diff options
| -rw-r--r-- | CHANGELOG_UNRELEASED.md | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 53 |
2 files changed, 55 insertions, 0 deletions
diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 4b348e6..4f03400 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -268,6 +268,8 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). - in `path.v`, new lemmas `sub_cycle(_in)`, `eq_cycle_in`, `(path|sorted)_(mask|filter)_in`, `rev_cycle`, `cycle_map`, `(homo|mono)_cycle(_in)`. +- in `seq.v` new lemmas `eqseq_pivot`, `rev_mask`, `subseq_rev`, `subseq_cat2l`, `subseq_cat2r`, `subseq_rot`, `subseq_pivot`. + ### Changed diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index ed0b998..91085be 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -1395,6 +1395,17 @@ Proof. by move=> x; rewrite -[s in RHS](cat_take_drop n0) !mem_cat /= orbC. Qed. Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2). Proof. exact/inj_eq/rot_inj. Qed. +Lemma eqseq_pivot s1 s2 s3 s4 x : + uniq (s3 ++ x :: s4) -> s1 ++ x :: s2 == s3 ++ x :: s4 = (s1 == s3) && (s2 == s4). +Proof. +move=> uniq34; apply/idP/idP => [E|/andP [/eqP-> /eqP->] //]. +suff S : size s1 = size s3 by rewrite eqseq_cat // eqseq_cons eqxx in E. +gen have I,I1 : s3 s4 uniq34 {E} / size s3 = index x (s3 ++ x :: s4). + rewrite index_cat index_head addn0 ifN //. + by apply: contraTN uniq34 => x_s3; rewrite cat_uniq /= x_s3 /= andbF. +by rewrite I1 -(eqP E) -I // (eqP E). +Qed. + End EqSeq. Section RotIndex. @@ -1936,6 +1947,13 @@ Proof. by case: b. Qed. Lemma has_mask a m s : has a (mask m s) -> has a s. Proof. by apply/contraTT; rewrite -!all_predC; apply: all_mask. Qed. +Lemma rev_mask m s : size m = size s -> rev (mask m s) = mask (rev m) (rev s). +Proof. +move: m s; apply: seq_ind2 => //= b x m s ? IH. +rewrite fun_if !rev_cons -!cats1 IH // mask_cat ?size_rev //. +by case: b => //=; rewrite cats0. +Qed. + Lemma mask_rot m s : size m = size s -> mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s). Proof. @@ -2108,6 +2126,31 @@ elim: s => //= x s; case: (_ \in _); last by rewrite eqxx. by case: (undup s) => //= y u; case: (_ == _) => //=; apply: cons_subseq. Qed. +Lemma subseq_rev s1 s2 : subseq (rev s1) (rev s2) = subseq s1 s2. +Proof. +wlog suff W : s1 s2 / subseq s1 s2 -> subseq (rev s1) (rev s2). + by apply/idP/idP => /W //; rewrite !revK. +move/subseqP => [m size_m mask_m]; apply/subseqP. +by exists (rev m); rewrite ?size_rev // -rev_mask // -mask_m. +Qed. + +Lemma subseq_cat2l (s s1 s2 : seq T) : + subseq (s ++ s1) (s ++ s2) = subseq s1 s2. +Proof. by elim: s => // x s IHs; rewrite !cat_cons /= eqxx. Qed. + +Lemma subseq_cat2r (s s1 s2 : seq T) : + subseq (s1 ++ s) (s2 ++ s) = subseq s1 s2. +Proof. by rewrite -subseq_rev !rev_cat subseq_cat2l subseq_rev. Qed. + +Lemma subseq_rot p s n : + subseq p s -> exists2 k, k <= n & subseq (rot k p) (rot n s). +Proof. +move => /subseqP [m size_m ->]. +exists (count id (take n m)); last by rewrite -mask_rot // mask_subseq. +apply: leq_trans (count_size _ _) _; rewrite size_take. +by case: (ltnP n (size m)). +Qed. + End Subseq. Prenex Implicits subseq. @@ -2300,6 +2343,16 @@ rewrite uniq_perm ?filter_uniq ?(subseq_uniq ss12) // => x. by rewrite mem_filter; apply: andb_idr; apply: (mem_subseq ss12). Qed. +Lemma subseq_pivot (s1 s2 s3 s4 : seq T) x (s := s3 ++ x :: s4) : + uniq s -> subseq (s1 ++ x :: s2) s -> subseq s1 s3 /\ subseq s2 s4. +Proof. +move => uniq_s sub_s'_s; have uniq_s' := subseq_uniq sub_s'_s uniq_s. +have/eqP {sub_s'_s uniq_s} := subseq_uniqP _ uniq_s sub_s'_s. +rewrite !filter_cat /= mem_cat inE eqxx orbT /= => E. +move: (E); rewrite eqseq_pivot -?(eqP E) // => /andP [/eqP -> /eqP ->]. +by rewrite !filter_subseq. +Qed. + Lemma perm_to_subseq s1 s2 : subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}. Proof. |
