aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/ssrnum.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index c28aec2..36498b3 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -1786,8 +1786,8 @@ Lemma min_real : {in real &, forall x y, min x y \is real}.
Proof. by move=> x y ? ?; case: real_leP. Qed.
Lemma bigmax_real I x0 (r : seq I) (P : pred I) (f : I -> R):
- x0 \is real -> {in P, forall t : I, f t \is real} ->
- \big[max/x0]_(t <- r | P t) f t \is real.
+ x0 \is real -> {in P, forall i : I, f i \is real} ->
+ \big[max/x0]_(i <- r | P i) f i \is real.
Proof.
by move=> x0r Pr; elim/big_rec : _ => // i x Pi xr; rewrite max_real ?Pr.
Qed.