aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/classfun.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/character/classfun.v')
-rw-r--r--mathcomp/character/classfun.v8
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v
index ccfc37b..2bea267 100644
--- a/mathcomp/character/classfun.v
+++ b/mathcomp/character/classfun.v
@@ -1093,7 +1093,7 @@ Lemma pairwise_orthogonalP S :
Proof.
rewrite /pairwise_orthogonal /=; case notS0: (~~ _); last by right; case.
elim: S notS0 => [|phi S IH] /=; first by left.
-rewrite inE eq_sym andbT => /norP[nz_phi /IH{IH}IH].
+rewrite inE eq_sym andbT => /norP[nz_phi /IH{}IH].
have [opS | not_opS] := allP; last first.
right=> [[/andP[notSp _] opS]]; case: not_opS => psi Spsi /=.
by rewrite opS ?mem_head 1?mem_behead // (memPnC notSp).
@@ -1306,7 +1306,7 @@ Lemma isometry_of_free S f :
Proof.
move=> freeS If; have defS := free_span freeS.
have [tau /(_ freeS (size_map f S))Dtau] := linear_of_free S (map f S).
-have{Dtau} Dtau: {in S, tau =1 f}.
+have{} Dtau: {in S, tau =1 f}.
by move=> _ /(nthP 0)[i ltiS <-]; rewrite -!(nth_map 0 0) ?Dtau.
exists tau => // _ _ /defS[a -> _] /defS[b -> _].
rewrite !{1}linear_sum !{1}cfdot_suml; apply/eq_big_seq=> xi1 Sxi1.
@@ -2229,7 +2229,7 @@ rewrite (set_partition_big _ (rcosets_partition_mul H K)) ?big_imset /=.
apply: eq_bigr => y Hy; rewrite rcosetE norm_rlcoset ?(subsetP nKH) //.
rewrite -lcosetE mulr_natl big_imset /=; last exact: in2W (mulgI _).
by rewrite -sumr_const; apply: eq_bigr => z Kz; rewrite conjgM cfunJ.
-have [{nKH}nKH /isomP[injf _]] := sdprod_isom defG.
+have [{}nKH /isomP[injf _]] := sdprod_isom defG.
apply: can_in_inj (fun Ky => invm injf (coset K (repr Ky))) _ => y Hy.
by rewrite rcosetE -val_coset ?(subsetP nKH) // coset_reprK invmE.
Qed.
@@ -2410,7 +2410,7 @@ Lemma map_cfAut_free S : cfAut_closed u S -> free S -> free (map (cfAut u) S).
Proof.
set Su := map _ S => sSuS freeS; have uniqS := free_uniq freeS.
have uniqSu: uniq Su by rewrite (map_inj_uniq cfAut_inj).
-have{sSuS} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS.
+have{} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS.
have [|_ eqSuS] := uniq_min_size uniqSu sSuS; first by rewrite size_map.
by rewrite (perm_free (uniq_perm uniqSu uniqS eqSuS)).
Qed.