diff options
Diffstat (limited to 'mathcomp/character/vcharacter.v')
| -rw-r--r-- | mathcomp/character/vcharacter.v | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/character/vcharacter.v b/mathcomp/character/vcharacter.v index 4212fbe..4a113b6 100644 --- a/mathcomp/character/vcharacter.v +++ b/mathcomp/character/vcharacter.v @@ -314,7 +314,7 @@ Lemma cfproj_sum_orthogonal P z phi : = if P phi then z phi * '[phi] else 0. Proof. move=> Sphi; have defS := perm_to_rem Sphi. -rewrite cfdot_suml (eq_big_perm _ defS) big_cons /= cfdotZl Inu ?Z_S //. +rewrite cfdot_suml (perm_big _ defS) big_cons /= cfdotZl Inu ?Z_S //. rewrite big1_seq ?addr0 // => xi; rewrite mem_rem_uniq ?inE //. by case/and3P=> _ neq_xi Sxi; rewrite cfdotZl Inu ?Z_S // dotSS ?mulr0. Qed. @@ -412,15 +412,15 @@ Lemma vchar_orthonormalP S : Proof. move=> vcS; apply: (equivP orthonormalP). split=> [[uniqS oSS] | [I [b defS]]]; last first. - split=> [|xi1 xi2]; rewrite ?(perm_eq_mem defS). - rewrite (perm_eq_uniq defS) map_inj_uniq ?enum_uniq // => i j /eqP. + split=> [|xi1 xi2]; rewrite ?(perm_mem defS). + rewrite (perm_uniq defS) map_inj_uniq ?enum_uniq // => i j /eqP. by rewrite eq_signed_irr => /andP[_ /eqP]. case/mapP=> [i _ ->] /mapP[j _ ->]; rewrite eq_signed_irr. rewrite cfdotZl cfdotZr rmorph_sign mulrA cfdot_irr -signr_addb mulr_natr. by rewrite mulrb andbC; case: eqP => //= ->; rewrite addbb eqxx. pose I := [set i | ('chi_i \in S) || (- 'chi_i \in S)]. pose b i := - 'chi_i \in S; exists I, b. -apply: uniq_perm_eq => // [|xi]. +apply: uniq_perm => // [|xi]. rewrite map_inj_uniq ?enum_uniq // => i j /eqP. by rewrite eq_signed_irr => /andP[_ /eqP]. apply/idP/mapP=> [Sxi | [i Ii ->{xi}]]; last first. @@ -453,7 +453,7 @@ move=> Zphi phiN1. have: orthonormal phi by rewrite /orthonormal/= phiN1 eqxx. case/vchar_orthonormalP=> [xi /predU1P[->|] // | I [b def_phi]]. have: phi \in (phi : seq _) := mem_head _ _. -by rewrite (perm_eq_mem def_phi) => /mapP[i _ ->]; exists (b i), i. +by rewrite (perm_mem def_phi) => /mapP[i _ ->]; exists (b i), i. Qed. Lemma zchar_small_norm phi n : |
