diff options
Diffstat (limited to 'mathcomp/character')
| -rw-r--r-- | mathcomp/character/character.v | 2 | ||||
| -rw-r--r-- | mathcomp/character/classfun.v | 2 | ||||
| -rw-r--r-- | mathcomp/character/mxabelem.v | 4 |
3 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v index a657fa5..9a61ebe 100644 --- a/mathcomp/character/character.v +++ b/mathcomp/character/character.v @@ -576,7 +576,7 @@ Proof. by move=> i; rewrite /irr_of_socle enum_valK cast_ordK addrK. Qed. Lemma irr_of_socleK : cancel irr_of_socle W. Proof. by move=> Wi; rewrite /W subrK cast_ordKV enum_rankK. Qed. -Hint Resolve socle_of_IirrK irr_of_socleK. +Hint Resolve socle_of_IirrK irr_of_socleK : core. Lemma irr_of_socle_bij (A : pred (Iirr G)) : {on A, bijective irr_of_socle}. Proof. by apply: onW_bij; exists W. Qed. diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 7b2b90d..a4ecd2c 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -759,7 +759,7 @@ Arguments classfun_on {gT} B%g A%g. Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope. Arguments cfun_onP {gT G A phi}. -Hint Resolve cfun_onT. +Hint Resolve cfun_onT : core. Section DotProduct. diff --git a/mathcomp/character/mxabelem.v b/mathcomp/character/mxabelem.v index 69055d4..22ab389 100644 --- a/mathcomp/character/mxabelem.v +++ b/mathcomp/character/mxabelem.v @@ -511,7 +511,7 @@ Proof. by rewrite im_abelem_rV inE. Qed. Lemma sub_im_abelem_rV mA : subset mA (mem (ErV @* E)). Proof. by rewrite unlock; apply/pred0P=> v /=; rewrite mem_im_abelem_rV. Qed. -Hint Resolve mem_im_abelem_rV sub_im_abelem_rV. +Hint Resolve mem_im_abelem_rV sub_im_abelem_rV : core. Lemma abelem_rV_1 : ErV 1 = 0%R. Proof. by rewrite morph1. Qed. @@ -552,7 +552,7 @@ Proof. by rewrite -im_rVabelem mem_morphim. Qed. Lemma sub_rVabelem L : rV_E @* L \subset E. Proof. by rewrite -[_ @* L]morphimIim im_invm subsetIl. Qed. -Hint Resolve mem_rVabelem sub_rVabelem. +Hint Resolve mem_rVabelem sub_rVabelem : core. Lemma card_rVabelem L : #|rV_E @* L| = #|L|. Proof. by rewrite card_injm ?rVabelem_injm. Qed. |
