aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/mxpoly.v2
-rw-r--r--mathcomp/algebra/poly.v5
-rw-r--r--mathcomp/algebra/polyXY.v4
-rw-r--r--mathcomp/algebra/polydiv.v26
4 files changed, 14 insertions, 23 deletions
diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v
index acf0e95..c7f8fb1 100644
--- a/mathcomp/algebra/mxpoly.v
+++ b/mathcomp/algebra/mxpoly.v
@@ -938,7 +938,7 @@ Lemma mxdirect_sum_geigenspace
{in P &, injective a_} -> mxdirect (\sum_(i | P i) geigenspace g (a_ i)).
Proof.
move=> /inj_in_eq eq_a; apply: mxdirect_sum_kermx => i j Pi Pj Nji.
-by rewrite coprimepXr ?coprimepXl// coprimep_XsubC root_XsubC eq_a.
+by rewrite coprimep_expr ?coprimep_expl// coprimep_XsubC root_XsubC eq_a.
Qed.
Definition eigenpoly n (g : 'M_n) : pred {poly K} :=
diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v
index a95c776..e9e9c45 100644
--- a/mathcomp/algebra/poly.v
+++ b/mathcomp/algebra/poly.v
@@ -627,7 +627,7 @@ Fact polyC_multiplicative : multiplicative polyC.
Proof. by split; first apply: polyCM. Qed.
Canonical polyC_rmorphism := AddRMorphism polyC_multiplicative.
-Lemma polyCX n : {morph polyC : c / c ^+ n}. Proof. exact: rmorphX. Qed.
+Lemma polyC_exp n : {morph polyC : c / c ^+ n}. Proof. exact: rmorphX. Qed.
Lemma size_exp_leq p n : size (p ^+ n) <= ((size p).-1 * n).+1.
Proof.
@@ -2778,8 +2778,6 @@ Notation "@ 'polyC_muln'" :=
(deprecate polyC_muln polyCMn) (at level 10, only parsing) : fun_scope.
Notation "@ 'polyC_mul'" :=
(deprecate polyC_mul polyCM) (at level 10, only parsing) : fun_scope.
-Notation "@ 'polyC_exp'" :=
- (deprecate polyC_exp polyCX) (at level 10, only parsing) : fun_scope.
Notation "@ 'polyC_inv'" :=
(deprecate polyC_inv polyCV) (at level 10, only parsing) : fun_scope.
Notation "@ 'lead_coef_opp'" :=
@@ -2791,7 +2789,6 @@ Notation polyC_opp := (@polyC_opp _) (only parsing).
Notation polyC_sub := (@polyC_sub _) (only parsing).
Notation polyC_muln := (@polyC_muln _) (only parsing).
Notation polyC_mul := (@polyC_mul _) (only parsing).
-Notation polyC_exp := (@polyC_exp _) (only parsing).
Notation polyC_inv := (@polyC_inv _) (only parsing).
Notation lead_coef_opp := (@lead_coef_opp _) (only parsing).
Notation derivn_sub := (@derivn_sub _) (only parsing).
diff --git a/mathcomp/algebra/polyXY.v b/mathcomp/algebra/polyXY.v
index 5a84da7..fe0acb4 100644
--- a/mathcomp/algebra/polyXY.v
+++ b/mathcomp/algebra/polyXY.v
@@ -136,7 +136,7 @@ Qed.
Lemma max_size_evalC u x : size u.[x%:P] <= sizeY u.
Proof.
rewrite horner_coef (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP=> i _.
-rewrite (leq_trans (size_mul_leq _ _)) // -polyCX size_polyC addnC -subn1.
+rewrite (leq_trans (size_mul_leq _ _)) // -polyC_exp size_polyC addnC -subn1.
by rewrite (leq_trans _ (max_size_coefXY _ i)) // leq_subLR leq_add2r leq_b1.
Qed.
@@ -192,7 +192,7 @@ Lemma horner_swapXY u x : (swapXY u).[x%:P] = u ^ eval x.
Proof.
apply/polyP=> i /=; rewrite coef_map /= /eval horner_coef coef_sum -sizeYE.
rewrite (horner_coef_wide _ (max_size_coefXY u i)); apply: eq_bigr=> j _.
-by rewrite -polyCX coefMC coef_swapXY.
+by rewrite -polyC_exp coefMC coef_swapXY.
Qed.
Lemma horner_polyC u x : u.[x%:P] = swapXY u ^ eval x.
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v
index 356b8ae..8459c45 100644
--- a/mathcomp/algebra/polydiv.v
+++ b/mathcomp/algebra/polydiv.v
@@ -427,7 +427,7 @@ move=> lt_rd; case: comm_redivpP=> k q1 r1 /(_ Cdl) Heq.
have dn0: d != 0 by case: (size d) lt_rd (size_poly_eq0 d) => // n _ <-.
move=> /(_ dn0) Hs.
have eC : q * d * (lead_coef d ^+ k)%:P = q * (lead_coef d ^+ k)%:P * d.
- by rewrite -mulrA polyCX (commrX k Cdl) mulrA.
+ by rewrite -mulrA polyC_exp (commrX k Cdl) mulrA.
suff e1 : q1 = q * (lead_coef d ^+ k)%:P.
congr (_, _, _) => //=; move/eqP: Heq.
by rewrite [_ + r1]addrC -subr_eq e1 mulrDl addrAC eC subrr add0r; move/eqP.
@@ -463,9 +463,9 @@ suff:
(rmodp p d) * (lq ^+ (m - v))%:P == 0.
rewrite rreg_div0 //; first by case/andP.
by rewrite rreg_size ?ltn_rmodp //; exact: rregX.
-rewrite mulrDl addrAC mulNr -!mulrA polyCX -(commrX (m-v) Cdl).
-rewrite -polyCX mulrA -mulrDl -rdivp_eq // [(_ ^+ (m - k))%:P]polyCX.
-rewrite -(commrX (m-k) Cdl) -polyCX mulrA -he -!mulrA -!polyCM -/v.
+rewrite mulrDl addrAC mulNr -!mulrA polyC_exp -(commrX (m-v) Cdl).
+rewrite -polyC_exp mulrA -mulrDl -rdivp_eq // [(_ ^+ (m - k))%:P]polyC_exp.
+rewrite -(commrX (m-k) Cdl) -polyC_exp mulrA -he -!mulrA -!polyCM -/v.
by rewrite -!exprD addnC subnK ?leq_maxl // addnC subnK ?subrr ?leq_maxr.
Qed.
@@ -495,7 +495,7 @@ Proof.
have dn0 : d != 0 by rewrite -lead_coef_eq0 rreg_neq0.
move: (rdivp_eq d); rewrite rmodpp addr0.
suff ->: GRing.comm d (lead_coef d ^+ rscalp d d)%:P by move/(rreg_lead Rreg)->.
-by rewrite polyCX; apply: commrX.
+by rewrite polyC_exp; apply: commrX.
Qed.
Lemma rdvdpp : rdvdp d d. Proof. exact/eqP/rmodpp. Qed.
@@ -837,8 +837,8 @@ rewrite unlock ud redivp_def; constructor => //.
rewrite -scalerAl -scalerDr -mul_polyC.
have hn0 : (lead_coef d ^+ rscalp m d)%:P != 0.
by rewrite polyC_eq0; apply: expf_neq0.
- apply: (mulfI hn0); rewrite !mulrA -exprVn !polyCX -exprMn -polyCM.
- by rewrite divrr // expr1n mul1r -polyCX mul_polyC rdivp_eq.
+ apply: (mulfI hn0); rewrite !mulrA -exprVn !polyC_exp -exprMn -polyCM.
+ by rewrite divrr // expr1n mul1r -polyC_exp mul_polyC rdivp_eq.
move=> dn0; rewrite size_scale ?ltn_rmodp // -exprVn expf_eq0 negb_and.
by rewrite invr_eq0 cdn0 orbT.
Qed.
@@ -2029,11 +2029,11 @@ Qed.
Lemma coprimep_pexpr k m n : 0 < k -> coprimep m (n ^+ k) = coprimep m n.
Proof. by move=> k_gt0; rewrite !(coprimep_sym m) coprimep_pexpl. Qed.
-Lemma coprimepXl k m n : coprimep m n -> coprimep (m ^+ k) n.
+Lemma coprimep_expl k m n : coprimep m n -> coprimep (m ^+ k) n.
Proof. by case: k => [|k] co_pm; rewrite ?coprime1p // coprimep_pexpl. Qed.
-Lemma coprimepXr k m n : coprimep m n -> coprimep m (n ^+ k).
-Proof. by rewrite !(coprimep_sym m); apply: coprimepXl. Qed.
+Lemma coprimep_expr k m n : coprimep m n -> coprimep m (n ^+ k).
+Proof. by rewrite !(coprimep_sym m); apply: coprimep_expl. Qed.
Lemma gcdp_mul2l p q r : gcdp (p * q) (p * r) %= (p * gcdp q r).
Proof.
@@ -2372,10 +2372,6 @@ Notation "@ 'coprimep_mull'" :=
(deprecate coprimep_mull coprimepMl) (at level 10, only parsing) : fun_scope.
Notation "@ 'coprimep_mulr'" :=
(deprecate coprimep_mulr coprimepMr) (at level 10, only parsing) : fun_scope.
-Notation "@ 'coprimep_expl'" :=
- (deprecate coprimep_expl coprimepXl) (at level 10, only parsing) : fun_scope.
-Notation "@ 'coprimep_expr'" :=
- (deprecate coprimep_expr coprimepXr) (at level 10, only parsing) : fun_scope.
Notation dvdp_scalel := (@dvdp_scalel _ _) (only parsing).
Notation dvdp_scaler := (@dvdp_scaler _ _) (only parsing).
Notation dvdp_opp := (@dvdp_opp _) (only parsing).
@@ -2383,8 +2379,6 @@ Notation coprimep_scalel := (@coprimep_scalel _ _) (only parsing).
Notation coprimep_scaler := (@coprimep_scaler _ _) (only parsing).
Notation coprimep_mull := (@coprimep_mull _) (only parsing).
Notation coprimep_mulr := (@coprimep_mulr _) (only parsing).
-Notation coprimep_expl := (fun k => @coprimep_expl _ k _ _) (only parsing).
-Notation coprimep_expr := (fun k => @coprimep_expr _ k _ _) (only parsing).
End CommonIdomain.