diff options
Diffstat (limited to 'mathcomp/algebra/mxpoly.v')
| -rw-r--r-- | mathcomp/algebra/mxpoly.v | 84 |
1 files changed, 77 insertions, 7 deletions
diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v index 5f83ab0..7bcd7ed 100644 --- a/mathcomp/algebra/mxpoly.v +++ b/mathcomp/algebra/mxpoly.v @@ -26,10 +26,11 @@ Require Import poly polydiv. (* powers_mx A d == the d x (n ^ 2) matrix whose rows are the mxvec encodings *) (* of the first d powers of A (n of the form n'.+1). Thus, *) (* vec_mx (v *m powers_mx A d) = horner_mx A (rVpoly v). *) -(* char_poly A == the characteristic polynomial of A. *) -(* char_poly_mx A == a matrix whose detereminant is char_poly A. *) -(* mxminpoly A == the minimal polynomial of A, i.e., the smallest monic *) -(* polynomial that annihilates A (A must be nontrivial). *) +(* char_poly A == the characteristic polynomial of A. *) +(* char_poly_mx A == a matrix whose determinant is char_poly A. *) +(* companionmx p == a matrix whose char_poly is p *) +(* mxminpoly A == the minimal polynomial of A, i.e., the smallest monic *) +(* polynomial that annihilates A (A must be nontrivial). *) (* degree_mxminpoly A == the (positive) degree of mxminpoly A. *) (* mx_inv_horner A == the inverse of horner_mx A for polynomials of degree *) (* smaller than degree_mxminpoly A. *) @@ -430,6 +431,64 @@ rewrite (big_morph _ (fun p q => hornerM p q a) (hornerC 1 a)). by apply: eq_bigr => i _; rewrite !mxE !(hornerE, hornerMn). Qed. +Section Companion. + +Definition companionmx (R : ringType) (p : seq R) (d := (size p).-1) := + \matrix_(i < d, j < d) + if (i == d.-1 :> nat) then - p`_j else (i.+1 == j :> nat)%:R. + +Lemma companionmxK (R : comRingType) (p : {poly R}) : + p \is monic -> char_poly (companionmx p) = p. +Proof. +pose D n : 'M[{poly R}]_n := \matrix_(i, j) + ('X *+ (i == j.+1 :> nat) - ((i == j)%:R)%:P). +have detD n : \det (D n) = (-1) ^+ n. + elim: n => [|n IHn]; first by rewrite det_mx00. + rewrite (expand_det_row _ ord0) big_ord_recl !mxE /= sub0r. + rewrite big1 ?addr0; last by move=> i _; rewrite !mxE /= subrr mul0r. + rewrite /cofactor mul1r [X in \det X](_ : _ = D _) ?IHn ?exprS//. + by apply/matrixP=> i j; rewrite !mxE /= /bump !add1n eqSS. +elim/poly_ind: p => [|p c IHp]. + by rewrite monicE lead_coef0 eq_sym oner_eq0. +have [->|p_neq0] := eqVneq p 0. + rewrite mul0r add0r monicE lead_coefC => /eqP->. + by rewrite /companionmx /char_poly size_poly1 det_mx00. +rewrite monicE lead_coefDl ?lead_coefMX => [p_monic|]; last first. + rewrite size_polyC size_mulX ?polyX_eq0// ltnS. + by rewrite (leq_trans (leq_b1 _)) ?size_poly_gt0. +rewrite -[in RHS]IHp // /companionmx size_MXaddC (negPf p_neq0) /=. +rewrite /char_poly polySpred //. +have [->|spV1_gt0] := posnP (size p).-1. + rewrite [X in \det X]mx11_scalar det_scalar1 !mxE ?eqxx det_mx00. + by rewrite mul1r -horner_coef0 hornerMXaddC mulr0 add0r rmorphN opprK. +rewrite (expand_det_col _ ord0) /= -[(size p).-1]prednK //. +rewrite big_ord_recr big_ord_recl/= big1 ?add0r //=; last first. + move=> i _; rewrite !mxE -val_eqE /= /bump leq0n add1n eqSS. + by rewrite ltn_eqF ?subrr ?mul0r. +rewrite !mxE ?subnn -horner_coef0 /= hornerMXaddC. +rewrite !(eqxx, mulr0, add0r, addr0, subr0, rmorphN, opprK)/=. +rewrite mulrC /cofactor; congr (_ * 'X + _). + rewrite /cofactor -signr_odd odd_add addbb mul1r; congr (\det _). + apply/matrixP => i j; rewrite !mxE -val_eqE coefD coefMX coefC. + by rewrite /= /bump /= !add1n !eqSS addr0. +rewrite /cofactor [X in \det X](_ : _ = D _). + by rewrite detD /= addn0 -signr_odd -signr_addb addbb mulr1. +apply/matrixP=> i j; rewrite !mxE -!val_eqE /= /bump /=. +by rewrite leqNgt ltn_ord add0n add1n [_ == _.-2.+1]ltn_eqF. +Qed. + +Lemma mulmx_delta_companion (R : ringType) (p : seq R) + (i: 'I_(size p).-1) (i_small : i.+1 < (size p).-1): + delta_mx 0 i *m companionmx p = delta_mx 0 (Ordinal i_small) :> 'rV__. +Proof. +apply/rowP => j; rewrite !mxE (bigD1 i) //= ?(=^~val_eqE, mxE) /= eqxx mul1r. +rewrite ltn_eqF ?big1 ?addr0 1?eq_sym //; last first. + by rewrite -ltnS prednK // (leq_trans _ i_small). +by move=> k /negPf ki_eqF; rewrite !mxE eqxx ki_eqF mul0r. +Qed. + +End Companion. + Section MinPoly. Variables (F : fieldType) (n' : nat). @@ -644,7 +703,18 @@ Section MapField. Variables (aF rF : fieldType) (f : {rmorphism aF -> rF}). Local Notation "A ^f" := (map_mx f A) : ring_scope. Local Notation fp := (map_poly f). -Variables (n' : nat) (A : 'M[aF]_n'.+1). +Variables (n' : nat) (A : 'M[aF]_n'.+1) (p : {poly aF}). + +Lemma map_mx_companion (e := congr1 predn (size_map_poly _ _)) : + (companionmx p)^f = castmx (e, e) (companionmx (fp p)). +Proof. +apply/matrixP => i j; rewrite !(castmxE, mxE) /= (fun_if f). +by rewrite rmorphN coef_map size_map_poly rmorph_nat. +Qed. + +Lemma companion_map_poly (e := esym (congr1 predn (size_map_poly _ _))) : + companionmx (fp p) = castmx (e, e) (companionmx p)^f. +Proof. by rewrite map_mx_companion castmx_comp castmx_id. Qed. Lemma degree_mxminpoly_map : degree_mxminpoly A^f = degree_mxminpoly A. Proof. by apply: eq_ex_minn => e; rewrite -map_powers_mx mxrank_map. Qed. @@ -821,7 +891,7 @@ by rewrite -mulN1r; do 2!apply: (genM) => //; apply: genR. Qed. Lemma integral_root_monic u p : - p \is monic -> root p u -> {in p : seq K, integralRange RtoK} -> + p \is monic -> root p u -> {in p : seq K, integralRange RtoK} -> integralOver RtoK u. Proof. move=> mon_p pu0 intRp; rewrite -[u]hornerX. @@ -840,7 +910,7 @@ Lemma integral_opp u : integralOver RtoK u -> integralOver RtoK (- u). Proof. by rewrite -{1}[u]opprK => /intR_XsubC/integral_root_monic; apply. Qed. Lemma integral_horner (p : {poly K}) u : - {in p : seq K, integralRange RtoK} -> integralOver RtoK u -> + {in p : seq K, integralRange RtoK} -> integralOver RtoK u -> integralOver RtoK p.[u]. Proof. by move=> ? /integral_opp/intR_XsubC/integral_horner_root; apply. Qed. |
