aboutsummaryrefslogtreecommitdiff
path: root/docs/htmldoc/mathcomp.algebra.rat.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/htmldoc/mathcomp.algebra.rat.html')
-rw-r--r--docs/htmldoc/mathcomp.algebra.rat.html711
1 files changed, 0 insertions, 711 deletions
diff --git a/docs/htmldoc/mathcomp.algebra.rat.html b/docs/htmldoc/mathcomp.algebra.rat.html
deleted file mode 100644
index 6d3c72a..0000000
--- a/docs/htmldoc/mathcomp.algebra.rat.html
+++ /dev/null
@@ -1,711 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
-"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml">
-<head>
-<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
-<link href="coqdoc.css" rel="stylesheet" type="text/css" />
-<title>mathcomp.algebra.rat</title>
-</head>
-
-<body>
-
-<div id="page">
-
-<div id="header">
-</div>
-
-<div id="main">
-
-<h1 class="libtitle">Library mathcomp.algebra.rat</h1>
-
-<div class="code">
-<span class="comment">(*&nbsp;(c)&nbsp;Copyright&nbsp;2006-2016&nbsp;Microsoft&nbsp;Corporation&nbsp;and&nbsp;Inria.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br/>
-&nbsp;Distributed&nbsp;under&nbsp;the&nbsp;terms&nbsp;of&nbsp;CeCILL-B.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;*)</span><br/>
-
-<br/>
-</div>
-
-<div class="doc">
- This file defines a datatype for rational numbers and equips it with a
- structure of archimedean, real field, with int and nat declared as closed
- subrings.
- rat == the type of rational number, with single constructor Rat
- n%:Q == explicit cast from int to rat, ie. the specialization to
- rationals of the generic ring morphism n%:~R
- numq r == numerator of (r : rat)
- denq r == denominator of (r : rat)
- x \is a Qint == x is an element of rat whose denominator is equal to 1
- x \is a Qnat == x is a positive element of rat whose denominator is equal
- to 1
- ratr x == generic embedding of (r : R) into an arbitrary unitring.
-</div>
-<div class="code">
-
-<br/>
-<span class="id" title="keyword">Import</span> <span class="id" title="var">GRing.Theory</span>.<br/>
-<span class="id" title="keyword">Import</span> <span class="id" title="var">Num.Theory</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Set Implicit Arguments</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Local Open</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">ring_scope</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Record</span> <a name="rat"><span class="id" title="record">rat</span></a> : <span class="id" title="keyword">Set</span> := <a name="Rat"><span class="id" title="constructor">Rat</span></a> {<br/>
-&nbsp;&nbsp;<a name="valq"><span class="id" title="projection">valq</span></a> : (<a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>);<br/>
-&nbsp;&nbsp;<span class="id" title="var">_</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="method">valq</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="method">valq</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="method">valq</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><br/>
-}.<br/>
-
-<br/>
-<span class="id" title="keyword">Delimit</span> <span class="id" title="keyword">Scope</span> <span class="id" title="var">rat_scope</span> <span class="id" title="keyword">with</span> <span class="id" title="var">Q</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="ratz"><span class="id" title="definition">ratz</span></a> (<span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := @<a class="idref" href="mathcomp.algebra.rat.html#Rat"><span class="id" title="constructor">Rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> (<a class="idref" href="mathcomp.ssreflect.div.html#coprimen1"><span class="id" title="lemma">coprimen1</span></a> <span class="id" title="var">_</span>).<br/>
-</div>
-
-<div class="doc">
- Coercion ratz (n : int) := @Rat (n, 1) (coprimen1 _).
-</div>
-<div class="code">
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_subType</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c2d02b544d823cdc1e1e08de552cdba4"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#c2d02b544d823cdc1e1e08de552cdba4"><span class="id" title="notation">subType</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c2d02b544d823cdc1e1e08de552cdba4"><span class="id" title="notation">for</span></a> <a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#c2d02b544d823cdc1e1e08de552cdba4"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="rat_eqMixin"><span class="id" title="definition">rat_eqMixin</span></a> := <a class="idref" href="mathcomp.ssreflect.eqtype.html#b361a0fe0b43cea5c506ee5eccc55542"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.eqtype.html#b361a0fe0b43cea5c506ee5eccc55542"><span class="id" title="notation">eqMixin</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b361a0fe0b43cea5c506ee5eccc55542"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b361a0fe0b43cea5c506ee5eccc55542"><span class="id" title="notation">by</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#b361a0fe0b43cea5c506ee5eccc55542"><span class="id" title="notation">&lt;:]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_eqType</span> := <a class="idref" href="mathcomp.ssreflect.eqtype.html#Equality.Exports.EqType"><span class="id" title="abbreviation">EqType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_eqMixin"><span class="id" title="definition">rat_eqMixin</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="rat_choiceMixin"><span class="id" title="definition">rat_choiceMixin</span></a> := <a class="idref" href="mathcomp.ssreflect.choice.html#035054ba987e1c05f2985518b41ec31f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#035054ba987e1c05f2985518b41ec31f"><span class="id" title="notation">choiceMixin</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#035054ba987e1c05f2985518b41ec31f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#035054ba987e1c05f2985518b41ec31f"><span class="id" title="notation">by</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#035054ba987e1c05f2985518b41ec31f"><span class="id" title="notation">&lt;:]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_choiceType</span> := <a class="idref" href="mathcomp.ssreflect.choice.html#Choice.Exports.ChoiceType"><span class="id" title="abbreviation">ChoiceType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_choiceMixin"><span class="id" title="definition">rat_choiceMixin</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="rat_countMixin"><span class="id" title="definition">rat_countMixin</span></a> := <a class="idref" href="mathcomp.ssreflect.choice.html#c2a823e7a76d1d303efdd00309d93aca"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#c2a823e7a76d1d303efdd00309d93aca"><span class="id" title="notation">countMixin</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#c2a823e7a76d1d303efdd00309d93aca"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#c2a823e7a76d1d303efdd00309d93aca"><span class="id" title="notation">by</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#c2a823e7a76d1d303efdd00309d93aca"><span class="id" title="notation">&lt;:]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countType</span> := <a class="idref" href="mathcomp.ssreflect.choice.html#Countable.Exports.CountType"><span class="id" title="abbreviation">CountType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_countMixin"><span class="id" title="definition">rat_countMixin</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_subCountType</span> := <a class="idref" href="mathcomp.ssreflect.choice.html#9bbd910cbebcec91f8279b0711b4702d"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#9bbd910cbebcec91f8279b0711b4702d"><span class="id" title="notation">subCountType</span></a> <a class="idref" href="mathcomp.ssreflect.choice.html#9bbd910cbebcec91f8279b0711b4702d"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.ssreflect.choice.html#9bbd910cbebcec91f8279b0711b4702d"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="numq"><span class="id" title="definition">numq</span></a> <span class="id" title="var">x</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">).1</span></a>).<br/>
-<span class="id" title="keyword">Definition</span> <a name="denq"><span class="id" title="definition">denq</span></a> <span class="id" title="var">x</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">).2</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_gt0"><span class="id" title="lemma">denq_gt0</span></a> <span class="id" title="var">x</span> : 0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
- <span class="id" title="keyword">Hint Resolve</span> <span class="id" title="var">denq_gt0</span> : <span class="id" title="var">core</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="denq_ge0"><span class="id" title="definition">denq_ge0</span></a> <span class="id" title="var">x</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.Theory.ltrW"><span class="id" title="lemma">ltrW</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#denq_gt0"><span class="id" title="lemma">denq_gt0</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_lt0"><span class="id" title="lemma">denq_lt0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#false"><span class="id" title="constructor">false</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_neq0"><span class="id" title="lemma">denq_neq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0.<br/>
- <span class="id" title="keyword">Hint Resolve</span> <span class="id" title="var">denq_neq0</span> : <span class="id" title="var">core</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_eq0"><span class="id" title="lemma">denq_eq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#false"><span class="id" title="constructor">false</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="coprime_num_den"><span class="id" title="lemma">coprime_num_den</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="RatK"><span class="id" title="lemma">RatK</span></a> <span class="id" title="var">x</span> <span class="id" title="var">P</span> : @<a class="idref" href="mathcomp.algebra.rat.html#Rat"><span class="id" title="constructor">Rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.rat.html#P"><span class="id" title="variable">P</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracq_subproof"><span class="id" title="lemma">fracq_subproof</span></a> : <span class="id" title="keyword">∀</span> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>,<br/>
-&nbsp;&nbsp;<span class="id" title="keyword">let</span> <span class="id" title="var">n</span> :=<br/>
-&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">then</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">else</span></a><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.ssrint.html#11a706273cccd094dd42b3c7d6457ef8"><span class="id" title="notation">(</span></a>-1<a class="idref" href="mathcomp.algebra.ssrint.html#11a706273cccd094dd42b3c7d6457ef8"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#11a706273cccd094dd42b3c7d6457ef8"><span class="id" title="notation">^</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#11a706273cccd094dd42b3c7d6457ef8"><span class="id" title="notation">(</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">(+)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">)</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#11a706273cccd094dd42b3c7d6457ef8"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2242f6721707980eca939ec29164eab3"><span class="id" title="notation">%/</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#gcdn"><span class="id" title="definition">gcdn</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">Z</span></a> <span class="id" title="tactic">in</span><br/>
-&nbsp;&nbsp;<span class="id" title="keyword">let</span> <span class="id" title="var">d</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">then</span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">else</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2242f6721707980eca939ec29164eab3"><span class="id" title="notation">%/</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#gcdn"><span class="id" title="definition">gcdn</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">Z</span></a> <span class="id" title="tactic">in</span><br/>
-&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="fracq"><span class="id" title="definition">fracq</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> (@<a class="idref" href="mathcomp.algebra.rat.html#Rat"><span class="id" title="constructor">Rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><span class="id" title="var">_</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <span class="id" title="var">_</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq_subproof"><span class="id" title="lemma">fracq_subproof</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ratz_frac"><span class="id" title="lemma">ratz_frac</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratz"><span class="id" title="definition">ratz</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="valqK"><span class="id" title="lemma">valqK</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="scalq_key"><span class="id" title="lemma">scalq_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#unit"><span class="id" title="inductive">unit</span></a>. <br/>
-<span class="id" title="keyword">Definition</span> <a name="scalq_def"><span class="id" title="definition">scalq_def</span></a> <span class="id" title="var">x</span> := <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.div.html#gcdn"><span class="id" title="definition">gcdn</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">Z</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="scalq"><span class="id" title="definition">scalq</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#locked_with"><span class="id" title="definition">locked_with</span></a> <a class="idref" href="mathcomp.algebra.rat.html#scalq_key"><span class="id" title="lemma">scalq_key</span></a> <a class="idref" href="mathcomp.algebra.rat.html#scalq_def"><span class="id" title="definition">scalq_def</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">scalq_unlockable</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#84464b412faf5a30a7c5c6423d9b3956"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#84464b412faf5a30a7c5c6423d9b3956"><span class="id" title="notation">unlockable</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#84464b412faf5a30a7c5c6423d9b3956"><span class="id" title="notation">fun</span></a> <a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#84464b412faf5a30a7c5c6423d9b3956"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="scalq_eq0"><span class="id" title="lemma">scalq_eq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="sgr_scalq"><span class="id" title="lemma">sgr_scalq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="signr_scalq"><span class="id" title="lemma">signr_scalq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="scalqE"><span class="id" title="lemma">scalqE</span></a> <span class="id" title="var">x</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">(</span></a>-1<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">^+</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0)%<span class="id" title="var">R</span> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.ssreflect.div.html#gcdn"><span class="id" title="definition">gcdn</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#3b6365a19cfc497270b4b963fc1f9ecb"><span class="id" title="notation">Z</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="valq_frac"><span class="id" title="lemma">valq_frac</span></a> <span class="id" title="var">x</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>)<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#scalq"><span class="id" title="definition">scalq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>)<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="zeroq"><span class="id" title="definition">zeroq</span></a> := <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a>0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="oneq"><span class="id" title="definition">oneq</span></a> := <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a>1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="frac0q"><span class="id" title="lemma">frac0q</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a>0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracq0"><span class="id" title="lemma">fracq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Variant</span> <a name="fracq_spec"><span class="id" title="inductive">fracq_spec</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <span class="id" title="keyword">Type</span> :=<br/>
-&nbsp;&nbsp;| <a name="FracqSpecN"><span class="id" title="constructor">FracqSpecN</span></a> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0 : <a class="idref" href="mathcomp.algebra.rat.html#fracq_spec"><span class="id" title="inductive">fracq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a><br/>
-&nbsp;&nbsp;| <a name="FracqSpecP"><span class="id" title="constructor">FracqSpecP</span></a> <span class="id" title="var">k</span> <span class="id" title="var">fx</span> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 : <a class="idref" href="mathcomp.algebra.rat.html#fracq_spec"><span class="id" title="inductive">fracq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fx"><span class="id" title="variable">fx</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fx"><span class="id" title="variable">fx</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fx"><span class="id" title="variable">fx</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracqP"><span class="id" title="lemma">fracqP</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#fracq_spec"><span class="id" title="inductive">fracq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_eqE"><span class="id" title="lemma">rat_eqE</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="sgr_denq"><span class="id" title="lemma">sgr_denq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="normr_denq"><span class="id" title="lemma">normr_denq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="absz_denq"><span class="id" title="lemma">absz_denq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a>%<span class="id" title="var">N</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#b8b2ebc8e1a8b9aa935c0702efb5dccf"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#b8b2ebc8e1a8b9aa935c0702efb5dccf"><span class="id" title="notation">:&gt;</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_eq"><span class="id" title="lemma">rat_eq</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracq_eq"><span class="id" title="lemma">fracq_eq</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/>
-&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracq_eq0"><span class="id" title="lemma">fracq_eq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#081ff67d3116402bb680e8692aa39185"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#081ff67d3116402bb680e8692aa39185"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#081ff67d3116402bb680e8692aa39185"><span class="id" title="notation">||</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#081ff67d3116402bb680e8692aa39185"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#081ff67d3116402bb680e8692aa39185"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="fracqMM"><span class="id" title="lemma">fracqMM</span></a> <span class="id" title="var">x</span> <span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="addq_subdef"><span class="id" title="definition">addq_subdef</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="addq"><span class="id" title="definition">addq</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#addq_subdef"><span class="id" title="definition">addq_subdef</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="oppq_subdef"><span class="id" title="definition">oppq_subdef</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="oppq"><span class="id" title="definition">oppq</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#oppq_subdef"><span class="id" title="definition">oppq_subdef</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addq_subdefC"><span class="id" title="lemma">addq_subdefC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq_subdef"><span class="id" title="definition">addq_subdef</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addq_subdefA"><span class="id" title="lemma">addq_subdefA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq_subdef"><span class="id" title="definition">addq_subdef</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addq_frac"><span class="id" title="lemma">addq_frac</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/>
-&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#addq_subdef"><span class="id" title="definition">addq_subdef</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ratzD"><span class="id" title="lemma">ratzD</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratz"><span class="id" title="definition">ratz</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">&gt;-&gt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="oppq_frac"><span class="id" title="lemma">oppq_frac</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#oppq_subdef"><span class="id" title="definition">oppq_subdef</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ratzN"><span class="id" title="lemma">ratzN</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratz"><span class="id" title="definition">ratz</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">&gt;-&gt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#8bf6fdbe8b0c22b67e58fa5cd9937190"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addqC"><span class="id" title="lemma">addqC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addqA"><span class="id" title="lemma">addqA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="add0q"><span class="id" title="lemma">add0q</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#left_id"><span class="id" title="definition">left_id</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="addNq"><span class="id" title="lemma">addNq</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#left_inverse"><span class="id" title="definition">left_inverse</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a>0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>) <a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="rat_ZmodMixin"><span class="id" title="definition">rat_ZmodMixin</span></a> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Zmodule.Exports.ZmodMixin"><span class="id" title="abbreviation">ZmodMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addqA"><span class="id" title="lemma">addqA</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addqC"><span class="id" title="lemma">addqC</span></a> <a class="idref" href="mathcomp.algebra.rat.html#add0q"><span class="id" title="lemma">add0q</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addNq"><span class="id" title="lemma">addNq</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_ZmodType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Zmodule.Exports.ZmodType"><span class="id" title="abbreviation">ZmodType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_ZmodMixin"><span class="id" title="definition">rat_ZmodMixin</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="mulq_subdef"><span class="id" title="definition">mulq_subdef</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="mulq"><span class="id" title="definition">mulq</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#mulq_subdef"><span class="id" title="definition">mulq_subdef</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulq_subdefC"><span class="id" title="lemma">mulq_subdefC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq_subdef"><span class="id" title="definition">mulq_subdef</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mul_subdefA"><span class="id" title="lemma">mul_subdefA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq_subdef"><span class="id" title="definition">mulq_subdef</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="invq_subdef"><span class="id" title="definition">invq_subdef</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#11c698c8685bb8ab1cf725545c085ac4"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#e6756e10c36f149b18b4a8741ed83079"><span class="id" title="notation">)</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="invq"><span class="id" title="definition">invq</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#nosimpl"><span class="id" title="abbreviation">nosimpl</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#invq_subdef"><span class="id" title="definition">invq_subdef</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#valq"><span class="id" title="projection">valq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulq_frac"><span class="id" title="lemma">mulq_frac</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#mulq_subdef"><span class="id" title="definition">mulq_subdef</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ratzM"><span class="id" title="lemma">ratzM</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">morph</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratz"><span class="id" title="definition">ratz</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">&gt;-&gt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#40d800f6f36c47cb5f4f2f42555867a8"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="invq_frac"><span class="id" title="lemma">invq_frac</span></a> <span class="id" title="var">x</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#invq_subdef"><span class="id" title="definition">invq_subdef</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulqC"><span class="id" title="lemma">mulqC</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#commutative"><span class="id" title="definition">commutative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulqA"><span class="id" title="lemma">mulqA</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#associative"><span class="id" title="definition">associative</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mul1q"><span class="id" title="lemma">mul1q</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#left_id"><span class="id" title="definition">left_id</span></a> <a class="idref" href="mathcomp.algebra.rat.html#oneq"><span class="id" title="definition">oneq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulq_addl"><span class="id" title="lemma">mulq_addl</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#left_distributive"><span class="id" title="definition">left_distributive</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="nonzero1q"><span class="id" title="lemma">nonzero1q</span></a> : <a class="idref" href="mathcomp.algebra.rat.html#oneq"><span class="id" title="definition">oneq</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="rat_comRingMixin"><span class="id" title="definition">rat_comRingMixin</span></a> :=<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.ComRingMixin"><span class="id" title="abbreviation">ComRingMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulqA"><span class="id" title="lemma">mulqA</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulqC"><span class="id" title="lemma">mulqC</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mul1q"><span class="id" title="lemma">mul1q</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq_addl"><span class="id" title="lemma">mulq_addl</span></a> <a class="idref" href="mathcomp.algebra.rat.html#nonzero1q"><span class="id" title="lemma">nonzero1q</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_Ring</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Ring.Exports.RingType"><span class="id" title="abbreviation">RingType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_comRingMixin"><span class="id" title="definition">rat_comRingMixin</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_comRing</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.ComRing.Exports.ComRingType"><span class="id" title="abbreviation">ComRingType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulqC"><span class="id" title="lemma">mulqC</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="mulVq"><span class="id" title="lemma">mulVq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="invq0"><span class="id" title="lemma">invq0</span></a> : <a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0. <br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="RatFieldUnitMixin"><span class="id" title="definition">RatFieldUnitMixin</span></a> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldUnitMixin"><span class="id" title="abbreviation">FieldUnitMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulVq"><span class="id" title="lemma">mulVq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#invq0"><span class="id" title="lemma">invq0</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_unitRing</span> :=<br/>
-&nbsp;&nbsp;<span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.UnitRingType"><span class="id" title="abbreviation">UnitRingType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#RatFieldUnitMixin"><span class="id" title="definition">RatFieldUnitMixin</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_comUnitRing</span> := <span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#2dfeb3fb2088b370ad93742d4f23a0dc"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#2dfeb3fb2088b370ad93742d4f23a0dc"><span class="id" title="notation">comUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2dfeb3fb2088b370ad93742d4f23a0dc"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#2dfeb3fb2088b370ad93742d4f23a0dc"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="rat_field_axiom"><span class="id" title="lemma">rat_field_axiom</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.mixin_of"><span class="id" title="definition">GRing.Field.mixin_of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_unitRing"><span class="id" title="definition">rat_unitRing</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="RatFieldIdomainMixin"><span class="id" title="definition">RatFieldIdomainMixin</span></a> := (<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldIdomainMixin"><span class="id" title="abbreviation">FieldIdomainMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_field_axiom"><span class="id" title="lemma">rat_field_axiom</span></a>).<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_iDomain</span> :=<br/>
-&nbsp;&nbsp;<span class="id" title="keyword">Eval</span> <span class="id" title="tactic">hnf</span> <span class="id" title="tactic">in</span> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.IntegralDomain.Exports.IdomainType"><span class="id" title="abbreviation">IdomainType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldIdomainMixin"><span class="id" title="abbreviation">FieldIdomainMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_field_axiom"><span class="id" title="lemma">rat_field_axiom</span></a>).<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_fieldType</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.FieldType"><span class="id" title="abbreviation">FieldType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_field_axiom"><span class="id" title="lemma">rat_field_axiom</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countZmodType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#c4cf911b6276243d26c2dd85fdb53f8f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#c4cf911b6276243d26c2dd85fdb53f8f"><span class="id" title="notation">countZmodType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#c4cf911b6276243d26c2dd85fdb53f8f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#c4cf911b6276243d26c2dd85fdb53f8f"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countRingType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#5d38f59e59d31b0f5328b7330ff4d0f6"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#5d38f59e59d31b0f5328b7330ff4d0f6"><span class="id" title="notation">countRingType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#5d38f59e59d31b0f5328b7330ff4d0f6"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#5d38f59e59d31b0f5328b7330ff4d0f6"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countComRingType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#d271043791f97708a05788e885686caa"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#d271043791f97708a05788e885686caa"><span class="id" title="notation">countComRingType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#d271043791f97708a05788e885686caa"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#d271043791f97708a05788e885686caa"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countUnitRingType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#d7279d52944865f8d2b1e61af96c64e0"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#d7279d52944865f8d2b1e61af96c64e0"><span class="id" title="notation">countUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#d7279d52944865f8d2b1e61af96c64e0"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#d7279d52944865f8d2b1e61af96c64e0"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countComUnitRingType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#6e623071866dc1a29a10d36cc1dfa886"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#6e623071866dc1a29a10d36cc1dfa886"><span class="id" title="notation">countComUnitRingType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#6e623071866dc1a29a10d36cc1dfa886"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#6e623071866dc1a29a10d36cc1dfa886"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countIdomainType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#deee2c5961371227bcb71bc712dbd08f"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#deee2c5961371227bcb71bc712dbd08f"><span class="id" title="notation">countIdomainType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#deee2c5961371227bcb71bc712dbd08f"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#deee2c5961371227bcb71bc712dbd08f"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_countFieldType</span> := <a class="idref" href="mathcomp.algebra.countalg.html#7ca0985aed2b28afaaa4007eb0a80f3a"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.countalg.html#7ca0985aed2b28afaaa4007eb0a80f3a"><span class="id" title="notation">countFieldType</span></a> <a class="idref" href="mathcomp.algebra.countalg.html#7ca0985aed2b28afaaa4007eb0a80f3a"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.countalg.html#7ca0985aed2b28afaaa4007eb0a80f3a"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_eq0"><span class="id" title="lemma">numq_eq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Notation</span> <a name="bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">&quot;</span></a>n %:Q" := (<a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><span class="id" title="var">n</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)<br/>
-&nbsp;&nbsp;(<span class="id" title="tactic">at</span> <span class="id" title="keyword">level</span> 2, <span class="id" title="tactic">left</span> <span class="id" title="keyword">associativity</span>, <span class="id" title="var">format</span> "n %:Q") : <span class="id" title="var">ring_scope</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Hint Resolve</span> <span class="id" title="var">denq_neq0</span> <span class="id" title="var">denq_gt0</span> <span class="id" title="var">denq_ge0</span> : <span class="id" title="var">core</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="subq"><span class="id" title="definition">subq</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> := (<a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)).<br/>
-<span class="id" title="keyword">Definition</span> <a name="divq"><span class="id" title="definition">divq</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> := (<a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>)).<br/>
-
-<br/>
-<span class="id" title="keyword">Notation</span> <a name="823f5d049429882f96cc2905b180eb5f"><span class="id" title="notation">&quot;</span></a>0" := <a class="idref" href="mathcomp.algebra.rat.html#zeroq"><span class="id" title="definition">zeroq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Notation</span> <a name="5ec16f6ad263e6f0fe73af9dd4250d79"><span class="id" title="notation">&quot;</span></a>1" := <a class="idref" href="mathcomp.algebra.rat.html#oneq"><span class="id" title="definition">oneq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Infix</span> <a name="30899449791bd2937a2668f9604a3004"><span class="id" title="notation">&quot;</span></a>+" := <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Notation</span> <a name="56053413212375a34fcf97c63669b79e"><span class="id" title="notation">&quot;</span></a>- x" := (<a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <span class="id" title="var">x</span>) : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Infix</span> <a name="509aa1248141ae73840be7dc8369add9"><span class="id" title="notation">&quot;</span></a>×" := <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Notation</span> <a name="f0c9b4b615e158ed3db1f3887e33c9da"><span class="id" title="notation">&quot;</span></a>x ^-1" := (<a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> <span class="id" title="var">x</span>) : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Infix</span> <a name="b67783d488da7bcc57006b6fc2d6e847"><span class="id" title="notation">&quot;</span></a>-" := <a class="idref" href="mathcomp.algebra.rat.html#subq"><span class="id" title="definition">subq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-<span class="id" title="keyword">Infix</span> <a name="90f38373ad3cfb798bb7ede12b12ce89"><span class="id" title="notation">&quot;</span></a>/" := <a class="idref" href="mathcomp.algebra.rat.html#divq"><span class="id" title="definition">divq</span></a> : <span class="id" title="var">rat_scope</span>.<br/>
-
-<br/>
-</div>
-
-<div class="doc">
- ratz should not be used, %:Q should be used instead
-</div>
-<div class="code">
-<span class="id" title="keyword">Lemma</span> <a name="ratzE"><span class="id" title="lemma">ratzE</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratz"><span class="id" title="definition">ratz</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_int"><span class="id" title="lemma">numq_int</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a>. <br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_int"><span class="id" title="lemma">denq_int</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat0"><span class="id" title="lemma">rat0</span></a> : 0<a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0. <br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat1"><span class="id" title="lemma">rat1</span></a> : 1<a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 1. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numqN"><span class="id" title="lemma">numqN</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denqN"><span class="id" title="lemma">denqN</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-</div>
-
-<div class="doc">
- Will be subsumed by pnatr_eq0
-</div>
-<div class="code">
-<span class="id" title="keyword">Fact</span> <a name="intq_eq0"><span class="id" title="lemma">intq_eq0</span></a> <span class="id" title="var">n</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#28a3089bb29d95d7bdc98c2c73b31552"><span class="id" title="notation">==</span></a> 0 <a class="idref" href="mathcomp.ssreflect.eqtype.html#28a3089bb29d95d7bdc98c2c73b31552"><span class="id" title="notation">:&gt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0)%<span class="id" title="var">N</span>.<br/>
-
-<br/>
-</div>
-
-<div class="doc">
- fracq should never appear, its canonical form is _%
-</div>
-<div class="code">
-<span class="id" title="keyword">Lemma</span> <a name="fracqE"><span class="id" title="lemma">fracqE</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#fracq"><span class="id" title="definition">fracq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#e0817251e7d67ad994b4d9b1aa82a412"><span class="id" title="notation">.1</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#675082cc4d4538da052b547bdc6ea4c9"><span class="id" title="notation">.2</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="divq_num_den"><span class="id" title="lemma">divq_num_den</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Variant</span> <a name="divq_spec"><span class="id" title="inductive">divq_spec</span></a> (<span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <span class="id" title="keyword">Type</span> :=<br/>
-| <a name="DivqSpecN"><span class="id" title="constructor">DivqSpecN</span></a> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0 : <a class="idref" href="mathcomp.algebra.rat.html#divq_spec"><span class="id" title="inductive">divq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> 0 0<br/>
-| <a name="DivqSpecP"><span class="id" title="constructor">DivqSpecP</span></a> <span class="id" title="var">k</span> <span class="id" title="var">x</span> <span class="id" title="keyword">of</span> <a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 : <a class="idref" href="mathcomp.algebra.rat.html#divq_spec"><span class="id" title="inductive">divq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#k"><span class="id" title="variable">k</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-</div>
-
-<div class="doc">
- replaces fracqP
-</div>
-<div class="code">
-<span class="id" title="keyword">Lemma</span> <a name="divqP"><span class="id" title="lemma">divqP</span></a> <span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.rat.html#divq_spec"><span class="id" title="inductive">divq_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="divq_eq"><span class="id" title="lemma">divq_eq</span></a> (<span class="id" title="var">nx</span> <span class="id" title="var">dx</span> <span class="id" title="var">ny</span> <span class="id" title="var">dy</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#dx"><span class="id" title="variable">dx</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#dy"><span class="id" title="variable">dy</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#nx"><span class="id" title="variable">nx</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#dx"><span class="id" title="variable">dx</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ny"><span class="id" title="variable">ny</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#dy"><span class="id" title="variable">dy</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#nx"><span class="id" title="variable">nx</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#dy"><span class="id" title="variable">dy</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ny"><span class="id" title="variable">ny</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#dx"><span class="id" title="variable">dx</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Variant</span> <a name="rat_spec"><span class="id" title="inductive">rat_spec</span></a> <span class="comment">(*&nbsp;(x&nbsp;:&nbsp;rat)&nbsp;*)</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <span class="id" title="keyword">Type</span> :=<br/>
-&nbsp;&nbsp;<a name="Rat_spec"><span class="id" title="constructor">Rat_spec</span></a> (<span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) (<span class="id" title="var">d</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a>) &amp; <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a><br/>
-&nbsp;&nbsp;: <a class="idref" href="mathcomp.algebra.rat.html#rat_spec"><span class="id" title="inductive">rat_spec</span></a> <span class="comment">(*&nbsp;x&nbsp;&nbsp;*)</span> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a>) <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ratP"><span class="id" title="lemma">ratP</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat_spec"><span class="id" title="inductive">rat_spec</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="coprimeq_num"><span class="id" title="lemma">coprimeq_num</span></a> <span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="coprimeq_den"><span class="id" title="lemma">coprimeq_den</span></a> <span class="id" title="var">n</span> <span class="id" title="var">d</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.ssreflect.div.html#coprime"><span class="id" title="definition">coprime</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#124262c1d6731d26a230b737e0b3e9b6"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">if</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">then</span></a> 1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#00a1a5b58aac8f1e3f1abff064a39f9d"><span class="id" title="notation">else</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denqVz"><span class="id" title="lemma">denqVz</span></a> (<span class="id" title="var">i</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#i"><span class="id" title="variable">i</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#4e5a4c91ec0aa12de06dfe1cc07ea126"><span class="id" title="notation">^-1</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#i"><span class="id" title="variable">i</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numqE"><span class="id" title="lemma">numqE</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denqP"><span class="id" title="lemma">denqP</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Specif.html#bc4528e836ab0e91ea7e942fb09e898f"><span class="id" title="notation">{</span></a><span class="id" title="var">d</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Specif.html#bc4528e836ab0e91ea7e942fb09e898f"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.ssreflect.ssrnat.html#bda89d73ec4a8f23ae92b565ffb5aaa6"><span class="id" title="notation">.+1</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Specif.html#bc4528e836ab0e91ea7e942fb09e898f"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="normq"><span class="id" title="definition">normq</span></a> (<span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> := <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="le_rat"><span class="id" title="definition">le_rat</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-<span class="id" title="keyword">Definition</span> <a name="lt_rat"><span class="id" title="definition">lt_rat</span></a> (<span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) := <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="gt_rat0"><span class="id" title="lemma">gt_rat0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#lt_rat"><span class="id" title="definition">lt_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="lt_rat0"><span class="id" title="lemma">lt_rat0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#lt_rat"><span class="id" title="definition">lt_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ge_rat0"><span class="id" title="lemma">ge_rat0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="le_rat0"><span class="id" title="lemma">le_rat0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="le_rat0D"><span class="id" title="lemma">le_rat0D</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 (<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="le_rat0M"><span class="id" title="lemma">le_rat0M</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 (<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="le_rat0_anti"><span class="id" title="lemma">le_rat0_anti</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> 0.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="sgr_numq_div"><span class="id" title="lemma">sgr_numq_div</span></a> (<span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#int"><span class="id" title="inductive">int</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.rat.html#bec19dc22c189381021803433d9b3dc2"><span class="id" title="notation">Q</span></a>)) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="subq_ge0"><span class="id" title="lemma">subq_ge0</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 (<a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#51dc792c356ca1a71a3094b50d6bb2fb"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="le_rat_total"><span class="id" title="lemma">le_rat_total</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#total"><span class="id" title="definition">total</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="numq_sign_mul"><span class="id" title="lemma">numq_sign_mul</span></a> (<span class="id" title="var">b</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#bool"><span class="id" title="inductive">bool</span></a>) <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">(</span></a>-1<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#b"><span class="id" title="variable">b</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">(</span></a>-1<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#b"><span class="id" title="variable">b</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="numq_div_lt0"><span class="id" title="lemma">numq_div_lt0</span></a> <span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> 0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a><br/>
-&nbsp;&nbsp;(<a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>) <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0)%<span class="id" title="var">R</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0)%<span class="id" title="var">R</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#a60537c464e134477471443dd91ae651"><span class="id" title="notation">(+)</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0)%<span class="id" title="var">R</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="normr_num_div"><span class="id" title="lemma">normr_num_div</span></a> <span class="id" title="var">n</span> <span class="id" title="var">d</span> : <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>)<a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> (<a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#d"><span class="id" title="variable">d</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="norm_ratN"><span class="id" title="lemma">norm_ratN</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#normq"><span class="id" title="definition">normq</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#normq"><span class="id" title="definition">normq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ge_rat0_norm"><span class="id" title="lemma">ge_rat0_norm</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> 0 <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#normq"><span class="id" title="definition">normq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="lt_rat_def"><span class="id" title="lemma">lt_rat_def</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#lt_rat"><span class="id" title="definition">lt_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#c385a484ee9d1b4e0615924561a9b75e"><span class="id" title="notation">!=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#le_rat"><span class="id" title="definition">le_rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="ratLeMixin"><span class="id" title="definition">ratLeMixin</span></a> := <a class="idref" href="mathcomp.algebra.ssrnum.html#RealLeMixin"><span class="id" title="abbreviation">RealLeMixin</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat0D"><span class="id" title="lemma">le_rat0D</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat0M"><span class="id" title="lemma">le_rat0M</span></a> <a class="idref" href="mathcomp.algebra.rat.html#le_rat0_anti"><span class="id" title="lemma">le_rat0_anti</span></a><br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#subq_ge0"><span class="id" title="lemma">subq_ge0</span></a> (@<a class="idref" href="mathcomp.algebra.rat.html#le_rat_total"><span class="id" title="lemma">le_rat_total</span></a> 0) <a class="idref" href="mathcomp.algebra.rat.html#norm_ratN"><span class="id" title="lemma">norm_ratN</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ge_rat0_norm"><span class="id" title="lemma">ge_rat0_norm</span></a> <a class="idref" href="mathcomp.algebra.rat.html#lt_rat_def"><span class="id" title="lemma">lt_rat_def</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_numDomainType</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.NumDomain.Exports.NumDomainType"><span class="id" title="abbreviation">NumDomainType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratLeMixin"><span class="id" title="definition">ratLeMixin</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_numFieldType</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#26b4c9111e913c6e720e7f07f31d3386"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#26b4c9111e913c6e720e7f07f31d3386"><span class="id" title="notation">numFieldType</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#26b4c9111e913c6e720e7f07f31d3386"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#26b4c9111e913c6e720e7f07f31d3386"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_realDomainType</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.RealDomain.Exports.RealDomainType"><span class="id" title="abbreviation">RealDomainType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> (@<a class="idref" href="mathcomp.algebra.rat.html#le_rat_total"><span class="id" title="lemma">le_rat_total</span></a> 0).<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">rat_realFieldType</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#d2e4c806361a8ca8b358ecd4af030445"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#d2e4c806361a8ca8b358ecd4af030445"><span class="id" title="notation">realFieldType</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#d2e4c806361a8ca8b358ecd4af030445"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#d2e4c806361a8ca8b358ecd4af030445"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_ge0"><span class="id" title="lemma">numq_ge0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_le0"><span class="id" title="lemma">numq_le0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_gt0"><span class="id" title="lemma">numq_gt0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numq_lt0"><span class="id" title="lemma">numq_lt0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="sgr_numq"><span class="id" title="lemma">sgr_numq</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.ssrint.html#sgz"><span class="id" title="definition">sgz</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#sgz"><span class="id" title="definition">sgz</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_mulr_sign"><span class="id" title="lemma">denq_mulr_sign</span></a> (<span class="id" title="var">b</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#bool"><span class="id" title="inductive">bool</span></a>) <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> (<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">(</span></a>-1<a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">)</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#663140372ac3b275aae871b74b140513"><span class="id" title="notation">^+</span></a> <a class="idref" href="mathcomp.algebra.rat.html#b"><span class="id" title="variable">b</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="denq_norm"><span class="id" title="lemma">denq_norm</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="rat_archimedean"><span class="id" title="lemma">rat_archimedean</span></a> : <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.archimedean_axiom"><span class="id" title="definition">Num.archimedean_axiom</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#8bf783530208799b469bca451a6c1096"><span class="id" title="notation">[</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#8bf783530208799b469bca451a6c1096"><span class="id" title="notation">numDomainType</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#8bf783530208799b469bca451a6c1096"><span class="id" title="notation">of</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#8bf783530208799b469bca451a6c1096"><span class="id" title="notation">]</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">archiType</span> := <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.ArchimedeanField.Exports.ArchiFieldType"><span class="id" title="abbreviation">ArchiFieldType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat_archimedean"><span class="id" title="lemma">rat_archimedean</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="QintPred"><span class="id" title="section">QintPred</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="Qint"><span class="id" title="definition">Qint</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">qualify</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">a</span></a> <span class="id" title="var">x</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">|</span></a> <a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Fact</span> <a name="Qint_key"><span class="id" title="lemma">Qint_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#pred_key"><span class="id" title="inductive">pred_key</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a>. <br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_keyed</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#KeyedQualifier"><span class="id" title="definition">KeyedQualifier</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_key"><span class="id" title="lemma">Qint_key</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="Qint_def"><span class="id" title="lemma">Qint_def</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.ssreflect.eqtype.html#df45e8c2e8370fd4f0f7c4fdaf208180"><span class="id" title="notation">==</span></a> 1<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>. <br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="numqK"><span class="id" title="lemma">numqK</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">,</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#cancel"><span class="id" title="definition">cancel</span></a> (<span class="id" title="keyword">fun</span> <span class="id" title="var">x</span> ⇒ <a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="mathcomp.algebra.ssrint.html#intr"><span class="id" title="abbreviation">intr</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#8c08d4203604dbed63e7afa9b689d858"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="QintP"><span class="id" title="lemma">QintP</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#reflect"><span class="id" title="abbreviation">reflect</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">∃</span></a> <span class="id" title="var">z</span><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#z"><span class="id" title="variable">z</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.subring_closed"><span class="id" title="abbreviation">subring_closed</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_opprPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.OpprPred"><span class="id" title="definition">OpprPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_addrPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.AddrPred"><span class="id" title="definition">AddrPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_mulrPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.MulrPred"><span class="id" title="definition">MulrPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_zmodPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.ZmodPred"><span class="id" title="definition">ZmodPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_semiringPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.SemiringPred"><span class="id" title="definition">SemiringPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_smulrPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.SmulrPred"><span class="id" title="definition">SmulrPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qint_subringPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.SubringPred"><span class="id" title="definition">SubringPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint_subring_closed"><span class="id" title="lemma">Qint_subring_closed</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#QintPred"><span class="id" title="section">QintPred</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="QnatPred"><span class="id" title="section">QnatPred</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="Qnat"><span class="id" title="definition">Qnat</span></a> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">[</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">qualify</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">a</span></a> <span class="id" title="var">x</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#65c8f47ea0daafc83f7bb18bc9eca61f"><span class="id" title="notation">]</span></a>.<br/>
-<span class="id" title="keyword">Fact</span> <a name="Qnat_key"><span class="id" title="lemma">Qnat_key</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#pred_key"><span class="id" title="inductive">pred_key</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat"><span class="id" title="definition">Qnat</span></a>. <br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qnat_keyed</span> := <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#KeyedQualifier"><span class="id" title="definition">KeyedQualifier</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat_key"><span class="id" title="lemma">Qnat_key</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="Qnat_def"><span class="id" title="lemma">Qnat_def</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat"><span class="id" title="definition">Qnat</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">is</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#f6c65697fefaf4504de1d4d641cd4409"><span class="id" title="notation">a</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qint"><span class="id" title="definition">Qint</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">&amp;&amp;</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#9ddeac0ab66152bd1d64bedb507a795e"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="QnatP"><span class="id" title="lemma">QnatP</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#reflect"><span class="id" title="abbreviation">reflect</span></a> (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">∃</span></a> <span class="id" title="var">n</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Datatypes.html#nat"><span class="id" title="inductive">nat</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#a883bdd010993579f99d60b3775bcf54"><span class="id" title="notation">,</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a>) (<a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat"><span class="id" title="definition">Qnat</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="Qnat_semiring_closed"><span class="id" title="lemma">Qnat_semiring_closed</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.semiring_closed"><span class="id" title="abbreviation">semiring_closed</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat"><span class="id" title="definition">Qnat</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qnat_addrPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.AddrPred"><span class="id" title="definition">AddrPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat_semiring_closed"><span class="id" title="lemma">Qnat_semiring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qnat_mulrPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.MulrPred"><span class="id" title="definition">MulrPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat_semiring_closed"><span class="id" title="lemma">Qnat_semiring_closed</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">Qnat_semiringPred</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.SemiringPred"><span class="id" title="definition">SemiringPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#Qnat_semiring_closed"><span class="id" title="lemma">Qnat_semiring_closed</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#QnatPred"><span class="id" title="section">QnatPred</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="natq_div"><span class="id" title="lemma">natq_div</span></a> <span class="id" title="var">m</span> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#bde82eab2fe4a0799bc2419e587505d4"><span class="id" title="notation">%|</span></a> <a class="idref" href="mathcomp.algebra.rat.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#m"><span class="id" title="variable">m</span></a> <a class="idref" href="mathcomp.ssreflect.div.html#2242f6721707980eca939ec29164eab3"><span class="id" title="notation">%/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">)%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#b8b2ebc8e1a8b9aa935c0702efb5dccf"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#m"><span class="id" title="variable">m</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#b8b2ebc8e1a8b9aa935c0702efb5dccf"><span class="id" title="notation">:&gt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="InRing"><span class="id" title="section">InRing</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Variable</span> <a name="InRing.R"><span class="id" title="variable">R</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.unitRingType"><span class="id" title="abbreviation">unitRingType</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Definition</span> <a name="ratr"><span class="id" title="definition">ratr</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#InRing.R"><span class="id" title="variable">R</span></a> := <a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#numq"><span class="id" title="definition">numq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#denq"><span class="id" title="definition">denq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">)%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ratr_int"><span class="id" title="lemma">ratr_int</span></a> <span class="id" title="var">z</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#z"><span class="id" title="variable">z</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#z"><span class="id" title="variable">z</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">%:~</span></a><a class="idref" href="mathcomp.algebra.ssrint.html#fd24b924079f6f5906ec417190abcf00"><span class="id" title="notation">R</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ratr_nat"><span class="id" title="lemma">ratr_nat</span></a> <span class="id" title="var">n</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#n"><span class="id" title="variable">n</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">%:</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#6411ed08724033ae48d2865f0380d533"><span class="id" title="notation">R</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rpred_rat"><span class="id" title="lemma">rpred_rat</span></a> (<span class="id" title="var">S</span> : <a class="idref" href="mathcomp.ssreflect.ssrbool.html#64f8873130736b599801d4930af00e74"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.ssreflect.ssrbool.html#64f8873130736b599801d4930af00e74"><span class="id" title="notation">pred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InRing.R"><span class="id" title="variable">R</span></a><a class="idref" href="mathcomp.ssreflect.ssrbool.html#64f8873130736b599801d4930af00e74"><span class="id" title="notation">}</span></a>) (<span class="id" title="var">ringS</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Pred.Exports.divringPred"><span class="id" title="abbreviation">divringPred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#S"><span class="id" title="variable">S</span></a>) (<span class="id" title="var">kS</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#keyed_pred"><span class="id" title="record">keyed_pred</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ringS"><span class="id" title="variable">ringS</span></a>)<br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<span class="id" title="var">a</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#a"><span class="id" title="variable">a</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">\</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrbool.html#b09457274bcb94927e289b8a9e9cd3f7"><span class="id" title="notation">in</span></a> <a class="idref" href="mathcomp.algebra.rat.html#kS"><span class="id" title="variable">kS</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#InRing"><span class="id" title="section">InRing</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="Fmorph"><span class="id" title="section">Fmorph</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Type</span> <span class="id" title="var">rR</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.UnitRing.Exports.unitRingType"><span class="id" title="abbreviation">unitRingType</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="fmorph_rat"><span class="id" title="lemma">fmorph_rat</span></a> (<span class="id" title="var">aR</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Field.Exports.fieldType"><span class="id" title="abbreviation">fieldType</span></a>) <span class="id" title="var">rR</span> (<span class="id" title="var">f</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">rmorphism</span></a> <a class="idref" href="mathcomp.algebra.rat.html#aR"><span class="id" title="variable">aR</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rR"><span class="id" title="variable">rR</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">}</span></a>) <span class="id" title="var">a</span> :<br/>
-&nbsp;&nbsp;<a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#a"><span class="id" title="variable">a</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#a"><span class="id" title="variable">a</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="fmorph_eq_rat"><span class="id" title="lemma">fmorph_eq_rat</span></a> <span class="id" title="var">rR</span> (<span class="id" title="var">f</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">{</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">rmorphism</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rR"><span class="id" title="variable">rR</span></a><a class="idref" href="mathcomp.algebra.ssralg.html#d531732ed602c7af62b88c7cfce824e5"><span class="id" title="notation">}</span></a>) : <a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#876aa133fb3472bffd492f74ff496035"><span class="id" title="notation">=1</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <span class="id" title="var">_</span>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#Fmorph"><span class="id" title="section">Fmorph</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="Linear"><span class="id" title="section">Linear</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Implicit</span> <span class="id" title="keyword">Types</span> (<span class="id" title="var">U</span> <span class="id" title="var">V</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lmodule.Exports.lmodType"><span class="id" title="abbreviation">lmodType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>) (<span class="id" title="var">A</span> <span class="id" title="var">B</span> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Lalgebra.Exports.lalgType"><span class="id" title="abbreviation">lalgType</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_linear"><span class="id" title="lemma">rat_linear</span></a> <span class="id" title="var">U</span> <span class="id" title="var">V</span> (<span class="id" title="var">f</span> : <a class="idref" href="mathcomp.algebra.rat.html#U"><span class="id" title="variable">U</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#V"><span class="id" title="variable">V</span></a>) : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Additive.Exports.additive"><span class="id" title="abbreviation">additive</span></a> <a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Linear.Exports.linear"><span class="id" title="abbreviation">linear</span></a> <a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_lrmorphism"><span class="id" title="lemma">rat_lrmorphism</span></a> <span class="id" title="var">A</span> <span class="id" title="var">B</span> (<span class="id" title="var">f</span> : <a class="idref" href="mathcomp.algebra.rat.html#A"><span class="id" title="variable">A</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.rat.html#B"><span class="id" title="variable">B</span></a>) : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.RMorphism.Exports.rmorphism"><span class="id" title="abbreviation">rmorphism</span></a> <a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#1c93e43e07fbeaeb6a625cb6614beb5d"><span class="id" title="notation">→</span></a> <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.LRMorphism.Exports.lrmorphism"><span class="id" title="abbreviation">lrmorphism</span></a> <a class="idref" href="mathcomp.algebra.rat.html#f"><span class="id" title="variable">f</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#Linear"><span class="id" title="section">Linear</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Section</span> <a name="InPrealField"><span class="id" title="section">InPrealField</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Variable</span> <a name="InPrealField.F"><span class="id" title="variable">F</span></a> : <a class="idref" href="mathcomp.algebra.ssrnum.html#Num.NumField.Exports.numFieldType"><span class="id" title="abbreviation">numFieldType</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Fact</span> <a name="ratr_is_rmorphism"><span class="id" title="lemma">ratr_is_rmorphism</span></a> : <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.RMorphism.Exports.rmorphism"><span class="id" title="abbreviation">rmorphism</span></a> (@<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">ratr_additive</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.Additive.Exports.Additive"><span class="id" title="abbreviation">Additive</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr_is_rmorphism"><span class="id" title="lemma">ratr_is_rmorphism</span></a>.<br/>
-<span class="id" title="keyword">Canonical</span> <span class="id" title="var">ratr_rmorphism</span> := <a class="idref" href="mathcomp.algebra.ssralg.html#GRing.RMorphism.Exports.RMorphism"><span class="id" title="abbreviation">RMorphism</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr_is_rmorphism"><span class="id" title="lemma">ratr_is_rmorphism</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ler_rat"><span class="id" title="lemma">ler_rat</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">mono</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">(</span></a>@<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ltr_rat"><span class="id" title="lemma">ltr_rat</span></a> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">{</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">mono</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">(</span></a>@<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">:</span></a> <span class="id" title="var">x</span> <span class="id" title="var">y</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">/</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#y"><span class="id" title="variable">y</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssrfun.html#02b248fee5f27b186ea3a36733c25088"><span class="id" title="notation">}</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ler0q"><span class="id" title="lemma">ler0q</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="lerq0"><span class="id" title="lemma">lerq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#cb42ec59ad57b25928e1718b4e69e031"><span class="id" title="notation">≤</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ltr0q"><span class="id" title="lemma">ltr0q</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a>0 <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ltrq0"><span class="id" title="lemma">ltrq0</span></a> <span class="id" title="var">x</span> : <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">(</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#eb5186e6835d7e27cbb4c691b2f398bb"><span class="id" title="notation">&lt;</span></a> 0<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">)</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ratr_sg"><span class="id" title="lemma">ratr_sg</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>) <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.rat.html#sgr"><span class="id" title="abbreviation">sgr</span></a> (<a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="ratr_norm"><span class="id" title="lemma">ratr_norm</span></a> <span class="id" title="var">x</span> : <a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#6cd0f7b28b6092304087c7049437bb1a"><span class="id" title="notation">=</span></a> <a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">`|</span></a><a class="idref" href="mathcomp.algebra.rat.html#ratr"><span class="id" title="definition">ratr</span></a> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField.F"><span class="id" title="variable">F</span></a> <a class="idref" href="mathcomp.algebra.rat.html#x"><span class="id" title="variable">x</span></a><a class="idref" href="mathcomp.algebra.ssrnum.html#55297ec87c6b3f98c14c99daeafb55d3"><span class="id" title="notation">|</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">End</span> <a class="idref" href="mathcomp.algebra.rat.html#InPrealField"><span class="id" title="section">InPrealField</span></a>.<br/>
-
-<br/>
-
-<br/>
-</div>
-
-<div class="doc">
- Conntecting rationals to the ring an field tactics
-</div>
-<div class="code">
-
-<br/>
-<span class="id" title="keyword">Ltac</span> <span class="id" title="var">rat_to_ring</span> :=<br/>
-&nbsp;&nbsp;<span class="id" title="tactic">rewrite</span> -?[0%<span class="id" title="var">Q</span>]/(0 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span> -?[1%<span class="id" title="var">Q</span>]/(1 <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#b67783d488da7bcc57006b6fc2d6e847"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#51dc792c356ca1a71a3094b50d6bb2fb"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#90f38373ad3cfb798bb7ede12b12ce89"><span class="id" title="notation">/</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <span class="id" title="var">_</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#30899449791bd2937a2668f9604a3004"><span class="id" title="notation">+</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <span class="id" title="var">_</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#509aa1248141ae73840be7dc8369add9"><span class="id" title="notation">×</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <span class="id" title="var">_</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<a class="idref" href="mathcomp.algebra.rat.html#56053413212375a34fcf97c63669b79e"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span>]/(<a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#f0c9b4b615e158ed3db1f3887e33c9da"><span class="id" title="notation">^-1</span></a>)%<span class="id" title="var">Q</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#4e5a4c91ec0aa12de06dfe1cc07ea126"><span class="id" title="notation">^-1</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.ssr.ssreflect.html#aed478b27f23b4f753c27c8ac393febc"><span class="id" title="notation">:</span></a> <a class="idref" href="mathcomp.algebra.rat.html#rat"><span class="id" title="record">rat</span></a>)%<span class="id" title="var">R</span> /=.<br/>
-
-<br/>
-<span class="id" title="keyword">Ltac</span> <span class="id" title="var">ring_to_rat</span> :=<br/>
-&nbsp;&nbsp;<span class="id" title="tactic">rewrite</span> -?[0%<span class="id" title="var">R</span>]/0%<span class="id" title="var">Q</span> -?[1%<span class="id" title="var">R</span>]/1%<span class="id" title="var">Q</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#51dc792c356ca1a71a3094b50d6bb2fb"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">R</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#b67783d488da7bcc57006b6fc2d6e847"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#69c431a9c94f6f30a655bd7ddb59037b"><span class="id" title="notation">/</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">R</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#90f38373ad3cfb798bb7ede12b12ce89"><span class="id" title="notation">/</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#c7f78cf1f6a5e4f664654f7d671ca752"><span class="id" title="notation">+</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">R</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#30899449791bd2937a2668f9604a3004"><span class="id" title="notation">+</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#2d0cfb150261028f4ebd2ba355623dcc"><span class="id" title="notation">×</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">R</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#509aa1248141ae73840be7dc8369add9"><span class="id" title="notation">×</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span><br/>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-?[(<a class="idref" href="mathcomp.algebra.ssralg.html#8d0566c961139ec21811f52ef0c317db"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">R</span>]/(<a class="idref" href="mathcomp.algebra.rat.html#56053413212375a34fcf97c63669b79e"><span class="id" title="notation">-</span></a> <span class="id" title="var">_</span>)%<span class="id" title="var">Q</span> -?[(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.ssralg.html#4e5a4c91ec0aa12de06dfe1cc07ea126"><span class="id" title="notation">^-1</span></a>)%<span class="id" title="var">R</span>]/(<span class="id" title="var">_</span> <a class="idref" href="mathcomp.algebra.rat.html#f0c9b4b615e158ed3db1f3887e33c9da"><span class="id" title="notation">^-1</span></a>)%<span class="id" title="var">Q</span> /=.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_ring_theory"><span class="id" title="lemma">rat_ring_theory</span></a> : (<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.setoid_ring.Ring_theory.html#ring_theory"><span class="id" title="record">ring_theory</span></a> 0%<span class="id" title="var">Q</span> 1%<span class="id" title="var">Q</span> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#subq"><span class="id" title="definition">subq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#eq"><span class="id" title="inductive">eq</span></a>).<br/>
-
-<br/>
-<span class="id" title="keyword">Require</span> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.setoid_ring.Field_theory.html#"><span class="id" title="library">setoid_ring.Field_theory</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.setoid_ring.Field_tac.html#"><span class="id" title="library">setoid_ring.Field_tac</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Lemma</span> <a name="rat_field_theory"><span class="id" title="lemma">rat_field_theory</span></a> : <br/>
-&nbsp;&nbsp;<a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.setoid_ring.Field_theory.html#field_theory"><span class="id" title="record">Field_theory.field_theory</span></a> 0%<span class="id" title="var">Q</span> 1%<span class="id" title="var">Q</span> <a class="idref" href="mathcomp.algebra.rat.html#addq"><span class="id" title="definition">addq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#mulq"><span class="id" title="definition">mulq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#subq"><span class="id" title="definition">subq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#oppq"><span class="id" title="definition">oppq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#divq"><span class="id" title="definition">divq</span></a> <a class="idref" href="mathcomp.algebra.rat.html#invq"><span class="id" title="definition">invq</span></a> <a class="idref" href="http://coq.inria.fr/distrib/V8.9.0/stdlib//Coq.Init.Logic.html#eq"><span class="id" title="inductive">eq</span></a>.<br/>
-
-<br/>
-<span class="id" title="keyword">Add</span> <span class="id" title="var">Field</span> <span class="id" title="var">rat_field</span> : <a class="idref" href="mathcomp.algebra.rat.html#rat_field_theory"><span class="id" title="lemma">rat_field_theory</span></a>.<br/>
-</div>
-</div>
-
-<div id="footer">
-<hr/><a href="index.html">Index</a><hr/>This page has been generated by <a href="http://coq.inria.fr/">coqdoc</a>
-</div>
-
-</div>
-
-</body>
-</html> \ No newline at end of file