diff options
Diffstat (limited to 'mathcomp/basic/fingraph.v')
| -rw-r--r-- | mathcomp/basic/fingraph.v | 724 |
1 files changed, 724 insertions, 0 deletions
diff --git a/mathcomp/basic/fingraph.v b/mathcomp/basic/fingraph.v new file mode 100644 index 0000000..617188c --- /dev/null +++ b/mathcomp/basic/fingraph.v @@ -0,0 +1,724 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import mathcomp.ssreflect.ssreflect. +From mathcomp +Require Import ssrbool ssrfun eqtype ssrnat seq path fintype. + +(******************************************************************************) +(* This file develops the theory of finite graphs represented by an "edge" *) +(* relation over a finType T; this mainly amounts to the theory of the *) +(* transitive closure of such relations. *) +(* For g : T -> seq T, e : rel T and f : T -> T we define: *) +(* grel g == the adjacency relation y \in g x of the graph g. *) +(* rgraph e == the graph (x |-> enum (e x)) of the relation e. *) +(* dfs g n v x == the list of points traversed by a depth-first search of *) +(* the g, at depth n, starting from x, and avoiding v. *) +(* dfs_path g v x y <-> there is a path from x to y in g \ v. *) +(* connect e == the transitive closure of e (computed by dfs). *) +(* connect_sym e <-> connect e is symmetric, hence an equivalence relation. *) +(* root e x == a representative of connect e x, which is the component *) +(* of x in the transitive closure of e. *) +(* roots e == the codomain predicate of root e. *) +(* n_comp e a == the number of e-connected components of a, when a is *) +(* e-closed and connect e is symmetric. *) +(* equivalence classes of connect e if connect_sym e holds. *) +(* closed e a == the collective predicate a is e-invariant. *) +(* closure e a == the e-closure of a (the image of a under connect e). *) +(* rel_adjunction h e e' a <-> in the e-closed domain a, h is the left part *) +(* of an adjunction from e to another relation e'. *) +(* fconnect f == connect (frel f), i.e., "connected under f iteration". *) +(* froot f x == root (frel f) x, the root of the orbit of x under f. *) +(* froots f == roots (frel f) == orbit representatives for f. *) +(* orbit f x == lists the f-orbit of x. *) +(* findex f x y == index of y in the f-orbit of x. *) +(* order f x == size (cardinal) of the f-orbit of x. *) +(* order_set f n == elements of f-order n. *) +(* finv f == the inverse of f, if f is injective. *) +(* := finv f x := iter (order x).-1 f x. *) +(* fcard f a == number of orbits of f in a, provided a is f-invariant *) +(* f is one-to-one. *) +(* fclosed f a == the collective predicate a is f-invariant. *) +(* fclosure f a == the closure of a under f iteration. *) +(* fun_adjunction == rel_adjunction (frel f). *) +(******************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Definition grel (T : eqType) (g : T -> seq T) := [rel x y | y \in g x]. + +(* Decidable connectivity in finite types. *) +Section Connect. + +Variable T : finType. + +Section Dfs. + +Variable g : T -> seq T. +Implicit Type v w a : seq T. + +Fixpoint dfs n v x := + if x \in v then v else + if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v. + +Lemma subset_dfs n v a : v \subset foldl (dfs n) v a. +Proof. +elim: n a v => [|n IHn]; first by elim=> //= *; rewrite if_same. +elim=> //= x a IHa v; apply: subset_trans {IHa}(IHa _); case: ifP => // _. +by apply: subset_trans (IHn _ _); apply/subsetP=> y; apply: predU1r. +Qed. + +Inductive dfs_path v x y : Prop := + DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v]. + +Lemma dfs_pathP n x y v : + #|T| <= #|v| + n -> y \notin v -> reflect (dfs_path v x y) (y \in dfs n v x). +Proof. +have dfs_id w z: z \notin w -> dfs_path w z z. + by exists [::]; rewrite ?disjoint_has //= orbF. +elim: n => [|n IHn] /= in x y v * => le_v'_n not_vy. + rewrite addn0 (geq_leqif (subset_leqif_card (subset_predT _))) in le_v'_n. + by rewrite predT_subset in not_vy. +have [v_x | not_vx] := ifPn. + by rewrite (negPf not_vy); right=> [] [p _ _]; rewrite disjoint_has /= v_x. +set v1 := x :: v; set a := g x; have sub_dfs := subsetP (subset_dfs n _ _). +have [-> | neq_yx] := eqVneq y x. + by rewrite sub_dfs ?mem_head //; left; apply: dfs_id. +apply: (@equivP (exists2 x1, x1 \in a & dfs_path v1 x1 y)); last first. + split=> {IHn} [[x1 a_x1 [p g_p p_y]] | [p /shortenP[]]]. + rewrite disjoint_has has_sym /= has_sym /= => /norP[_ not_pv]. + by exists (x1 :: p); rewrite /= ?a_x1 // disjoint_has negb_or not_vx. + case=> [_ _ _ eq_yx | x1 p1 /=]; first by case/eqP: neq_yx. + case/andP=> a_x1 g_p1 /andP[not_p1x _] /subsetP p_p1 p1y not_pv. + exists x1 => //; exists p1 => //. + rewrite disjoint_sym disjoint_cons not_p1x disjoint_sym. + by move: not_pv; rewrite disjoint_cons => /andP[_ /disjoint_trans->]. +have{neq_yx not_vy}: y \notin v1 by apply/norP. +have{le_v'_n not_vx}: #|T| <= #|v1| + n by rewrite cardU1 not_vx addSnnS. +elim: {x v}a v1 => [|x a IHa] v /= le_v'_n not_vy. + by rewrite (negPf not_vy); right=> [] []. +set v2 := dfs n v x; have v2v: v \subset v2 := subset_dfs n v [:: x]. +have [v2y | not_v2y] := boolP (y \in v2). + by rewrite sub_dfs //; left; exists x; [apply: mem_head | apply: IHn]. +apply: {IHa}(equivP (IHa _ _ not_v2y)). + by rewrite (leq_trans le_v'_n) // leq_add2r subset_leq_card. +split=> [] [x1 a_x1 [p g_p p_y not_pv]]. + exists x1; [exact: predU1r | exists p => //]. + by rewrite disjoint_sym (disjoint_trans v2v) // disjoint_sym. +suffices not_p1v2: [disjoint x1 :: p & v2]. + case/predU1P: a_x1 => [def_x1 | ]; last by exists x1; last exists p. + case/pred0Pn: not_p1v2; exists x; rewrite /= def_x1 mem_head /=. + suffices not_vx: x \notin v by apply/IHn; last apply: dfs_id. + by move: not_pv; rewrite disjoint_cons def_x1 => /andP[]. +apply: contraR not_v2y => /pred0Pn[x2 /andP[/= p_x2 v2x2]]. +case/splitPl: p_x2 p_y g_p not_pv => p0 p2 p0x2. +rewrite last_cat cat_path -cat_cons lastI cat_rcons {}p0x2 => p2y /andP[_ g_p2]. +rewrite disjoint_cat disjoint_cons => /and3P[{p0}_ not_vx2 not_p2v]. +have{not_vx2 v2x2} [p1 g_p1 p1_x2 not_p1v] := IHn _ _ v le_v'_n not_vx2 v2x2. +apply/IHn=> //; exists (p1 ++ p2); rewrite ?cat_path ?last_cat -?p1_x2 ?g_p1 //. +by rewrite -cat_cons disjoint_cat not_p1v. +Qed. + +Lemma dfsP x y : + reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x). +Proof. +apply: (iffP (dfs_pathP _ _ _)); rewrite ?card0 // => [] [p]; exists p => //. +by rewrite disjoint_sym disjoint0. +Qed. + +End Dfs. + +Variable e : rel T. + +Definition rgraph x := enum (e x). + +Lemma rgraphK : grel rgraph =2 e. +Proof. by move=> x y; rewrite /= mem_enum. Qed. + +Definition connect : rel T := fun x y => y \in dfs rgraph #|T| [::] x. +Canonical connect_app_pred x := ApplicativePred (connect x). + +Lemma connectP x y : + reflect (exists2 p, path e x p & y = last x p) (connect x y). +Proof. +apply: (equivP (dfsP _ x y)). +by split=> [] [p e_p ->]; exists p => //; rewrite (eq_path rgraphK) in e_p *. +Qed. + +Lemma connect_trans : transitive connect. +Proof. +move=> x y z /connectP[p e_p ->] /connectP[q e_q ->]; apply/connectP. +by exists (p ++ q); rewrite ?cat_path ?e_p ?last_cat. +Qed. + +Lemma connect0 x : connect x x. +Proof. by apply/connectP; exists [::]. Qed. + +Lemma eq_connect0 x y : x = y -> connect x y. +Proof. by move->; apply: connect0. Qed. + +Lemma connect1 x y : e x y -> connect x y. +Proof. by move=> e_xy; apply/connectP; exists [:: y]; rewrite /= ?e_xy. Qed. + +Lemma path_connect x p : path e x p -> subpred (mem (x :: p)) (connect x). +Proof. +move=> e_p y p_y; case/splitPl: p / p_y e_p => p q <-. +by rewrite cat_path => /andP[e_p _]; apply/connectP; exists p. +Qed. + +Definition root x := odflt x (pick (connect x)). + +Definition roots : pred T := fun x => root x == x. +Canonical roots_pred := ApplicativePred roots. + +Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|. + +Lemma connect_root x : connect x (root x). +Proof. by rewrite /root; case: pickP; rewrite ?connect0. Qed. + +Definition connect_sym := symmetric connect. + +Hypothesis sym_e : connect_sym. + +Lemma same_connect : left_transitive connect. +Proof. exact: sym_left_transitive connect_trans. Qed. + +Lemma same_connect_r : right_transitive connect. +Proof. exact: sym_right_transitive connect_trans. Qed. + +Lemma same_connect1 x y : e x y -> connect x =1 connect y. +Proof. by move/connect1; apply: same_connect. Qed. + +Lemma same_connect1r x y : e x y -> connect^~ x =1 connect^~ y. +Proof. by move/connect1; apply: same_connect_r. Qed. + +Lemma rootP x y : reflect (root x = root y) (connect x y). +Proof. +apply: (iffP idP) => e_xy. + by rewrite /root -(eq_pick (same_connect e_xy)); case: pickP e_xy => // ->. +by apply: (connect_trans (connect_root x)); rewrite e_xy sym_e connect_root. +Qed. + +Lemma root_root x : root (root x) = root x. +Proof. exact/esym/rootP/connect_root. Qed. + +Lemma roots_root x : roots (root x). +Proof. exact/eqP/root_root. Qed. + +Lemma root_connect x y : (root x == root y) = connect x y. +Proof. exact: sameP eqP (rootP x y). Qed. + +Definition closed_mem m_a := forall x y, e x y -> in_mem x m_a = in_mem y m_a. + +Definition closure_mem m_a : pred T := + fun x => ~~ disjoint (mem (connect x)) m_a. + +End Connect. + +Hint Resolve connect0. + +Notation n_comp e a := (n_comp_mem e (mem a)). +Notation closed e a := (closed_mem e (mem a)). +Notation closure e a := (closure_mem e (mem a)). + +Prenex Implicits connect root roots. + +Implicit Arguments dfsP [T g x y]. +Implicit Arguments connectP [T e x y]. +Implicit Arguments rootP [T e x y]. + +Notation fconnect f := (connect (coerced_frel f)). +Notation froot f := (root (coerced_frel f)). +Notation froots f := (roots (coerced_frel f)). +Notation fcard_mem f := (n_comp_mem (coerced_frel f)). +Notation fcard f a := (fcard_mem f (mem a)). +Notation fclosed f a := (closed (coerced_frel f) a). +Notation fclosure f a := (closure (coerced_frel f) a). + +Section EqConnect. + +Variable T : finType. +Implicit Types (e : rel T) (a : pred T). + +Lemma connect_sub e e' : + subrel e (connect e') -> subrel (connect e) (connect e'). +Proof. +move=> e'e x _ /connectP[p e_p ->]; elim: p x e_p => //= y p IHp x /andP[exy]. +by move/IHp; apply: connect_trans; apply: e'e. +Qed. + +Lemma relU_sym e e' : + connect_sym e -> connect_sym e' -> connect_sym (relU e e'). +Proof. +move=> sym_e sym_e'; apply: symmetric_from_pre => x _ /connectP[p e_p ->]. +elim: p x e_p => //= y p IHp x /andP[e_xy /IHp{IHp}/connect_trans]; apply. +case/orP: e_xy => /connect1; rewrite (sym_e, sym_e'); + by apply: connect_sub y x => x y e_xy; rewrite connect1 //= e_xy ?orbT. +Qed. + +Lemma eq_connect e e' : e =2 e' -> connect e =2 connect e'. +Proof. +move=> eq_e x y; apply/connectP/connectP=> [] [p e_p ->]; + by exists p; rewrite // (eq_path eq_e) in e_p *. +Qed. + +Lemma eq_n_comp e e' : connect e =2 connect e' -> n_comp_mem e =1 n_comp_mem e'. +Proof. +move=> eq_e [a]; apply: eq_card => x /=. +by rewrite !inE /= /roots /root /= (eq_pick (eq_e x)). +Qed. + +Lemma eq_n_comp_r {e} a a' : a =i a' -> n_comp e a = n_comp e a'. +Proof. by move=> eq_a; apply: eq_card => x; rewrite inE /= eq_a. Qed. + +Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a]. +Proof. +rewrite /n_comp_mem (eq_card (fun _ => andbT _)) -(cardID a); congr (_ + _). +by apply: eq_card => x; rewrite !inE andbC. +Qed. + +Lemma eq_root e e' : e =2 e' -> root e =1 root e'. +Proof. by move=> eq_e x; rewrite /root (eq_pick (eq_connect eq_e x)). Qed. + +Lemma eq_roots e e' : e =2 e' -> roots e =1 roots e'. +Proof. by move=> eq_e x; rewrite /roots (eq_root eq_e). Qed. + +End EqConnect. + +Section Closure. + +Variables (T : finType) (e : rel T). +Hypothesis sym_e : connect_sym e. +Implicit Type a : pred T. + +Lemma same_connect_rev : connect e =2 connect (fun x y => e y x). +Proof. +suff crev e': subrel (connect (fun x : T => e'^~ x)) (fun x => (connect e')^~x). + by move=> x y; rewrite sym_e; apply/idP/idP; apply: crev. +move=> x y /connectP[p e_p p_y]; apply/connectP. +exists (rev (belast x p)); first by rewrite p_y rev_path. +by rewrite -(last_cons x) -rev_rcons p_y -lastI rev_cons last_rcons. +Qed. + +Lemma intro_closed a : (forall x y, e x y -> x \in a -> y \in a) -> closed e a. +Proof. +move=> cl_a x y e_xy; apply/idP/idP=> [|a_y]; first exact: cl_a. +have{x e_xy} /connectP[p e_p ->]: connect e y x by rewrite sym_e connect1. +by elim: p y a_y e_p => //= y p IHp x a_x /andP[/cl_a/(_ a_x)]; apply: IHp. +Qed. + +Lemma closed_connect a : + closed e a -> forall x y, connect e x y -> (x \in a) = (y \in a). +Proof. +move=> cl_a x _ /connectP[p e_p ->]. +by elim: p x e_p => //= y p IHp x /andP[/cl_a->]; apply: IHp. +Qed. + +Lemma connect_closed x : closed e (connect e x). +Proof. by move=> y z /connect1/same_connect_r; apply. Qed. + +Lemma predC_closed a : closed e a -> closed e [predC a]. +Proof. by move=> cl_a x y /cl_a; rewrite !inE => ->. Qed. + +Lemma closure_closed a : closed e (closure e a). +Proof. +apply: intro_closed => x y /connect1 e_xy; congr (~~ _). +by apply: eq_disjoint; apply: same_connect. +Qed. + +Lemma mem_closure a : {subset a <= closure e a}. +Proof. by move=> x a_x; apply/existsP; exists x; rewrite !inE connect0. Qed. + +Lemma subset_closure a : a \subset closure e a. +Proof. by apply/subsetP; apply: mem_closure. Qed. + +Lemma n_comp_closure2 x y : + n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1. +Proof. +rewrite -(root_connect sym_e) -card2; apply: eq_card => z. +apply/idP/idP=> [/andP[/eqP {2}<- /pred0Pn[t /andP[/= ezt exyt]]] |]. + by case/pred2P: exyt => <-; rewrite (rootP sym_e ezt) !inE eqxx ?orbT. +by case/pred2P=> ->; rewrite !inE roots_root //; apply/existsP; + [exists x | exists y]; rewrite !inE eqxx ?orbT sym_e connect_root. +Qed. + +Lemma n_comp_connect x : n_comp e (connect e x) = 1. +Proof. +rewrite -(card1 (root e x)); apply: eq_card => y. +apply/andP/eqP => [[/eqP r_y /rootP-> //] | ->] /=. +by rewrite inE connect_root roots_root. +Qed. + +End Closure. + +Section Orbit. + +Variables (T : finType) (f : T -> T). + +Definition order x := #|fconnect f x|. + +Definition orbit x := traject f x (order x). + +Definition findex x y := index y (orbit x). + +Definition finv x := iter (order x).-1 f x. + +Lemma fconnect_iter n x : fconnect f x (iter n f x). +Proof. +apply/connectP. +by exists (traject f (f x) n); [apply: fpath_traject | rewrite last_traject]. +Qed. + +Lemma fconnect1 x : fconnect f x (f x). +Proof. exact: (fconnect_iter 1). Qed. + +Lemma fconnect_finv x : fconnect f x (finv x). +Proof. exact: fconnect_iter. Qed. + +Lemma orderSpred x : (order x).-1.+1 = order x. +Proof. by rewrite /order (cardD1 x) [_ x _]connect0. Qed. + +Lemma size_orbit x : size (orbit x) = order x. +Proof. exact: size_traject. Qed. + +Lemma looping_order x : looping f x (order x). +Proof. +apply: contraFT (ltnn (order x)); rewrite -looping_uniq => /card_uniqP. +rewrite size_traject => <-; apply: subset_leq_card. +by apply/subsetP=> _ /trajectP[i _ ->]; apply: fconnect_iter. +Qed. + +Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x). +Proof. +apply/idP/idP=> [/connectP[_ /fpathP[m ->] ->] | /trajectP[i _ ->]]. + by rewrite last_traject; apply/loopingP/looping_order. +exact: fconnect_iter. +Qed. + +Lemma orbit_uniq x : uniq (orbit x). +Proof. +rewrite /orbit -orderSpred looping_uniq; set n := (order x).-1. +apply: contraFN (ltnn n) => /trajectP[i lt_i_n eq_fnx_fix]. +rewrite {1}/n orderSpred /order -(size_traject f x n). +apply: (leq_trans (subset_leq_card _) (card_size _)); apply/subsetP=> z. +rewrite inE fconnect_orbit => /trajectP[j le_jn ->{z}]. +rewrite -orderSpred -/n ltnS leq_eqVlt in le_jn. +by apply/trajectP; case/predU1P: le_jn => [->|]; [exists i | exists j]. +Qed. + +Lemma findex_max x y : fconnect f x y -> findex x y < order x. +Proof. by rewrite [_ y]fconnect_orbit -index_mem size_orbit. Qed. + +Lemma findex_iter x i : i < order x -> findex x (iter i f x) = i. +Proof. +move=> lt_ix; rewrite -(nth_traject f lt_ix) /findex index_uniq ?orbit_uniq //. +by rewrite size_orbit. +Qed. + +Lemma iter_findex x y : fconnect f x y -> iter (findex x y) f x = y. +Proof. +rewrite [_ y]fconnect_orbit => fxy; pose i := index y (orbit x). +have lt_ix: i < order x by rewrite -size_orbit index_mem. +by rewrite -(nth_traject f lt_ix) nth_index. +Qed. + +Lemma findex0 x : findex x x = 0. +Proof. by rewrite /findex /orbit -orderSpred /= eqxx. Qed. + +Lemma fconnect_invariant (T' : eqType) (k : T -> T') : + invariant f k =1 xpredT -> forall x y, fconnect f x y -> k x = k y. +Proof. +move=> eq_k_f x y /iter_findex <-; elim: {y}(findex x y) => //= n ->. +by rewrite (eqP (eq_k_f _)). +Qed. + +Section Loop. + +Variable p : seq T. +Hypotheses (f_p : fcycle f p) (Up : uniq p). +Variable x : T. +Hypothesis p_x : x \in p. + +(* This lemma does not depend on Up : (uniq p) *) +Lemma fconnect_cycle y : fconnect f x y = (y \in p). +Proof. +have [i q def_p] := rot_to p_x; rewrite -(mem_rot i p) def_p. +have{i def_p} /andP[/eqP q_x f_q]: (f (last x q) == x) && fpath f x q. + by have:= f_p; rewrite -(rot_cycle i) def_p (cycle_path x). +apply/idP/idP=> [/connectP[_ /fpathP[j ->] ->] | ]; last exact: path_connect. +case/fpathP: f_q q_x => n ->; rewrite !last_traject -iterS => def_x. +by apply: (@loopingP _ f x n.+1); rewrite /looping def_x /= mem_head. +Qed. + +Lemma order_cycle : order x = size p. +Proof. by rewrite -(card_uniqP Up); apply (eq_card fconnect_cycle). Qed. + +Lemma orbit_rot_cycle : {i : nat | orbit x = rot i p}. +Proof. +have [i q def_p] := rot_to p_x; exists i. +rewrite /orbit order_cycle -(size_rot i) def_p. +suffices /fpathP[j ->]: fpath f x q by rewrite /= size_traject. +by move: f_p; rewrite -(rot_cycle i) def_p (cycle_path x); case/andP. +Qed. + +End Loop. + +Hypothesis injf : injective f. + +Lemma f_finv : cancel finv f. +Proof. +move=> x; move: (looping_order x) (orbit_uniq x). +rewrite /looping /orbit -orderSpred looping_uniq /= /looping; set n := _.-1. +case/predU1P=> // /trajectP[i lt_i_n]; rewrite -iterSr => /= /injf ->. +by case/trajectP; exists i. +Qed. + +Lemma finv_f : cancel f finv. +Proof. exact (inj_can_sym f_finv injf). Qed. + +Lemma fin_inj_bij : bijective f. +Proof. by exists finv; [apply finv_f | apply f_finv]. Qed. + +Lemma finv_bij : bijective finv. +Proof. by exists f; [apply f_finv | apply finv_f]. Qed. + +Lemma finv_inj : injective finv. +Proof. exact (can_inj f_finv). Qed. + +Lemma fconnect_sym x y : fconnect f x y = fconnect f y x. +Proof. +suff{x y} Sf x y: fconnect f x y -> fconnect f y x by apply/idP/idP; auto. +case/connectP=> p f_p -> {y}; elim: p x f_p => //= y p IHp x. +rewrite -{2}(finv_f x) => /andP[/eqP-> /IHp/connect_trans-> //]. +exact: fconnect_finv. +Qed. +Let symf := fconnect_sym. + +Lemma iter_order x : iter (order x) f x = x. +Proof. by rewrite -orderSpred iterS; apply (f_finv x). Qed. + +Lemma iter_finv n x : n <= order x -> iter n finv x = iter (order x - n) f x. +Proof. +rewrite -{2}[x]iter_order => /subnKC {1}<-; move: (_ - n) => m. +by rewrite iter_add; elim: n => // n {2}<-; rewrite iterSr /= finv_f. +Qed. + +Lemma cycle_orbit x : fcycle f (orbit x). +Proof. +rewrite /orbit -orderSpred (cycle_path x) /= last_traject -/(finv x). +by rewrite fpath_traject f_finv andbT /=. +Qed. + +Lemma fpath_finv x p : fpath finv x p = fpath f (last x p) (rev (belast x p)). +Proof. +elim: p x => //= y p IHp x; rewrite rev_cons rcons_path -{}IHp andbC /=. +rewrite (canF_eq finv_f) eq_sym; congr (_ && (_ == _)). +by case: p => //= z p; rewrite rev_cons last_rcons. +Qed. + +Lemma same_fconnect_finv : fconnect finv =2 fconnect f. +Proof. +move=> x y; rewrite (same_connect_rev symf); apply: {x y}eq_connect => x y /=. +by rewrite (canF_eq finv_f) eq_sym. +Qed. + +Lemma fcard_finv : fcard_mem finv =1 fcard_mem f. +Proof. exact: eq_n_comp same_fconnect_finv. Qed. + +Definition order_set n : pred T := [pred x | order x == n]. + +Lemma fcard_order_set n (a : pred T) : + a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|. +Proof. +move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a]. +symmetry; transitivity #|preim (froot f) b|. + apply: eq_card => x; rewrite !inE (roots_root fconnect_sym). + by rewrite -(closed_connect cl_a (connect_root _ x)). +have{cl_a a_n} (x): b x -> froot f x = x /\ order x = n. + by case/andP=> /eqP-> /(subsetP a_n)/eqnP->. +elim: {a b}#|b| {1 3 4}b (eqxx #|b|) => [|m IHm] b def_m f_b. + by rewrite eq_card0 // => x; apply: (pred0P def_m). +have [x b_x | b0] := pickP b; last by rewrite (eq_card0 b0) in def_m. +have [r_x ox_n] := f_b x b_x; rewrite (cardD1 x) [x \in b]b_x eqSS in def_m. +rewrite mulSn -{1}ox_n -(IHm _ def_m) => [|_ /andP[_ /f_b //]]. +rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y. + by apply: andb_idl => /= fxy; rewrite !inE -(rootP symf fxy) r_x. +by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x. +Qed. + +Lemma fclosed1 (a : pred T) : fclosed f a -> forall x, (x \in a) = (f x \in a). +Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed. + +Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x). +Proof. by apply: same_connect1 => /=. Qed. + +Lemma same_fconnect1_r x y : fconnect f x y = fconnect f x (f y). +Proof. by apply: same_connect1r x => /=. Qed. + +End Orbit. + +Prenex Implicits order orbit findex finv order_set. + +Section FconnectId. + +Variable T : finType. + +Lemma fconnect_id (x : T) : fconnect id x =1 xpred1 x. +Proof. by move=> y; rewrite (@fconnect_cycle _ _ [:: x]) //= ?inE ?eqxx. Qed. + +Lemma order_id (x : T) : order id x = 1. +Proof. by rewrite /order (eq_card (fconnect_id x)) card1. Qed. + +Lemma orbit_id (x : T) : orbit id x = [:: x]. +Proof. by rewrite /orbit order_id. Qed. + +Lemma froots_id (x : T) : froots id x. +Proof. by rewrite /roots -fconnect_id connect_root. Qed. + +Lemma froot_id (x : T) : froot id x = x. +Proof. by apply/eqP; apply: froots_id. Qed. + +Lemma fcard_id (a : pred T) : fcard id a = #|a|. +Proof. by apply: eq_card => x; rewrite inE froots_id. Qed. + +End FconnectId. + +Section FconnectEq. + +Variables (T : finType) (f f' : T -> T). + +Lemma finv_eq_can : cancel f f' -> finv f =1 f'. +Proof. +move=> fK; have inj_f := can_inj fK. +by apply: bij_can_eq fK; [apply: fin_inj_bij | apply: finv_f]. +Qed. + +Hypothesis eq_f : f =1 f'. +Let eq_rf := eq_frel eq_f. + +Lemma eq_fconnect : fconnect f =2 fconnect f'. +Proof. exact: eq_connect eq_rf. Qed. + +Lemma eq_fcard : fcard_mem f =1 fcard_mem f'. +Proof. exact: eq_n_comp eq_fconnect. Qed. + +Lemma eq_finv : finv f =1 finv f'. +Proof. +by move=> x; rewrite /finv /order (eq_card (eq_fconnect x)) (eq_iter eq_f). +Qed. + +Lemma eq_froot : froot f =1 froot f'. +Proof. exact: eq_root eq_rf. Qed. + +Lemma eq_froots : froots f =1 froots f'. +Proof. exact: eq_roots eq_rf. Qed. + +End FconnectEq. + +Section FinvEq. + +Variables (T : finType) (f : T -> T). +Hypothesis injf : injective f. + +Lemma finv_inv : finv (finv f) =1 f. +Proof. exact: (finv_eq_can (f_finv injf)). Qed. + +Lemma order_finv : order (finv f) =1 order f. +Proof. by move=> x; apply: eq_card (same_fconnect_finv injf x). Qed. + +Lemma order_set_finv n : order_set (finv f) n =i order_set f n. +Proof. by move=> x; rewrite !inE order_finv. Qed. + +End FinvEq. + +Section RelAdjunction. + +Variables (T T' : finType) (h : T' -> T) (e : rel T) (e' : rel T'). +Hypotheses (sym_e : connect_sym e) (sym_e' : connect_sym e'). + +Record rel_adjunction_mem m_a := RelAdjunction { + rel_unit x : in_mem x m_a -> {x' : T' | connect e x (h x')}; + rel_functor x' y' : + in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y') +}. + +Variable a : pred T. +Hypothesis cl_a : closed e a. + +Local Notation rel_adjunction := (rel_adjunction_mem (mem a)). + +Lemma intro_adjunction (h' : forall x, x \in a -> T') : + (forall x a_x, + [/\ connect e x (h (h' x a_x)) + & forall y a_y, e x y -> connect e' (h' x a_x) (h' y a_y)]) -> + (forall x' a_x, + [/\ connect e' x' (h' (h x') a_x) + & forall y', e' x' y' -> connect e (h x') (h y')]) -> + rel_adjunction. +Proof. +move=> Aee' Ae'e; split=> [y a_y | x' z' a_x]. + by exists (h' y a_y); case/Aee': (a_y). +apply/idP/idP=> [/connectP[p e'p ->{z'}] | /connectP[p e_p p_z']]. + elim: p x' a_x e'p => //= y' p IHp x' a_x. + case: (Ae'e x' a_x) => _ Ae'x /andP[/Ae'x e_xy /IHp e_yz] {Ae'x}. + by apply: connect_trans (e_yz _); rewrite // -(closed_connect cl_a e_xy). +case: (Ae'e x' a_x) => /connect_trans-> //. +elim: p {x'}(h x') p_z' a_x e_p => /= [|y p IHp] x p_z' a_x. + by rewrite -p_z' in a_x *; case: (Ae'e _ a_x); rewrite sym_e'. +case/andP=> e_xy /(IHp _ p_z') e'yz; have a_y: y \in a by rewrite -(cl_a e_xy). +by apply: connect_trans (e'yz a_y); case: (Aee' _ a_x) => _ ->. +Qed. + +Lemma strict_adjunction : + injective h -> a \subset codom h -> rel_base h e e' [predC a] -> + rel_adjunction. +Proof. +move=> /= injh h_a a_ee'; pose h' x Hx := iinv (subsetP h_a x Hx). +apply: (@intro_adjunction h') => [x a_x | x' a_x]. + rewrite f_iinv connect0; split=> // y a_y e_xy. + by rewrite connect1 // -a_ee' !f_iinv ?negbK. +rewrite [h' _ _]iinv_f //; split=> // y' e'xy. +by rewrite connect1 // a_ee' ?negbK. +Qed. + +Let ccl_a := closed_connect cl_a. + +Lemma adjunction_closed : rel_adjunction -> closed e' [preim h of a]. +Proof. +case=> _ Ae'e; apply: intro_closed => // x' y' /connect1 e'xy a_x. +by rewrite Ae'e // in e'xy; rewrite !inE -(ccl_a e'xy). +Qed. + +Lemma adjunction_n_comp : + rel_adjunction -> n_comp e a = n_comp e' [preim h of a]. +Proof. +case=> Aee' Ae'e. +have inj_h: {in predI (roots e') [preim h of a] &, injective (root e \o h)}. + move=> x' y' /andP[/eqP r_x' /= a_x'] /andP[/eqP r_y' _] /(rootP sym_e). + by rewrite -Ae'e // => /(rootP sym_e'); rewrite r_x' r_y'. +rewrite /n_comp_mem -(card_in_image inj_h); apply: eq_card => x. +apply/andP/imageP=> [[/eqP rx a_x] | [x' /andP[/eqP r_x' a_x'] ->]]; last first. + by rewrite /= -(ccl_a (connect_root _ _)) roots_root. +have [y' e_xy]:= Aee' x a_x; pose x' := root e' y'. +have ay': h y' \in a by rewrite -(ccl_a e_xy). +have e_yx: connect e (h y') (h x') by rewrite -Ae'e ?connect_root. +exists x'; first by rewrite inE /= -(ccl_a e_yx) ?roots_root. +by rewrite /= -(rootP sym_e e_yx) -(rootP sym_e e_xy). +Qed. + +End RelAdjunction. + +Notation rel_adjunction h e e' a := (rel_adjunction_mem h e e' (mem a)). +Notation "@ 'rel_adjunction' T T' h e e' a" := + (@rel_adjunction_mem T T' h e e' (mem a)) + (at level 10, T, T', h, e, e', a at level 8, only parsing) : type_scope. +Notation fun_adjunction h f f' a := (rel_adjunction h (frel f) (frel f') a). +Notation "@ 'fun_adjunction' T T' h f f' a" := + (@rel_adjunction T T' h (frel f) (frel f') a) + (at level 10, T, T', h, f, f', a at level 8, only parsing) : type_scope. + +Implicit Arguments intro_adjunction [T T' h e e' a]. +Implicit Arguments adjunction_n_comp [T T' e e' a]. + +Unset Implicit Arguments. + |
