]. + rewrite index_mem p2x [x \in _](negbTE (hasPn Up12 _ p2x)) /= addKn. + by rewrite ltnNge leq_addr catA. +by rewrite p1x index_mem p1x addKn ltnNge leq_addr /= catA. +Qed. + +Lemma left_arc x y p1 p2 (p := x :: p1 ++ y :: p2) : + uniq p -> arc p x y = x :: p1. +Proof. +rewrite /arc /p [index x _]/= eqxx rot0 -cat_cons cat_uniq index_cat. +move: (x :: p1) => xp1 /and3P[_ /norP[/= /negbTE-> _] _]. +by rewrite eqxx addn0 take_size_cat. +Qed. + +Lemma right_arc x y p1 p2 (p := x :: p1 ++ y :: p2) : + uniq p -> arc p y x = y :: p2. +Proof. +rewrite -[p]cat_cons -rot_size_cat rot_uniq => Up. +by rewrite arc_rot ?left_arc ?mem_head. +Qed. + +CoInductive rot_to_arc_spec p x y := + RotToArcSpec i p1 p2 of x :: p1 = arc p x y + & y :: p2 = arc p y x + & rot i p = x :: p1 ++ y :: p2 : + rot_to_arc_spec p x y. + +Lemma rot_to_arc p x y : + uniq p -> x \in p -> y \in p -> x != y -> rot_to_arc_spec p x y. +Proof. +move=> Up p_x p_y ne_xy; case: (rot_to p_x) (p_y) (Up) => [i q def_p] q_y. +rewrite -(mem_rot i) def_p inE eq_sym (negbTE ne_xy) in q_y. +rewrite -(rot_uniq i) def_p. +case/splitPr: q / q_y def_p => q1 q2 def_p Uq12; exists i q1 q2 => //. + by rewrite -(arc_rot i Up p_x) def_p left_arc. +by rewrite -(arc_rot i Up p_y) def_p right_arc. +Qed. + +End CycleArc. + +Prenex Implicits arc. + |
