aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/mxrepresentation.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/character/mxrepresentation.v')
-rw-r--r--mathcomp/character/mxrepresentation.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v
index 4558b3d..c8d7ab1 100644
--- a/mathcomp/character/mxrepresentation.v
+++ b/mathcomp/character/mxrepresentation.v
@@ -1513,7 +1513,7 @@ Qed.
(* Module isomorphism is an intentional property in general, but it can be *)
(* decided when one of the two modules is known to be simple. *)
-CoInductive mx_iso (U V : 'M_n) : Prop :=
+Variant mx_iso (U V : 'M_n) : Prop :=
MxIso f of f \in unitmx & (U <= dom_hom_mx f)%MS & (U *m f :=: V)%MS.
Lemma eqmx_iso U V : (U :=: V)%MS -> mx_iso U V.
@@ -1692,7 +1692,7 @@ Qed.
Implicit Type I : finType.
-CoInductive mxsemisimple (V : 'M_n) :=
+Variant mxsemisimple (V : 'M_n) :=
MxSemisimple I U (W := (\sum_(i : I) U i)%MS) of
forall i, mxsimple (U i) & (W :=: V)%MS & mxdirect W.
@@ -1812,7 +1812,7 @@ Qed.
(* Completely reducible modules, and Maeschke's Theorem. *)
-CoInductive mxsplits (V U : 'M_n) :=
+Variant mxsplits (V U : 'M_n) :=
MxSplits (W : 'M_n) of mxmodule W & (U + W :=: V)%MS & mxdirect (U + W).
Definition mx_completely_reducible V :=
@@ -2969,7 +2969,7 @@ Section Similarity.
Variables (gT : finGroupType) (G : {group gT}).
Local Notation reprG := (mx_representation F G).
-CoInductive mx_rsim n1 (rG1 : reprG n1) n2 (rG2 : reprG n2) : Prop :=
+Variant mx_rsim n1 (rG1 : reprG n1) n2 (rG2 : reprG n2) : Prop :=
MxReprSim B of n1 = n2 & row_free B
& forall x, x \in G -> rG1 x *m B = B *m rG2 x.