aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--mathcomp/ssrtest/elim.v72
1 files changed, 71 insertions, 1 deletions
diff --git a/mathcomp/ssrtest/elim.v b/mathcomp/ssrtest/elim.v
index bc8701e..9f0f139 100644
--- a/mathcomp/ssrtest/elim.v
+++ b/mathcomp/ssrtest/elim.v
@@ -197,12 +197,82 @@ rewrite lognE -mem_primes; case: ifP => pi1p; last exact: dvd1n.
by case: ifP => pr_p; [rewrite pi12 | rewrite if_same].
Qed.
-Function plus (m n : nat) {struct n} : nat :=
+Fixpoint plus (m n : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (plus m p)
end.
+Definition plus_equation :
+forall m n : nat,
+ plus m n =
+ match n with
+ | 0 => m
+ | p.+1 => (plus m p).+1
+ end
+:=
+fun m n : nat =>
+match
+ n as n0
+ return
+ (forall m0 : nat,
+ plus m0 n0 =
+ match n0 with
+ | 0 => m0
+ | p.+1 => (plus m0 p).+1
+ end)
+with
+| 0 => @erefl nat
+| n0.+1 => fun m0 : nat => erefl (plus m0 n0).+1
+end m.
+
+Definition plus_rect :
+forall (m : nat) (P : nat -> nat -> Type),
+ (forall n : nat, n = 0 -> P 0 m) ->
+ (forall n p : nat,
+ n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
+ forall n : nat, P n (plus m n)
+:=
+fun (m : nat) (P : nat -> nat -> Type)
+ (f0 : forall n : nat, n = 0 -> P 0 m)
+ (f : forall n p : nat,
+ n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) =>
+fix plus0 (n : nat) : P n (plus m n) :=
+ eq_rect_r [eta P n]
+ (let f1 := f0 n in
+ let f2 := f n in
+ match
+ n as n0
+ return
+ (n = n0 ->
+ (forall p : nat,
+ n0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
+ (n0 = 0 -> P 0 m) ->
+ P n0 match n0 with
+ | 0 => m
+ | p.+1 => (plus m p).+1
+ end)
+ with
+ | 0 =>
+ fun (_ : n = 0)
+ (_ : forall p : nat,
+ 0 = p.+1 ->
+ P p (plus m p) -> P p.+1 (plus m p).+1)
+ (f4 : 0 = 0 -> P 0 m) => unkeyed (f4 (erefl 0))
+ | n0.+1 =>
+ fun (_ : n = n0.+1)
+ (f3 : forall p : nat,
+ n0.+1 = p.+1 ->
+ P p (plus m p) -> P p.+1 (plus m p).+1)
+ (_ : n0.+1 = 0 -> P 0 m) =>
+ let f5 :=
+ let p := n0 in
+ let H := erefl n0.+1 : n0.+1 = p.+1 in f3 p H in
+ unkeyed (let Hrec := plus0 n0 in f5 Hrec)
+ end (erefl n) f2 f1) (plus_equation m n).
+
+Definition plus_ind := plus_rect.
+
Lemma exF x y z: plus (plus x y) z = plus x (plus y z).
elim/plus_ind: z / (plus _ z).
match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.