aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/ssrnum.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra/ssrnum.v')
-rw-r--r--mathcomp/algebra/ssrnum.v4
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index 0244891..a2a2395 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -3462,7 +3462,7 @@ have [m leAm] := ubnP #|A|; elim: m => // m IHm in A leAm E n * => Ege0.
apply/leifP; case: ifPn => [/forall_inP-Econstant | Enonconstant].
have [i /= Ai | A0] := pickP (mem A); last by rewrite [n]eq_card0 ?big_pred0.
have /eqfun_inP-E_i := Econstant i Ai; rewrite -(eq_bigr _ E_i) sumr_const.
- by rewrite exprMn_n prodrMn -(eq_bigr _ E_i) prodr_const.
+ by rewrite exprMn_n prodrMn_const -(eq_bigr _ E_i) prodr_const.
set mu := \sum_(i in A) E i; pose En i := E i *+ n.
pose cmp_mu s := [pred i | s * mu < s * En i].
have{Enonconstant} has_cmp_mu e (s := (-1) ^+ e): {i | i \in A & cmp_mu s i}.
@@ -3495,7 +3495,7 @@ have ->: \sum_(k in A') E' k = mu *+ n'.
apply: (addrI mu); rewrite -mulrS -Dn -sumrMnl (bigD1 i Ai) big_andbC /=.
rewrite !(bigD1 j A'j) /= addrCA eqxx !addrA subrK; congr (_ + _).
by apply: eq_bigr => k /andP[_ /negPf->].
-rewrite prodrMn exprMn_n -/n' ler_pmuln2r ?expn_gt0; last by case: (n').
+rewrite prodrMn_const exprMn_n -/n' ler_pmuln2r ?expn_gt0; last by case: (n').
have ->: \prod_(k in A') E' k = E' j * pi.
by rewrite (bigD1 j) //=; congr *%R; apply: eq_bigr => k /andP[_ /negPf->].
rewrite -(ler_pmul2l mu_gt0) -exprS -Dn mulrA; apply: lt_le_trans.