aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/mxalgebra.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra/mxalgebra.v')
-rw-r--r--mathcomp/algebra/mxalgebra.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v
index 1b6200e..463f07b 100644
--- a/mathcomp/algebra/mxalgebra.v
+++ b/mathcomp/algebra/mxalgebra.v
@@ -658,7 +658,7 @@ Qed.
Lemma submx_full m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) :
row_full B -> (A <= B)%MS.
Proof.
-by rewrite submxE /cokermx =>/eqnP->; rewrite /copid_mx pid_mx_1 subrr !mulmx0.
+by rewrite submxE /cokermx => /eqnP->; rewrite /copid_mx pid_mx_1 subrr !mulmx0.
Qed.
Lemma row_fullP m n (A : 'M_(m, n)) :
@@ -700,7 +700,7 @@ Lemma row_full_unit n (A : 'M_n) : row_full A = (A \in unitmx).
Proof. exact: row_free_unit. Qed.
Lemma mxrank_unit n (A : 'M_n) : A \in unitmx -> \rank A = n.
-Proof. by rewrite -row_full_unit =>/eqnP. Qed.
+Proof. by rewrite -row_full_unit => /eqnP. Qed.
Lemma mxrank1 n : \rank (1%:M : 'M_n) = n.
Proof. by apply: mxrank_unit; apply: unitmx1. Qed.
@@ -1114,7 +1114,7 @@ Lemma sub_sumsmxP P m n (A : 'M_(m, n)) (B_ : I -> 'M_n) :
(A <= \sum_(i | P i) B_ i)%MS.
Proof.
apply: (iffP idP) => [| [u_ ->]]; last first.
- by apply: summx_sub_sums => i _; apply: submxMl.
+ by apply: summx_sub_sums => i _; apply: submxMl.
elim: {P}_.+1 {-2}P A (ltnSn #|P|) => // b IHb P A.
case: (pickP P) => [i Pi | P0 _]; last first.
rewrite big_pred0 //; move/submx0null->.
@@ -1202,7 +1202,7 @@ Lemma mxrank_Frobenius m n p q (A : 'M_(m, n)) B (C : 'M_(p, q)) :
Proof.
rewrite -{2}(mulmx_base (A *m B)) -mulmxA (eqmxMfull _ (col_base_full _)).
set C2 := row_base _ *m C.
-rewrite -{1}(subnK (rank_leq_row C2)) -(mxrank_ker C2) addnAC leq_add2r.
+rewrite -{1}(subnK (rank_leq_row C2)) -(mxrank_ker C2) addnAC leq_add2r.
rewrite addnC -{1}(mulmx_base B) -mulmxA eqmxMfull //.
set C1 := _ *m C; rewrite -{2}(subnKC (rank_leq_row C1)) leq_add2l -mxrank_ker.
rewrite -(mxrankMfree _ (row_base_free (A *m B))).
@@ -1466,7 +1466,7 @@ apply/eqP; set K := kermx B; set C := (A :&: K)%MS.
rewrite -(eqmxMr B (eq_row_base A)); set K' := _ *m B.
rewrite -{2}(subnKC (rank_leq_row K')) -mxrank_ker eqn_add2l.
rewrite -(mxrankMfree _ (row_base_free A)) mxrank_leqif_sup.
- rewrite sub_capmx -(eq_row_base A) submxMl.
+ rewrite sub_capmx -(eq_row_base A) submxMl.
by apply/sub_kermxP; rewrite -mulmxA mulmx_ker.
have /submxP[C' defC]: (C <= row_base A)%MS by rewrite eq_row_base capmxSl.
rewrite defC submxMr //; apply/sub_kermxP.
@@ -1573,7 +1573,7 @@ Proof.
move=> dxUV sWU; apply/eqP; rewrite -subr_eq0 -submx0 -dxUV.
rewrite sub_capmx addmx_sub ?eqmx_opp ?proj_mx_sub //= -eqmx_opp opprB.
by rewrite proj_mx_compl_sub // (submx_trans sWU) ?addsmxSl.
-Qed.
+Qed.
Lemma proj_mx_0 m n U V (W : 'M_(m, n)) :
(U :&: V = 0)%MS -> (W <= V)%MS -> W *m proj_mx U V = 0.
@@ -1845,7 +1845,7 @@ Proof.
rewrite /TIsum; apply: (iffP eqnP) => /= [dxS i Pi | dxS].
set Si' := (\sum_(j | _) unwrap (S_ j))%MS.
have: mxdirect (unwrap (S_ i) + Si') by apply/eqnP; rewrite /= -!(bigD1 i).
- by rewrite mxdirect_addsE => /and3P[-> _ /eqP].
+ by rewrite mxdirect_addsE => /and3P[-> _ /eqP].
elim: _.+1 {-2 4}P (subxx P) (ltnSn #|P|) => // m IHm Q; move/subsetP=> sQP.
case: (pickP Q) => [i Qi | Q0]; last by rewrite !big_pred0 ?mxrank0.
rewrite (cardD1x Qi) !((bigD1 i) Q) //=.