diff options
Diffstat (limited to 'mathcomp/algebra/vector.v')
| -rw-r--r-- | mathcomp/algebra/vector.v | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index 48d7d3e..e73ca33 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -267,10 +267,10 @@ Definition subsetv U V := (vs2mx U <= vs2mx V)%MS. Definition vline u := mx2vs (v2r u). (* Vspace membership is defined as line inclusion. *) -Definition pred_of_vspace phV (U : Vector.space phV) : pred_class := +Definition pred_of_vspace phV (U : Vector.space phV) : {pred vT} := fun v => (vs2mx (vline v) <= vs2mx U)%MS. Canonical vspace_predType := - @mkPredType _ (unkeyed {vspace vT}) (@pred_of_vspace _). + @PredType _ (unkeyed {vspace vT}) (@pred_of_vspace _). Definition fullv : {vspace vT} := mx2vs 1%:M. Definition addv U V := mx2vs (vs2mx U + vs2mx V). @@ -294,7 +294,7 @@ Definition basis_of U X := (span X == U) && free X. End VspaceDefs. -Coercion pred_of_vspace : Vector.space >-> pred_class. +Coercion pred_of_vspace : Vector.space >-> pred_sort. Notation "\dim U" := (dimv U) : nat_scope. Notation "U <= V" := (subsetv U V) : vspace_scope. Notation "U <= V <= W" := (subsetv U V && subsetv V W) : vspace_scope. |
