aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/mxrepresentation.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/character/mxrepresentation.v')
-rw-r--r--mathcomp/character/mxrepresentation.v70
1 files changed, 35 insertions, 35 deletions
diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v
index 0c1d4c1..fbd4bc3 100644
--- a/mathcomp/character/mxrepresentation.v
+++ b/mathcomp/character/mxrepresentation.v
@@ -427,7 +427,7 @@ Qed.
End OneRepresentation.
-Implicit Arguments rkerP [gT G n rG x].
+Arguments rkerP [gT G n rG x].
Section Proper.
@@ -819,8 +819,8 @@ Arguments Scope mx_repr [_ _ group_scope nat_scope _].
Arguments Scope group_ring [_ _ group_scope].
Arguments Scope regular_repr [_ _ group_scope].
-Implicit Arguments centgmxP [R gT G n rG f].
-Implicit Arguments rkerP [R gT G n rG x].
+Arguments centgmxP [R gT G n rG f].
+Arguments rkerP [R gT G n rG x].
Prenex Implicits gring_mxK.
Section ChangeOfRing.
@@ -933,7 +933,7 @@ by apply: (iffP subsetP) => modU x Gx; have:= modU x Gx; rewrite !inE ?Gx.
Qed.
End Stabilisers.
-Implicit Arguments mxmoduleP [m U].
+Arguments mxmoduleP [m U].
Lemma rstabS m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) :
(U <= V)%MS -> rstab rG V \subset rstab rG U.
@@ -1288,7 +1288,7 @@ apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK).
apply/row_matrixP=> j; rewrite !row_mul rowK mul_vec_lin /= mul_vec_lin_row.
by rewrite -!row_mul mulmxBr !mulmxA cGf ?enum_valP // subrr !linear0.
Qed.
-Implicit Arguments hom_mxP [m f W].
+Arguments hom_mxP [m f W].
Lemma hom_envelop_mxC m f (W : 'M_(m, n)) A :
(W <= dom_hom_mx f -> A \in E_G -> W *m A *m f = W *m f *m A)%MS.
@@ -1366,7 +1366,7 @@ apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK).
apply/row_matrixP=> i; rewrite row_mul rowK mul_vec_lin_row -row_mul.
by rewrite mulmxBr mulmx1 cHW ?enum_valP // subrr !linear0.
Qed.
-Implicit Arguments rfix_mxP [m W].
+Arguments rfix_mxP [m W].
Lemma rfix_mx_id (H : {set gT}) x : x \in H -> rfix_mx H *m rG x = rfix_mx H.
Proof. exact/rfix_mxP. Qed.
@@ -1428,7 +1428,7 @@ rewrite genmxE; apply: (iffP submxP) => [[a] | [A /submxP[a defA]]] -> {v}.
by rewrite vec_mxK submxMl.
by exists a; rewrite mulmxA mul_rV_lin1 /= -defA mxvecK.
Qed.
-Implicit Arguments cyclic_mxP [u v].
+Arguments cyclic_mxP [u v].
Lemma cyclic_mx_id u : (u <= cyclic_mx u)%MS.
Proof. by apply/cyclic_mxP; exists 1%:M; rewrite ?mulmx1 ?envelop_mx1. Qed.
@@ -2366,19 +2366,19 @@ Qed.
End OneRepresentation.
-Implicit Arguments mxmoduleP [gT G n rG m U].
-Implicit Arguments envelop_mxP [gT G n rG A].
-Implicit Arguments hom_mxP [gT G n rG m f W].
-Implicit Arguments rfix_mxP [gT G n rG m W].
-Implicit Arguments cyclic_mxP [gT G n rG u v].
-Implicit Arguments annihilator_mxP [gT G n rG u A].
-Implicit Arguments row_hom_mxP [gT G n rG u v].
-Implicit Arguments mxsimple_isoP [gT G n rG U V].
-Implicit Arguments socleP [gT G n rG sG0 W W'].
-Implicit Arguments mx_abs_irrP [gT G n rG].
+Arguments mxmoduleP [gT G n rG m U].
+Arguments envelop_mxP [gT G n rG A].
+Arguments hom_mxP [gT G n rG m f W].
+Arguments rfix_mxP [gT G n rG m W].
+Arguments cyclic_mxP [gT G n rG u v].
+Arguments annihilator_mxP [gT G n rG u A].
+Arguments row_hom_mxP [gT G n rG u v].
+Arguments mxsimple_isoP [gT G n rG U V].
+Arguments socleP [gT G n rG sG0 W W'].
+Arguments mx_abs_irrP [gT G n rG].
-Implicit Arguments val_submod_inj [n U m].
-Implicit Arguments val_factmod_inj [n U m].
+Arguments val_submod_inj [n U m].
+Arguments val_factmod_inj [n U m].
Prenex Implicits val_submod_inj val_factmod_inj.
@@ -4659,22 +4659,22 @@ Arguments Scope gset_mx [_ _ group_scope group_scope].
Arguments Scope classg_base [_ _ group_scope group_scope].
Arguments Scope irrType [_ _ group_scope group_scope].
-Implicit Arguments mxmoduleP [F gT G n rG m U].
-Implicit Arguments envelop_mxP [F gT G n rG A].
-Implicit Arguments hom_mxP [F gT G n rG m f W].
-Implicit Arguments mx_Maschke [F gT G n U].
-Implicit Arguments rfix_mxP [F gT G n rG m W].
-Implicit Arguments cyclic_mxP [F gT G n rG u v].
-Implicit Arguments annihilator_mxP [F gT G n rG u A].
-Implicit Arguments row_hom_mxP [F gT G n rG u v].
-Implicit Arguments mxsimple_isoP [F gT G n rG U V].
-Implicit Arguments socle_exists [F gT G n].
-Implicit Arguments socleP [F gT G n rG sG0 W W'].
-Implicit Arguments mx_abs_irrP [F gT G n rG].
-Implicit Arguments socle_rsimP [F gT G n rG sG W1 W2].
-
-Implicit Arguments val_submod_inj [F n U m].
-Implicit Arguments val_factmod_inj [F n U m].
+Arguments mxmoduleP [F gT G n rG m U].
+Arguments envelop_mxP [F gT G n rG A].
+Arguments hom_mxP [F gT G n rG m f W].
+Arguments mx_Maschke [F gT G n] rG _ [U].
+Arguments rfix_mxP [F gT G n rG m W].
+Arguments cyclic_mxP [F gT G n rG u v].
+Arguments annihilator_mxP [F gT G n rG u A].
+Arguments row_hom_mxP [F gT G n rG u v].
+Arguments mxsimple_isoP [F gT G n rG U V].
+Arguments socle_exists [F gT G n].
+Arguments socleP [F gT G n rG sG0 W W'].
+Arguments mx_abs_irrP [F gT G n rG].
+Arguments socle_rsimP [F gT G n rG sG W1 W2].
+
+Arguments val_submod_inj [F n U m].
+Arguments val_factmod_inj [F n U m].
Prenex Implicits val_submod_inj val_factmod_inj.
Notation "'Cl" := (Clifford_action _) : action_scope.