diff options
Diffstat (limited to 'mathcomp/basic/tuple.v')
| -rw-r--r-- | mathcomp/basic/tuple.v | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/mathcomp/basic/tuple.v b/mathcomp/basic/tuple.v new file mode 100644 index 0000000..a3adfe7 --- /dev/null +++ b/mathcomp/basic/tuple.v @@ -0,0 +1,414 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import mathcomp.ssreflect.ssreflect. +From mathcomp +Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +(******************************************************************************) +(* Tuples, i.e., sequences with a fixed (known) length. We define: *) +(* n.-tuple T == the type of n-tuples of elements of type T. *) +(* [tuple of s] == the tuple whose underlying sequence (value) is s. *) +(* The size of s must be known: specifically, Coq must *) +(* be able to infer a Canonical tuple projecting on s. *) +(* in_tuple s == the (size s)-tuple with value s. *) +(* [tuple] == the empty tuple. *) +(* [tuple x1; ..; xn] == the explicit n.-tuple <x1; ..; xn>. *) +(* [tuple E | i < n] == the n.-tuple with general term E (i : 'I_n is bound *) +(* in E). *) +(* tcast Emn t == the m-tuple t cast as an n-tuple using Emn : m = n. *) +(* As n.-tuple T coerces to seq t, all seq operations (size, nth, ...) can be *) +(* applied to t : n.-tuple T; we provide a few specialized instances when *) +(* avoids the need for a default value. *) +(* tsize t == the size of t (the n in n.-tuple T) *) +(* tnth t i == the i'th component of t, where i : 'I_n. *) +(* [tnth t i] == the i'th component of t, where i : nat and i < n *) +(* is convertible to true. *) +(* thead t == the first element of t, when n is m.+1 for some m. *) +(* Most seq constructors (cons, behead, cat, rcons, belast, take, drop, rot, *) +(* map, ...) can be used to build tuples via the [tuple of s] construct. *) +(* Tuples are actually a subType of seq, and inherit all combinatorial *) +(* structures, including the finType structure. *) +(* Some useful lemmas and definitions: *) +(* tuple0 : [tuple] is the only 0.-tuple *) +(* tupleP : elimination view for n.+1.-tuple *) +(* ord_tuple n : the n.-tuple of all i : 'I_n *) +(******************************************************************************) + +Section Def. + +Variables (n : nat) (T : Type). + +Structure tuple_of : Type := Tuple {tval :> seq T; _ : size tval == n}. + +Canonical tuple_subType := Eval hnf in [subType for tval]. + +Implicit Type t : tuple_of. + +Definition tsize of tuple_of := n. + +Lemma size_tuple t : size t = n. +Proof. exact: (eqP (valP t)). Qed. + +Lemma tnth_default t : 'I_n -> T. +Proof. by rewrite -(size_tuple t); case: (tval t) => [|//] []. Qed. + +Definition tnth t i := nth (tnth_default t i) t i. + +Lemma tnth_nth x t i : tnth t i = nth x t i. +Proof. by apply: set_nth_default; rewrite size_tuple. Qed. + +Lemma map_tnth_enum t : map (tnth t) (enum 'I_n) = t. +Proof. +case def_t: {-}(val t) => [|x0 t']. + by rewrite [enum _]size0nil // -cardE card_ord -(size_tuple t) def_t. +apply: (@eq_from_nth _ x0) => [|i]; rewrite size_map. + by rewrite -cardE size_tuple card_ord. +move=> lt_i_e; have lt_i_n: i < n by rewrite -cardE card_ord in lt_i_e. +by rewrite (nth_map (Ordinal lt_i_n)) // (tnth_nth x0) nth_enum_ord. +Qed. + +Lemma eq_from_tnth t1 t2 : tnth t1 =1 tnth t2 -> t1 = t2. +Proof. +by move/eq_map=> eq_t; apply: val_inj; rewrite /= -!map_tnth_enum eq_t. +Qed. + +Definition tuple t mkT : tuple_of := + mkT (let: Tuple _ tP := t return size t == n in tP). + +Lemma tupleE t : tuple (fun sP => @Tuple t sP) = t. +Proof. by case: t. Qed. + +End Def. + +Notation "n .-tuple" := (tuple_of n) + (at level 2, format "n .-tuple") : type_scope. + +Notation "{ 'tuple' n 'of' T }" := (n.-tuple T : predArgType) + (at level 0, only parsing) : form_scope. + +Notation "[ 'tuple' 'of' s ]" := (tuple (fun sP => @Tuple _ _ s sP)) + (at level 0, format "[ 'tuple' 'of' s ]") : form_scope. + +Notation "[ 'tnth' t i ]" := (tnth t (@Ordinal (tsize t) i (erefl true))) + (at level 0, t, i at level 8, format "[ 'tnth' t i ]") : form_scope. + +Canonical nil_tuple T := Tuple (isT : @size T [::] == 0). +Canonical cons_tuple n T x (t : n.-tuple T) := + Tuple (valP t : size (x :: t) == n.+1). + +Notation "[ 'tuple' x1 ; .. ; xn ]" := [tuple of x1 :: .. [:: xn] ..] + (at level 0, format "[ 'tuple' '[' x1 ; '/' .. ; '/' xn ']' ]") + : form_scope. + +Notation "[ 'tuple' ]" := [tuple of [::]] + (at level 0, format "[ 'tuple' ]") : form_scope. + +Section CastTuple. + +Variable T : Type. + +Definition in_tuple (s : seq T) := Tuple (eqxx (size s)). + +Definition tcast m n (eq_mn : m = n) t := + let: erefl in _ = n := eq_mn return n.-tuple T in t. + +Lemma tcastE m n (eq_mn : m = n) t i : + tnth (tcast eq_mn t) i = tnth t (cast_ord (esym eq_mn) i). +Proof. by case: n / eq_mn in i *; rewrite cast_ord_id. Qed. + +Lemma tcast_id n (eq_nn : n = n) t : tcast eq_nn t = t. +Proof. by rewrite (eq_axiomK eq_nn). Qed. + +Lemma tcastK m n (eq_mn : m = n) : cancel (tcast eq_mn) (tcast (esym eq_mn)). +Proof. by case: n / eq_mn. Qed. + +Lemma tcastKV m n (eq_mn : m = n) : cancel (tcast (esym eq_mn)) (tcast eq_mn). +Proof. by case: n / eq_mn. Qed. + +Lemma tcast_trans m n p (eq_mn : m = n) (eq_np : n = p) t: + tcast (etrans eq_mn eq_np) t = tcast eq_np (tcast eq_mn t). +Proof. by case: n / eq_mn eq_np; case: p /. Qed. + +Lemma tvalK n (t : n.-tuple T) : in_tuple t = tcast (esym (size_tuple t)) t. +Proof. by apply: val_inj => /=; case: _ / (esym _). Qed. + +Lemma in_tupleE s : in_tuple s = s :> seq T. Proof. by []. Qed. + +End CastTuple. + +Section SeqTuple. + +Variables (n m : nat) (T U rT : Type). +Implicit Type t : n.-tuple T. + +Lemma rcons_tupleP t x : size (rcons t x) == n.+1. +Proof. by rewrite size_rcons size_tuple. Qed. +Canonical rcons_tuple t x := Tuple (rcons_tupleP t x). + +Lemma nseq_tupleP x : @size T (nseq n x) == n. +Proof. by rewrite size_nseq. Qed. +Canonical nseq_tuple x := Tuple (nseq_tupleP x). + +Lemma iota_tupleP : size (iota m n) == n. +Proof. by rewrite size_iota. Qed. +Canonical iota_tuple := Tuple iota_tupleP. + +Lemma behead_tupleP t : size (behead t) == n.-1. +Proof. by rewrite size_behead size_tuple. Qed. +Canonical behead_tuple t := Tuple (behead_tupleP t). + +Lemma belast_tupleP x t : size (belast x t) == n. +Proof. by rewrite size_belast size_tuple. Qed. +Canonical belast_tuple x t := Tuple (belast_tupleP x t). + +Lemma cat_tupleP t (u : m.-tuple T) : size (t ++ u) == n + m. +Proof. by rewrite size_cat !size_tuple. Qed. +Canonical cat_tuple t u := Tuple (cat_tupleP t u). + +Lemma take_tupleP t : size (take m t) == minn m n. +Proof. by rewrite size_take size_tuple eqxx. Qed. +Canonical take_tuple t := Tuple (take_tupleP t). + +Lemma drop_tupleP t : size (drop m t) == n - m. +Proof. by rewrite size_drop size_tuple. Qed. +Canonical drop_tuple t := Tuple (drop_tupleP t). + +Lemma rev_tupleP t : size (rev t) == n. +Proof. by rewrite size_rev size_tuple. Qed. +Canonical rev_tuple t := Tuple (rev_tupleP t). + +Lemma rot_tupleP t : size (rot m t) == n. +Proof. by rewrite size_rot size_tuple. Qed. +Canonical rot_tuple t := Tuple (rot_tupleP t). + +Lemma rotr_tupleP t : size (rotr m t) == n. +Proof. by rewrite size_rotr size_tuple. Qed. +Canonical rotr_tuple t := Tuple (rotr_tupleP t). + +Lemma map_tupleP f t : @size rT (map f t) == n. +Proof. by rewrite size_map size_tuple. Qed. +Canonical map_tuple f t := Tuple (map_tupleP f t). + +Lemma scanl_tupleP f x t : @size rT (scanl f x t) == n. +Proof. by rewrite size_scanl size_tuple. Qed. +Canonical scanl_tuple f x t := Tuple (scanl_tupleP f x t). + +Lemma pairmap_tupleP f x t : @size rT (pairmap f x t) == n. +Proof. by rewrite size_pairmap size_tuple. Qed. +Canonical pairmap_tuple f x t := Tuple (pairmap_tupleP f x t). + +Lemma zip_tupleP t (u : n.-tuple U) : size (zip t u) == n. +Proof. by rewrite size1_zip !size_tuple. Qed. +Canonical zip_tuple t u := Tuple (zip_tupleP t u). + +Lemma allpairs_tupleP f t (u : m.-tuple U) : @size rT (allpairs f t u) == n * m. +Proof. by rewrite size_allpairs !size_tuple. Qed. +Canonical allpairs_tuple f t u := Tuple (allpairs_tupleP f t u). + +Definition thead (u : n.+1.-tuple T) := tnth u ord0. + +Lemma tnth0 x t : tnth [tuple of x :: t] ord0 = x. +Proof. by []. Qed. + +Lemma theadE x t : thead [tuple of x :: t] = x. +Proof. by []. Qed. + +Lemma tuple0 : all_equal_to ([tuple] : 0.-tuple T). +Proof. by move=> t; apply: val_inj; case: t => [[]]. Qed. + +CoInductive tuple1_spec : n.+1.-tuple T -> Type := + Tuple1spec x t : tuple1_spec [tuple of x :: t]. + +Lemma tupleP u : tuple1_spec u. +Proof. +case: u => [[|x s] //= sz_s]; pose t := @Tuple n _ s sz_s. +by rewrite (_ : Tuple _ = [tuple of x :: t]) //; apply: val_inj. +Qed. + +Lemma tnth_map f t i : tnth [tuple of map f t] i = f (tnth t i) :> rT. +Proof. by apply: nth_map; rewrite size_tuple. Qed. + +End SeqTuple. + +Lemma tnth_behead n T (t : n.+1.-tuple T) i : + tnth [tuple of behead t] i = tnth t (inord i.+1). +Proof. by case/tupleP: t => x t; rewrite !(tnth_nth x) inordK ?ltnS. Qed. + +Lemma tuple_eta n T (t : n.+1.-tuple T) : t = [tuple of thead t :: behead t]. +Proof. by case/tupleP: t => x t; apply: val_inj. Qed. + +Section TupleQuantifiers. + +Variables (n : nat) (T : Type). +Implicit Types (a : pred T) (t : n.-tuple T). + +Lemma forallb_tnth a t : [forall i, a (tnth t i)] = all a t. +Proof. +apply: negb_inj; rewrite -has_predC -has_map negb_forall. +apply/existsP/(has_nthP true) => [[i a_t_i] | [i lt_i_n a_t_i]]. + by exists i; rewrite ?size_tuple // -tnth_nth tnth_map. +rewrite size_tuple in lt_i_n; exists (Ordinal lt_i_n). +by rewrite -tnth_map (tnth_nth true). +Qed. + +Lemma existsb_tnth a t : [exists i, a (tnth t i)] = has a t. +Proof. by apply: negb_inj; rewrite negb_exists -all_predC -forallb_tnth. Qed. + +Lemma all_tnthP a t : reflect (forall i, a (tnth t i)) (all a t). +Proof. by rewrite -forallb_tnth; apply: forallP. Qed. + +Lemma has_tnthP a t : reflect (exists i, a (tnth t i)) (has a t). +Proof. by rewrite -existsb_tnth; apply: existsP. Qed. + +End TupleQuantifiers. + +Implicit Arguments all_tnthP [n T a t]. +Implicit Arguments has_tnthP [n T a t]. + +Section EqTuple. + +Variables (n : nat) (T : eqType). + +Definition tuple_eqMixin := Eval hnf in [eqMixin of n.-tuple T by <:]. +Canonical tuple_eqType := Eval hnf in EqType (n.-tuple T) tuple_eqMixin. + +Canonical tuple_predType := + Eval hnf in mkPredType (fun t : n.-tuple T => mem_seq t). + +Lemma memtE (t : n.-tuple T) : mem t = mem (tval t). +Proof. by []. Qed. + +Lemma mem_tnth i (t : n.-tuple T) : tnth t i \in t. +Proof. by rewrite mem_nth ?size_tuple. Qed. + +Lemma memt_nth x0 (t : n.-tuple T) i : i < n -> nth x0 t i \in t. +Proof. by move=> i_lt_n; rewrite mem_nth ?size_tuple. Qed. + +Lemma tnthP (t : n.-tuple T) x : reflect (exists i, x = tnth t i) (x \in t). +Proof. +apply: (iffP idP) => [/(nthP x)[i ltin <-] | [i ->]]; last exact: mem_tnth. +by rewrite size_tuple in ltin; exists (Ordinal ltin); rewrite (tnth_nth x). +Qed. + +Lemma seq_tnthP (s : seq T) x : x \in s -> {i | x = tnth (in_tuple s) i}. +Proof. +move=> s_x; pose i := index x s; have lt_i: i < size s by rewrite index_mem. +by exists (Ordinal lt_i); rewrite (tnth_nth x) nth_index. +Qed. + +End EqTuple. + +Definition tuple_choiceMixin n (T : choiceType) := + [choiceMixin of n.-tuple T by <:]. + +Canonical tuple_choiceType n (T : choiceType) := + Eval hnf in ChoiceType (n.-tuple T) (tuple_choiceMixin n T). + +Definition tuple_countMixin n (T : countType) := + [countMixin of n.-tuple T by <:]. + +Canonical tuple_countType n (T : countType) := + Eval hnf in CountType (n.-tuple T) (tuple_countMixin n T). + +Canonical tuple_subCountType n (T : countType) := + Eval hnf in [subCountType of n.-tuple T]. + +Module Type FinTupleSig. +Section FinTupleSig. +Variables (n : nat) (T : finType). +Parameter enum : seq (n.-tuple T). +Axiom enumP : Finite.axiom enum. +Axiom size_enum : size enum = #|T| ^ n. +End FinTupleSig. +End FinTupleSig. + +Module FinTuple : FinTupleSig. +Section FinTuple. +Variables (n : nat) (T : finType). + +Definition enum : seq (n.-tuple T) := + let extend e := flatten (codom (fun x => map (cons x) e)) in + pmap insub (iter n extend [::[::]]). + +Lemma enumP : Finite.axiom enum. +Proof. +case=> /= t t_n; rewrite -(count_map _ (pred1 t)) (pmap_filter (@insubK _ _ _)). +rewrite count_filter -(@eq_count _ (pred1 t)) => [|s /=]; last first. + by rewrite isSome_insub; case: eqP=> // ->. +elim: n t t_n => [|m IHm] [|x t] //= {IHm}/IHm; move: (iter m _ _) => em IHm. +transitivity (x \in T : nat); rewrite // -mem_enum codomE. +elim: (fintype.enum T) (enum_uniq T) => //= y e IHe /andP[/negPf ney]. +rewrite count_cat count_map inE /preim /= {1}/eq_op /= eq_sym => /IHe->. +by case: eqP => [->|_]; rewrite ?(ney, count_pred0, IHm). +Qed. + +Lemma size_enum : size enum = #|T| ^ n. +Proof. +rewrite /= cardE size_pmap_sub; elim: n => //= m IHm. +rewrite expnS /codom /image_mem; elim: {2 3}(fintype.enum T) => //= x e IHe. +by rewrite count_cat {}IHe count_map IHm. +Qed. + +End FinTuple. +End FinTuple. + +Section UseFinTuple. + +Variables (n : nat) (T : finType). + +Canonical tuple_finMixin := Eval hnf in FinMixin (@FinTuple.enumP n T). +Canonical tuple_finType := Eval hnf in FinType (n.-tuple T) tuple_finMixin. +Canonical tuple_subFinType := Eval hnf in [subFinType of n.-tuple T]. + +Lemma card_tuple : #|{:n.-tuple T}| = #|T| ^ n. +Proof. by rewrite [#|_|]cardT enumT unlock FinTuple.size_enum. Qed. + +Lemma enum_tupleP (A : pred T) : size (enum A) == #|A|. +Proof. by rewrite -cardE. Qed. +Canonical enum_tuple A := Tuple (enum_tupleP A). + +Definition ord_tuple : n.-tuple 'I_n := Tuple (introT eqP (size_enum_ord n)). +Lemma val_ord_tuple : val ord_tuple = enum 'I_n. Proof. by []. Qed. + +Lemma tuple_map_ord U (t : n.-tuple U) : t = [tuple of map (tnth t) ord_tuple]. +Proof. by apply: val_inj => /=; rewrite map_tnth_enum. Qed. + +Lemma tnth_ord_tuple i : tnth ord_tuple i = i. +Proof. +apply: val_inj; rewrite (tnth_nth i) -(nth_map _ 0) ?size_tuple //. +by rewrite /= enumT unlock val_ord_enum nth_iota. +Qed. + +Section ImageTuple. + +Variables (T' : Type) (f : T -> T') (A : pred T). + +Canonical image_tuple : #|A|.-tuple T' := [tuple of image f A]. +Canonical codom_tuple : #|T|.-tuple T' := [tuple of codom f]. + +End ImageTuple. + +Section MkTuple. + +Variables (T' : Type) (f : 'I_n -> T'). + +Definition mktuple := map_tuple f ord_tuple. + +Lemma tnth_mktuple i : tnth mktuple i = f i. +Proof. by rewrite tnth_map tnth_ord_tuple. Qed. + +Lemma nth_mktuple x0 (i : 'I_n) : nth x0 mktuple i = f i. +Proof. by rewrite -tnth_nth tnth_mktuple. Qed. + +End MkTuple. + +End UseFinTuple. + +Notation "[ 'tuple' F | i < n ]" := (mktuple (fun i : 'I_n => F)) + (at level 0, i at level 0, + format "[ '[hv' 'tuple' F '/' | i < n ] ']'") : form_scope. + + |
