diff options
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 15 |
1 files changed, 7 insertions, 8 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index b734ad7..e6b0264 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -290,7 +290,7 @@ Lemma mulz_addl : left_distributive mulz (+%R). Proof. move=> x y z; elim: z=> [|n|n]; first by rewrite !(mul0z,mulzC). by rewrite !mulzS=> ->; rewrite !addrA [X in X + _]addrAC. -rewrite !mulzN !mulzS -!opprD=> /(inv_inj (@opprK _))->. +rewrite !mulzN !mulzS -!opprD=> /oppr_inj->. by rewrite !addrA [X in X + _]addrAC. Qed. @@ -330,22 +330,21 @@ Lemma mulVz : {in unitz, left_inverse 1%R invz *%R}. Proof. by move=> n /pred2P[] ->. Qed. Lemma mulzn_eq1 m (n : nat) : (m * n == 1) = (m == 1) && (n == 1%N). -Proof. by case: m=> m /=; [rewrite -PoszM [_==_]muln_eq1 | case: n]. Qed. +Proof. by case: m => m /=; [rewrite -PoszM [_==_]muln_eq1 | case: n]. Qed. Lemma unitzPl m n : n * m = 1 -> m \is a unitz. Proof. -case: m => m; move/eqP; rewrite qualifE. -* by rewrite mulzn_eq1; case/andP=> _; move/eqP->. -* by rewrite NegzE intS mulrN -mulNr mulzn_eq1; case/andP=> _. +rewrite qualifE => /eqP. +by case: m => m; rewrite ?NegzE ?mulrN -?mulNr mulzn_eq1 => /andP[_ /eqP->]. Qed. -Lemma invz_out : {in [predC unitz], invz =1 id}. +Lemma invz_out : {in [predC unitz], invz =1 id}. Proof. exact. Qed. Lemma idomain_axiomz m n : m * n = 0 -> (m == 0) || (n == 0). Proof. -by case: m n => m [] n //=; move/eqP; rewrite ?(NegzE,mulrN,mulNr); - rewrite ?(inv_eq (@opprK _)) -PoszM [_==_]muln_eq0. +by case: m n => m [] n //= /eqP; + rewrite ?(NegzE, mulrN, mulNr) ?oppr_eq0 -PoszM [_ == _]muln_eq0. Qed. Definition comMixin := ComUnitRingMixin mulVz unitzPl invz_out. |
