diff options
Diffstat (limited to 'mathcomp/algebra/intdiv.v')
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index 7663e63..2a485fd 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -1,7 +1,7 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. -From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import div choice fintype tuple finfun bigop prime order. From mathcomp Require Import ssralg poly ssrnum ssrint rat matrix. From mathcomp Require Import polydiv finalg perm zmodp mxalgebra vector. @@ -46,7 +46,7 @@ Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. -Import GRing.Theory Num.Theory. +Import Order.TTheory GRing.Theory Num.Theory. Local Open Scope ring_scope. Definition divz (m d : int) := @@ -79,7 +79,7 @@ Proof. by case: d => // d; rewrite /divz /= mul1r. Qed. Lemma divzN m d : (m %/ - d)%Z = - (m %/ d)%Z. Proof. by case: m => n; rewrite /divz /= sgzN abszN mulNr. Qed. -Lemma divz_abs m d : (m %/ `|d|)%Z = (-1) ^+ (d < 0)%R * (m %/ d)%Z. +Lemma divz_abs (m d : int) : (m %/ `|d|)%Z = (-1) ^+ (d < 0)%R * (m %/ d)%Z. Proof. by rewrite {3}[d]intEsign !mulr_sign; case: ifP => -> //; rewrite divzN opprK. Qed. @@ -132,7 +132,7 @@ Qed. Lemma divzMDl q m d : d != 0 -> ((q * d + m) %/ d)%Z = q + (m %/ d)%Z. Proof. -rewrite neqr_lt -oppr_gt0 => nz_d. +rewrite neq_lt -oppr_gt0 => nz_d. wlog{nz_d} d_gt0: q d / d > 0; last case: d => // d in d_gt0 *. move=> IH; case/orP: nz_d => /IH// /(_ (- q)). by rewrite mulrNN !divzN -opprD => /oppr_inj. @@ -179,8 +179,8 @@ Lemma divzMpl p m d : p > 0 -> (p * m %/ (p * d) = m %/ d)%Z. Proof. case: p => // p p_gt0; wlog d_gt0: d / d > 0; last case: d => // d in d_gt0 *. by move=> IH; case/intP: d => [|d|d]; rewrite ?mulr0 ?divz0 ?mulrN ?divzN ?IH. -rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gtr_eqF // addrC. -rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gtr_eqF //=. +rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gt_eqF // addrC. +rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gt_eqF //=. by rewrite ltr_pmul2l ?ltz_pmod. Qed. Arguments divzMpl [p m d]. @@ -203,19 +203,20 @@ Qed. Lemma ltz_ceil m d : d > 0 -> m < ((m %/ d)%Z + 1) * d. Proof. -by case: d => // d d_gt0; rewrite mulrDl mul1r -ltr_subl_addl ltz_mod ?gtr_eqF. +by case: d => // d d_gt0; rewrite mulrDl mul1r -ltr_subl_addl ltz_mod ?gt_eqF. Qed. Lemma ltz_divLR m n d : d > 0 -> ((m %/ d)%Z < n) = (m < n * d). Proof. move=> d_gt0; apply/idP/idP. - by rewrite -lez_addr1 -(ler_pmul2r d_gt0); apply: ltr_le_trans (ltz_ceil _ _). -rewrite -(ltr_pmul2r d_gt0 _ n) //; apply: ler_lt_trans (lez_floor _ _). -by rewrite gtr_eqF. + by rewrite -[_ < n]lez_addr1 -(ler_pmul2r d_gt0); + apply: lt_le_trans (ltz_ceil _ _). +rewrite -(ltr_pmul2r d_gt0 _ n) //; apply: le_lt_trans (lez_floor _ _). +by rewrite gt_eqF. Qed. Lemma lez_divRL m n d : d > 0 -> (m <= (n %/ d)%Z) = (m * d <= n). -Proof. by move=> d_gt0; rewrite !lerNgt ltz_divLR. Qed. +Proof. by move=> d_gt0; rewrite !leNgt ltz_divLR. Qed. Lemma divz_ge0 m d : d > 0 -> ((m %/ d)%Z >= 0) = (m >= 0). Proof. by case: d m => // d [] n d_gt0; rewrite (divz_nat, divNz_nat). Qed. @@ -225,9 +226,9 @@ Proof. case: n => // [[|n]] _; first by rewrite mul0r !divz0 div0z. wlog p_gt0: p / p > 0; last case: p => // p in p_gt0 *. by case/intP: p => [|p|p] IH; rewrite ?mulr0 ?divz0 ?mulrN ?divzN // IH. -rewrite {2}(divz_eq m (n.+1%:Z * p)) mulrA mulrAC !divzMDl // ?gtr_eqF //. +rewrite {2}(divz_eq m (n.+1%:Z * p)) mulrA mulrAC !divzMDl // ?gt_eqF //. rewrite [rhs in _ + rhs]divz_small ?addr0 // ltz_divLR // divz_ge0 //. -by rewrite mulrC ltz_pmod ?modz_ge0 ?gtr_eqF ?pmulr_lgt0. +by rewrite mulrC ltz_pmod ?modz_ge0 ?gt_eqF ?pmulr_lgt0. Qed. Lemma modz_small m d : 0 <= m < d -> (m %% d)%Z = m. @@ -1073,4 +1074,3 @@ rewrite -defS -2!mulmxA; have ->: T *m pinvmx T = 1%:M. by apply: (row_free_inj uT); rewrite mul1mx mulmxKpV. by move=> i; rewrite mulmx1 -map_mxM 2!mxE denq_int mxE. Qed. - |
