diff options
| author | Georges Gonthier | 2018-12-04 13:27:53 +0100 |
|---|---|---|
| committer | GitHub | 2018-12-04 13:27:53 +0100 |
| commit | e99b8b9695cdb53492e63077cb0dd551c4a06dc3 (patch) | |
| tree | 9af429f5d53b30de0c44e11ed651403289f39108 /mathcomp | |
| parent | 03ad994dfee48e1a7b2b7091c45dfdcf4402f826 (diff) | |
| parent | 8c82657e7692049dde4a4c44a2ea53d0c4fa7cb5 (diff) | |
Merge pull request #253 from anton-trunov/arguments
Document parameter names whenever possible
Diffstat (limited to 'mathcomp')
35 files changed, 241 insertions, 250 deletions
diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v index 2501117..3fe8d01 100644 --- a/mathcomp/algebra/matrix.v +++ b/mathcomp/algebra/matrix.v @@ -2663,7 +2663,7 @@ Coercion GLval ph (u : GLtype ph) : 'M[R]_n.-1.+1 := End FinUnitMatrix. Bind Scope group_scope with GLtype. -Arguments GLval {_%N _ _} _%g. +Arguments GLval {n%N R ph} u%g. Notation "{ ''GL_' n [ R ] }" := (GLtype n (Phant R)) (at level 0, n at level 2, format "{ ''GL_' n [ R ] }") : type_scope. diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v index af18125..c23d91c 100644 --- a/mathcomp/algebra/mxalgebra.v +++ b/mathcomp/algebra/mxalgebra.v @@ -216,9 +216,9 @@ Definition pinvmx : 'M_(n, m) := End Defs. -Arguments mxrank _%N _%N _%MS. +Arguments mxrank {m%N n%N} A%MS. Local Notation "\rank A" := (mxrank A) : nat_scope. -Arguments complmx _%N _%N _%MS. +Arguments complmx {m%N n%N} A%MS. Local Notation "A ^C" := (complmx A) : matrix_set_scope. Definition submx_def := idfun (fun m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) => @@ -227,21 +227,21 @@ Fact submx_key : unit. Proof. by []. Qed. Definition submx := locked_with submx_key submx_def. Canonical submx_unlockable := [unlockable fun submx]. -Arguments submx {_%N _%N _%N} _%MS _%MS. +Arguments submx {m1%N m2%N n%N} A%MS B%MS : rename. Local Notation "A <= B" := (submx A B) : matrix_set_scope. Local Notation "A <= B <= C" := ((A <= B) && (B <= C))%MS : matrix_set_scope. Local Notation "A == B" := (A <= B <= A)%MS : matrix_set_scope. Definition ltmx m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) := (A <= B)%MS && ~~ (B <= A)%MS. -Arguments ltmx {_%N _%N _%N} _%MS _%MS. +Arguments ltmx {m1%N m2%N n%N} A%MS B%MS. Local Notation "A < B" := (ltmx A B) : matrix_set_scope. Definition eqmx m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) := prod (\rank A = \rank B) (forall m3 (C : 'M_(m3, n)), ((A <= C) = (B <= C)) * ((C <= A) = (C <= B)))%MS. -Arguments eqmx _%N _%N _%N _%MS _%MS. +Arguments eqmx {m1%N m2%N n%N} A%MS B%MS. Local Notation "A :=: B" := (eqmx A B) : matrix_set_scope. Section LtmxIdentities. @@ -296,7 +296,7 @@ Definition addsmx_def := idfun (fun m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) => Fact addsmx_key : unit. Proof. by []. Qed. Definition addsmx := locked_with addsmx_key addsmx_def. Canonical addsmx_unlockable := [unlockable fun addsmx]. -Arguments addsmx {_%N _%N _%N} _%MS _%MS. +Arguments addsmx {m1%N m2%N n%N} A%MS B%MS : rename. Local Notation "A + B" := (addsmx A B) : matrix_set_scope. Local Notation "\sum_ ( i | P ) B" := (\big[addsmx/0]_(i | P) B%MS) : matrix_set_scope. @@ -330,8 +330,7 @@ Definition capmx_def := idfun (fun m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) => Fact capmx_key : unit. Proof. by []. Qed. Definition capmx := locked_with capmx_key capmx_def. Canonical capmx_unlockable := [unlockable fun capmx]. -Arguments capmx _%N _%N _%N _%MS _%MS. -Prenex Implicits capmx. +Arguments capmx {m1%N m2%N n%N} A%MS B%MS : rename. Local Notation "A :&: B" := (capmx A B) : matrix_set_scope. Local Notation "\bigcap_ ( i | P ) B" := (\big[capmx/1%:M]_(i | P) B) : matrix_set_scope. @@ -341,7 +340,7 @@ Definition diffmx_def := idfun (fun m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) => Fact diffmx_key : unit. Proof. by []. Qed. Definition diffmx := locked_with diffmx_key diffmx_def. Canonical diffmx_unlockable := [unlockable fun diffmx]. -Arguments diffmx {_%N _%N _%N} _%MS _%MS. +Arguments diffmx {m1%N m2%N n%N} A%MS B%MS : rename. Local Notation "A :\: B" := (diffmx A B) : matrix_set_scope. Definition proj_mx n (U V : 'M_n) : 'M_n := pinvmx (col_mx U V) *m col_mx U 0. @@ -1725,7 +1724,7 @@ Inductive mxsum_spec n : forall m, 'M[F]_(m, n) -> nat -> Prop := | ProperMxsum m1 m2 T1 T2 r1 r2 of @mxsum_spec n m1 T1 r1 & @mxsum_spec n m2 T2 r2 : mxsum_spec (T1 + T2)%MS (r1 + r2)%N. -Arguments mxsum_spec _%N _%N _%MS _%N. +Arguments mxsum_spec {n%N m%N} T%MS r%N. Structure mxsum_expr m n := Mxsum { mxsum_val :> wrapped 'M_(m, n); @@ -1995,16 +1994,16 @@ Arguments mxdirect_sumsE {F I P n S_}. Arguments eigenspaceP {F n g a m W}. Arguments eigenvalueP {F n g a}. -Arguments mxrank {_ _%N _%N} _%MS. -Arguments complmx {_ _%N _%N} _%MS. -Arguments row_full _ _%N _%N _%MS. -Arguments submx {_ _%N _%N _%N} _%MS _%MS. -Arguments ltmx {_ _%N _%N _%N} _%MS _%MS. -Arguments eqmx {_ _%N _%N _%N} _%MS _%MS. -Arguments addsmx {_ _%N _%N _%N} _%MS _%MS. -Arguments capmx {_ _%N _%N _%N} _%MS _%MS. -Arguments diffmx _ _%N _%N _%N _%MS _%MS. -Prenex Implicits genmx. +Arguments mxrank {F m%N n%N} A%MS. +Arguments complmx {F m%N n%N} A%MS. +Arguments row_full {F m%N n%N} A%MS. +Arguments submx {F m1%N m2%N n%N} A%MS B%MS : rename. +Arguments ltmx {F m1%N m2%N n%N} A%MS B%MS. +Arguments eqmx {F m1%N m2%N n%N} A%MS B%MS. +Arguments addsmx {F m1%N m2%N n%N} A%MS B%MS : rename. +Arguments capmx {F m1%N m2%N n%N} A%MS B%MS : rename. +Arguments diffmx {F m1%N m2%N n%N} A%MS B%MS : rename. +Arguments genmx {F m%N n%N} A%R : rename. Notation "\rank A" := (mxrank A) : nat_scope. Notation "<< A >>" := (genmx A) : matrix_set_scope. Notation "A ^C" := (complmx A) : matrix_set_scope. @@ -2279,7 +2278,7 @@ Qed. Definition mulsmx m1 m2 n (R1 : 'A[F]_(m1, n)) (R2 : 'A_(m2, n)) := (\sum_i <<R1 *m lin_mx (mulmxr (vec_mx (row i R2)))>>)%MS. -Arguments mulsmx _%N _%N _%N _%MS _%MS. +Arguments mulsmx {m1%N m2%N n%N} R1%MS R2%MS. Local Notation "R1 * R2" := (mulsmx R1 R2) : matrix_set_scope. @@ -2589,15 +2588,15 @@ Qed. End MatrixAlgebra. -Arguments mulsmx {_ _%N _%N _%N} _%MS _%MS. -Arguments left_mx_ideal _ _%N _%N _%N _%MS _%MS. -Arguments right_mx_ideal _ _%N _%N _%N _%MS _%MS. -Arguments mx_ideal _ _%N _%N _%N _%MS _%MS. -Arguments mxring_id _ _%N _%N _%R _%MS. -Arguments has_mxring_id _ _%N _%N _%R _%MS : extra scopes. -Arguments mxring _ _%N _%N _%MS. -Arguments cent_mx _ _%N _%N _%MS. -Arguments center_mx _ _%N _%N _%MS. +Arguments mulsmx {F m1%N m2%N n%N} R1%MS R2%MS. +Arguments left_mx_ideal {F m1%N m2%N n%N} R%MS S%MS : rename. +Arguments right_mx_ideal {F m1%N m2%N n%N} R%MS S%MS : rename. +Arguments mx_ideal {F m1%N m2%N n%N} R%MS S%MS : rename. +Arguments mxring_id {F m%N n%N} R%MS e%R. +Arguments has_mxring_id {F m%N n%N} R%MS. +Arguments mxring {F m%N n%N} R%MS. +Arguments cent_mx {F m%N n%N} R%MS. +Arguments center_mx {F m%N n%N} R%MS. Notation "A \in R" := (submx (mxvec A) R) : matrix_set_scope. Notation "R * S" := (mulsmx R S) : matrix_set_scope. diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v index 34174bf..929c313 100644 --- a/mathcomp/algebra/poly.v +++ b/mathcomp/algebra/poly.v @@ -146,9 +146,9 @@ End Polynomial. (* directives take effect. *) Bind Scope ring_scope with poly_of. Bind Scope ring_scope with polynomial. -Arguments polyseq _ _%R. -Arguments poly_inj _ _%R _%R _. -Arguments coefp_head _ _ _%N _%R. +Arguments polyseq {R} p%R. +Arguments poly_inj {R} [p1%R p2%R] : rename. +Arguments coefp_head {R} h i%N p%R. Notation "{ 'poly' T }" := (poly_of (Phant T)). Notation coefp i := (coefp_head tt i). @@ -2430,7 +2430,7 @@ Qed. End MapFieldPoly. -Arguments map_poly_inj {F R} f [x1 x2]. +Arguments map_poly_inj {F R} f [p1 p2] : rename. Section MaxRoots. diff --git a/mathcomp/algebra/ssralg.v b/mathcomp/algebra/ssralg.v index c432f73..6df490d 100644 --- a/mathcomp/algebra/ssralg.v +++ b/mathcomp/algebra/ssralg.v @@ -3741,23 +3741,23 @@ End TermDef. Bind Scope term_scope with term. Bind Scope term_scope with formula. -Arguments Add {_} _%T _%T. -Arguments Opp {_} _%T. -Arguments NatMul {_} _%T _%N. -Arguments Mul {_} _%T _%T. -Arguments Inv {_} _%T. -Arguments Exp {_} _%T _%N. -Arguments Equal {_} _%T _%T. -Arguments Unit {_} _%T. -Arguments And {_} _%T _%T. -Arguments Or {_} _%T _%T. -Arguments Implies {_} _%T _%T. -Arguments Not {_} _%T. -Arguments Exists {_} _%N _%T. -Arguments Forall {_} _%N _%T. - -Arguments Bool {R}. -Arguments Const {R}. +Arguments Add {R} t1%T t2%T. +Arguments Opp {R} t1%T. +Arguments NatMul {R} t1%T n%N. +Arguments Mul {R} t1%T t2%T. +Arguments Inv {R} t1%T. +Arguments Exp {R} t1%T n%N. +Arguments Equal {R} t1%T t2%T. +Arguments Unit {R} t1%T. +Arguments And {R} f1%T f2%T. +Arguments Or {R} f1%T f2%T. +Arguments Implies {R} f1%T f2%T. +Arguments Not {R} f1%T. +Arguments Exists {R} i%N f1%T. +Arguments Forall {R} i%N f1%T. + +Arguments Bool {R} b. +Arguments Const {R} x. Notation True := (Bool true). Notation False := (Bool false). diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index d0214dd..614fbc2 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -369,7 +369,7 @@ Canonical int_countIdomainType := [countIdomainType of int]. Definition absz m := match m with Posz p => p | Negz n => n.+1 end. Notation "m - n" := (@GRing.add int_ZmodType m%N (@GRing.opp int_ZmodType n%N)) : distn_scope. -Arguments absz _%distn_scope. +Arguments absz m%distn_scope. Local Notation "`| m |" := (absz m) : nat_scope. Module intOrdered. @@ -1607,7 +1607,7 @@ Module Export IntDist. Notation "m - n" := (@GRing.add int_ZmodType m%N (@GRing.opp int_ZmodType n%N)) : distn_scope. -Arguments absz _%distn_scope. +Arguments absz m%distn_scope. Notation "`| m |" := (absz m) : nat_scope. Coercion Posz : nat >-> int. diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index aef9a9f..542f8ad 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -245,7 +245,7 @@ Definition f2mx (f : 'Hom(aT, rT)) := let: Hom A := f in A. Canonical hom_subType := [newType for f2mx]. End Hom. -Arguments mx2vs _ _ _%N _%MS. +Arguments mx2vs {K vT m%N} A%MS. Prenex Implicits v2r r2v v2rK r2vK b2mx vs2mx vs2mxK f2mx. End InternalTheory. diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v index 6752623..a657fa5 100644 --- a/mathcomp/character/character.v +++ b/mathcomp/character/character.v @@ -544,7 +544,7 @@ Notation xcfun_r A := (xcfun_r_head tt A). Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope. Definition pred_Nirr gT B := #|@classes gT B|.-1. -Arguments pred_Nirr _ _%g. +Arguments pred_Nirr {gT} B%g. Notation Nirr G := (pred_Nirr G).+1. Notation Iirr G := 'I_(Nirr G). @@ -587,7 +587,7 @@ Proof. by apply: onW_bij; exists irr_of_socle. Qed. End IrrClassDef. Prenex Implicits socle_of_IirrK irr_of_socleK. -Arguments socle_of_Iirr _ _%R. +Arguments socle_of_Iirr {gT G%G} i%R. Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i)) (at level 8, i at level 2, format "''Chi_' i"). @@ -598,7 +598,7 @@ Definition irr_def gT B : (Nirr B).-tuple 'CF(B) := [tuple of mkseq irr_of (Nirr B)]. Definition irr := locked_with irr_key irr_def. -Arguments irr _ _%g. +Arguments irr {gT} B%g. Notation "''chi_' i" := (tnth (irr _) i%R) (at level 8, i at level 2, format "''chi_' i") : ring_scope. @@ -621,7 +621,7 @@ Proof. by move/Iirr1_neq0; exists (inord 1). Qed. Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i. Proof. -rewrite [irr]unlock (tnth_nth 0) nth_mkseq // -[<<G>>]/(gval _) genGidG. +rewrite [@irr]unlock (tnth_nth 0) nth_mkseq // -[<<G>>]/(gval _) genGidG. by rewrite cfRes_id inord_val. Qed. @@ -816,7 +816,7 @@ Qed. End IrrClass. -Arguments cfReg _ _%g. +Arguments cfReg {gT} B%g. Prenex Implicits cfIirr. Arguments irr_inj {gT G} [x1 x2]. @@ -1334,7 +1334,7 @@ Qed. End OrthogonalityRelations. -Arguments character_table _ _%g. +Arguments character_table {gT} G%g. Section InnerProduct. @@ -1565,7 +1565,7 @@ Qed. End IrrConstt. -Arguments irr_constt _ _%g _%CF. +Arguments irr_constt {gT B%g} phi%CF. Section Kernel. @@ -1733,7 +1733,7 @@ Qed. End Restrict. -Arguments Res_Iirr _ _%g _%g _%R. +Arguments Res_Iirr {gT A%g} B%g i%R. Section MoreConstt. @@ -1870,7 +1870,7 @@ Proof. by apply/eqP; rewrite isom_Iirr_eq0. Qed. End Isom. -Arguments isom_Iirr_inj [aT rT G f R] isoGR [x1 x2]. +Arguments isom_Iirr_inj {aT rT G f R} isoGR [i1 i2] : rename. Section IsomInv. @@ -1938,7 +1938,7 @@ Qed. End Sdprod. -Arguments sdprod_Iirr_inj [gT K H G] defG [x1 x2]. +Arguments sdprod_Iirr_inj {gT K H G} defG [i1 i2] : rename. Section DProd. @@ -2089,7 +2089,7 @@ Proof. by apply/(canLR dprod_IirrK); rewrite dprod_Iirr0. Qed. End DProd. -Arguments dprod_Iirr_inj [gT G K H] KxH [x1 x2]. +Arguments dprod_Iirr_inj {gT G K H} KxH [i1 i2] : rename. Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT}) (KxH : K \x H = G) (HxK : H \x K = G) i j : @@ -2257,7 +2257,7 @@ Qed. End Aut. -Arguments aut_Iirr_inj [gT G] u [x1 x2]. +Arguments aut_Iirr_inj {gT G} u [i1 i2] : rename. Section Coset. @@ -2993,4 +2993,4 @@ Proof. by move/cfker_Ind->; rewrite ?irr_neq0 ?irr_char. Qed. End Induced. -Arguments Ind_Iirr _ _%g _%g _%R.
\ No newline at end of file +Arguments Ind_Iirr {gT A%g} B%g i%R. diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index ac3e5bc..7b2b90d 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -392,14 +392,13 @@ End Defs. Bind Scope cfun_scope with classfun. -Arguments classfun _ _%g. -Arguments classfun_on _ _%g _%g. -Arguments cfun_indicator _ _%g. -Arguments cfAut _ _%g _ _%CF. -Arguments cfReal _ _%g _%CF. -Arguments cfdot _ _%g _%CF _%CF. -Arguments cfdotr_head _ _%g _ _%CF _%CF. -Arguments cfdotr_head _ _%g _ _%CF. +Arguments classfun {gT} B%g. +Arguments classfun_on {gT} B%g A%g. +Arguments cfun_indicator {gT} B%g. +Arguments cfAut {gT B%g} u phi%CF. +Arguments cfReal {gT B%g} phi%CF. +Arguments cfdot {gT B%g} phi%CF psi%CF. +Arguments cfdotr_head {gT B%g} k psi%CF phi%CF. Notation "''CF' ( G )" := (classfun G) : type_scope. Notation "''CF' ( G )" := (@fullv _ (cfun_vectType G)) : vspace_scope. @@ -452,12 +451,12 @@ End Predicates. (* Outside section so the nosimpl does not get "cooked" out. *) Definition orthogonal gT D S1 S2 := nosimpl (@ortho_rec gT D S1 S2). -Arguments cfker _ _%g _%CF. -Arguments cfaithful _ _%g _%CF. -Arguments orthogonal _ _%g _%CF _%CF. -Arguments pairwise_orthogonal _ _%g _%CF. -Arguments orthonormal _ _%g _%CF. -Arguments isometry _ _ _%g _%g _%CF. +Arguments cfker {gT D%g} phi%CF. +Arguments cfaithful {gT D%g} phi%CF. +Arguments orthogonal {gT D%g} S1%CF S2%CF. +Arguments pairwise_orthogonal {gT D%g} S%CF. +Arguments orthonormal {gT D%g} S%CF. +Arguments isometry {gT rT D%g R%g} tau%CF. Notation "{ 'in' CFD , 'isometry' tau , 'to' CFR }" := (isometry_from_to (mem CFD) tau (mem CFR)) @@ -756,7 +755,7 @@ Proof. by []. Qed. End ClassFun. -Arguments classfun_on _ _%g _%g. +Arguments classfun_on {gT} B%g A%g. Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope. Arguments cfun_onP {gT G A phi}. @@ -1394,7 +1393,7 @@ Canonical cfRes_lrmorphism := [lrmorphism of cfRes]. End Restrict. -Arguments cfRes _ _%g _%g _%CF. +Arguments cfRes {gT} A%g {B%g} phi%CF. Notation "''Res[' H , G ]" := (@cfRes _ H G) (only parsing) : ring_scope. Notation "''Res[' H ]" := 'Res[H, _] : ring_scope. Notation "''Res'" := 'Res[_] (only parsing) : ring_scope. @@ -1621,7 +1620,7 @@ Proof. exact: cforder_inj_rmorph cfIsom_inj. Qed. End InvMorphism. -Arguments cfIsom_inj [aT rT G f R] isoGR [x1 x2]. +Arguments cfIsom_inj {aT rT G f R} isoGR [phi1 phi2] : rename. Section Coset. @@ -1727,9 +1726,8 @@ Proof. by move=> nsBG kerH; rewrite -cfMod_eq1 // cfQuoK. Qed. End Coset. -Arguments cfQuo _ _%G _%g _%CF. -Arguments cfMod _ _%G _%g _%CF. -Prenex Implicits cfMod. +Arguments cfQuo {gT G%G} B%g phi%CF. +Arguments cfMod {gT G%G B%g} phi%CF. Notation "phi / H" := (cfQuo H phi) : cfun_scope. Notation "phi %% H" := (@cfMod _ _ H phi) : cfun_scope. @@ -2327,7 +2325,7 @@ Qed. End Induced. -Arguments cfInd _ _%g _%g _%CF. +Arguments cfInd {gT} B%g {A%g} phi%CF. Notation "''Ind[' G , H ]" := (@cfInd _ G H) (only parsing) : ring_scope. Notation "''Ind[' G ]" := 'Ind[G, _] : ring_scope. Notation "''Ind'" := 'Ind[_] (only parsing) : ring_scope. @@ -2489,7 +2487,7 @@ End FieldAutomorphism. Arguments cfAutK u {gT G}. Arguments cfAutVK u {gT G}. -Arguments cfAut_inj u [gT G x1 x2]. +Arguments cfAut_inj u {gT G} [phi1 phi2] : rename. Definition conj_cfRes := cfAutRes conjC. Definition cfker_conjC := cfker_aut conjC. diff --git a/mathcomp/character/inertia.v b/mathcomp/character/inertia.v index ffa9696..80d5cc5 100644 --- a/mathcomp/character/inertia.v +++ b/mathcomp/character/inertia.v @@ -567,9 +567,9 @@ Qed. End Inertia. -Arguments inertia _ _%g _%CF. -Arguments cfclass _ _%g _%CF _%g. -Arguments conjg_Iirr_inj [gT H] y [x1 x2]. +Arguments inertia {gT B%g} phi%CF. +Arguments cfclass {gT A%g} phi%CF B%g. +Arguments conjg_Iirr_inj {gT H} y [i1 i2] : rename. Notation "''I[' phi ] " := (inertia phi) : group_scope. Notation "''I[' phi ] " := (inertia_group phi) : Group_scope. diff --git a/mathcomp/character/integral_char.v b/mathcomp/character/integral_char.v index f0553f2..3c2b0d6 100644 --- a/mathcomp/character/integral_char.v +++ b/mathcomp/character/integral_char.v @@ -157,7 +157,7 @@ Canonical gring_irr_mode_unlockable := [unlockable fun gring_irr_mode]. End GenericClassSums. -Arguments gring_irr_mode _ _%G _%R _%g : extra scopes. +Arguments gring_irr_mode {gT G%G} i%R _%g : extra scopes. Notation "''K_' i" := (gring_class_sum _ i) (at level 8, i at level 2, format "''K_' i") : ring_scope. diff --git a/mathcomp/character/mxabelem.v b/mathcomp/character/mxabelem.v index b121f4c..69055d4 100644 --- a/mathcomp/character/mxabelem.v +++ b/mathcomp/character/mxabelem.v @@ -341,7 +341,7 @@ Proof. by move=> sHG; rewrite gacentE // setTI afix_repr. Qed. End FinFieldRepr. -Arguments rowg_mx _ _ _%g. +Arguments rowg_mx {F n%N} L%g. Notation "''Zm'" := (scale_action _ _ _) (at level 8) : action_scope. Notation "''Zm'" := (scale_groupAction _ _ _) : groupAction_scope. @@ -406,7 +406,7 @@ Open Scope abelem_scope. Definition abelem_dim' (gT : finGroupType) (E : {set gT}) := (logn (pdiv #|E|) #|E|).-1. -Arguments abelem_dim' _ _%g. +Arguments abelem_dim' {gT} E%g. Notation "''dim' E" := (abelem_dim' E).+1 (at level 10, E at level 8, format "''dim' E") : abelem_scope. diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v index 6859168..560b61d 100644 --- a/mathcomp/character/mxrepresentation.v +++ b/mathcomp/character/mxrepresentation.v @@ -814,10 +814,10 @@ End Regular. End RingRepr. -Arguments mx_representation _ _ _%g _%N. -Arguments mx_repr _ _ _%g _%N _. -Arguments group_ring _ _ _%g. -Arguments regular_repr _ _ _%g. +Arguments mx_representation R {gT} G%g n%N. +Arguments mx_repr {R gT} G%g {n%N} r. +Arguments group_ring R {gT} G%g. +Arguments regular_repr R {gT} G%g. Arguments centgmxP {R gT G n rG f}. Arguments rkerP {R gT G n rG x}. @@ -2377,8 +2377,8 @@ Arguments mxsimple_isoP {gT G n rG U V}. Arguments socleP {gT G n rG sG0 W W'}. Arguments mx_abs_irrP {gT G n rG}. -Arguments val_submod_inj {n U m}. -Arguments val_factmod_inj {n U m}. +Arguments val_submod_inj {n U m} [W1 W2] : rename. +Arguments val_factmod_inj {n U m} [W1 W2] : rename. Section Proper. @@ -4652,10 +4652,10 @@ End LinearIrr. End FieldRepr. -Arguments rfix_mx _ _ _%g _%N _ _%g. -Arguments gset_mx _ _ _%g _%g. -Arguments classg_base _ _ _%g _%g : extra scopes. -Arguments irrType _ _ _%g _%g : extra scopes. +Arguments rfix_mx {F gT G%g n%N} rG H%g. +Arguments gset_mx F {gT} G%g A%g. +Arguments classg_base F {gT} G%g _%g : extra scopes. +Arguments irrType F {gT} G%g. Arguments mxmoduleP {F gT G n rG m U}. Arguments envelop_mxP {F gT G n rG A}. @@ -4671,16 +4671,16 @@ Arguments socleP {F gT G n rG sG0 W W'}. Arguments mx_abs_irrP {F gT G n rG}. Arguments socle_rsimP {F gT G n rG sG W1 W2}. -Arguments val_submod_inj {F n U m}. -Arguments val_factmod_inj {F n U m}. +Arguments val_submod_inj {F n U m} [W1 W2] : rename. +Arguments val_factmod_inj {F n U m} [W1 W2] : rename. Notation "'Cl" := (Clifford_action _) : action_scope. Bind Scope irrType_scope with socle_sort. Notation "[ 1 sG ]" := (principal_comp sG) : irrType_scope. -Arguments irr_degree _ _ _%G _ _%irr. -Arguments irr_repr _ _ _%G _ _%irr _%g : extra scopes. -Arguments irr_mode _ _ _%G _ _%irr _%g : extra scopes. +Arguments irr_degree {F gT G%G sG} i%irr. +Arguments irr_repr [F gT G%G sG] i%irr _%g : extra scopes. +Arguments irr_mode [F gT G%G sG] i%irr z%g : rename. Notation "''n_' i" := (irr_degree i) : group_ring_scope. Notation "''R_' i" := (Wedderburn_subring i) : group_ring_scope. Notation "''e_' i" := (Wedderburn_id i) : group_ring_scope. diff --git a/mathcomp/field/algebraics_fundamentals.v b/mathcomp/field/algebraics_fundamentals.v index 8a65f2b..ad2388a 100644 --- a/mathcomp/field/algebraics_fundamentals.v +++ b/mathcomp/field/algebraics_fundamentals.v @@ -260,7 +260,7 @@ Qed. Prenex Implicits alg_integral. Import DefaultKeying GRing.DefaultPred. -Arguments map_poly_inj {F R} f [x1 x2]. +Arguments map_poly_inj {F R} f [p1 p2]. Theorem Fundamental_Theorem_of_Algebraics : {L : closedFieldType & diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v index ca738ef..009c1ae 100644 --- a/mathcomp/field/closed_field.v +++ b/mathcomp/field/closed_field.v @@ -54,18 +54,18 @@ Proof. by split=> /andP[]. Qed. Notation cps T := ((T -> fF) -> fF). Definition ret T1 : T1 -> cps T1 := fun x k => k x. -Arguments ret T1 x k /. +Arguments ret {T1} x k /. Definition bind T1 T2 (x : cps T1) (f : T1 -> cps T2) : cps T2 := fun k => x (fun x => f x k). -Arguments bind T1 T2 x f k /. +Arguments bind {T1 T2} x f k /. Notation "''let' x <- y ; z" := (bind y (fun x => z)) (at level 99, x at level 0, y at level 0, format "'[hv' ''let' x <- y ; '/' z ']'"). Definition cpsif T (c : fF) (t : T) (e : T) : cps T := fun k => GRing.If c (k t) (k e). -Arguments cpsif T c t e k /. +Arguments cpsif {T} c t e k /. Notation "''if' c1 'then' c2 'else' c3" := (cpsif c1%T c2%T c3%T) (at level 200, right associativity, format "'[hv ' ''if' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'"). diff --git a/mathcomp/field/falgebra.v b/mathcomp/field/falgebra.v index 0410e55..7e86d3c 100644 --- a/mathcomp/field/falgebra.v +++ b/mathcomp/field/falgebra.v @@ -620,8 +620,8 @@ End FalgebraTheory. Delimit Scope aspace_scope with AS. Bind Scope aspace_scope with aspace. Bind Scope aspace_scope with aspace_of. -Arguments asval _ _ _%AS. -Arguments clone_aspace _ _ _%VS _%AS _ _. +Arguments asval {K aT} a%AS. +Arguments clone_aspace [K aT U%VS A%AS algU] _. Notation "{ 'aspace' T }" := (aspace_of (Phant T)) : type_scope. Notation "A * B" := (prodv A B) : vspace_scope. diff --git a/mathcomp/fingroup/action.v b/mathcomp/fingroup/action.v index ffea847..9a8032d 100644 --- a/mathcomp/fingroup/action.v +++ b/mathcomp/fingroup/action.v @@ -148,10 +148,10 @@ End ActionDef. (* Need to close the Section here to avoid re-declaring all Argument Scopes *) Delimit Scope action_scope with act. Bind Scope action_scope with action. -Arguments act_morph _ _%g _ _ _%g : extra scopes. -Arguments is_action _ _%g _ _. -Arguments act _ _%g _%type _%act _%g _%g. -Arguments clone_action _ _%g _%type _%act _. +Arguments act_morph {aT rT%type} to x%g. +Arguments is_action {aT} D%g {rT} to. +Arguments act {aT D%g rT%type} to%act x%g a%g : rename. +Arguments clone_action [aT D%g rT%type to%act] _. Notation "{ 'action' aT &-> T }" := (action [set: aT] T) (at level 0, format "{ 'action' aT &-> T }") : type_scope. @@ -210,15 +210,15 @@ Definition faithful A S to := A :&: astab S to \subset [1]. End ActionDefs. -Arguments setact _ _%g _ _%act _%g _%g. -Arguments orbit _ _%g _ _%act _%g _%g. -Arguments amove _ _%g _ _%act _%g _%g _%g. -Arguments afix _ _%g _ _%act _%g. -Arguments astab _ _%g _ _%g _%act. -Arguments astabs _ _%g _ _%g _%act. -Arguments acts_on _ _%g _ _%g _%g _%act. -Arguments atrans _ _%g _ _%g _%g _%act. -Arguments faithful _ _%g _ _%g _%g _%act. +Arguments setact {aT D%g rT} to%act S%g a%g. +Arguments orbit {aT D%g rT} to%act A%g x%g. +Arguments amove {aT D%g rT} to%act A%g x%g y%g. +Arguments afix {aT D%g rT} to%act A%g. +Arguments astab {aT D%g rT} S%g to%act. +Arguments astabs {aT D%g rT} S%g to%act. +Arguments acts_on {aT D%g rT} A%g S%g to%act. +Arguments atrans {aT D%g rT} A%g S%g to%act. +Arguments faithful {aT D%g rT} A%g S%g to%act. Notation "to ^*" := (setact to) (at level 2, format "to ^*") : fun_scope. @@ -482,9 +482,7 @@ End Reindex. End RawAction. -(* Warning: this directive depends on names of bound variables in the *) -(* definition of injective, in ssrfun.v. *) -Arguments act_inj {aT D rT} to _ [x1 x2]. +Arguments act_inj {aT D rT} to a [x1 x2] : rename. Notation "to ^*" := (set_action to) : action_scope. @@ -874,7 +872,7 @@ Qed. End PartialAction. -Arguments orbit_transversal _ _%g _ _%act _%g _%g. +Arguments orbit_transversal {aT D%g rT} to%act A%g S%g. Arguments orbit_in_eqP {aT D rT to G x y}. Arguments orbit1P {aT D rT to G x}. Arguments contra_orbit [aT D rT] to G [x y]. @@ -1741,7 +1739,7 @@ Qed. End AutIn. -Arguments Aut_in _ _%g _%g. +Arguments Aut_in {gT} A%g B%g. Section InjmAutIn. @@ -1818,9 +1816,9 @@ End GroupAction. Delimit Scope groupAction_scope with gact. Bind Scope groupAction_scope with groupAction. -Arguments is_groupAction _ _ _%g _%g _%act. -Arguments groupAction _ _ _%g _%g. -Arguments gact _ _ _%g _%g _%gact. +Arguments is_groupAction {aT rT D%g} R%g to%act. +Arguments groupAction {aT rT} D%g R%g. +Arguments gact {aT rT D%g R%g} to%gact : rename. Notation "[ 'groupAction' 'of' to ]" := (clone_groupAction (@GroupAction _ _ _ _ to)) @@ -1847,9 +1845,9 @@ Definition acts_irreducibly A S to := End GroupActionDefs. -Arguments gacent _ _ _%g _%g _%gact _%g. -Arguments acts_on_group _ _ _%g _%g _%g _%g _%gact. -Arguments acts_irreducibly _ _ _%g _%g _%g _%g _%gact. +Arguments gacent {aT rT D%g R%g} to%gact A%g. +Arguments acts_on_group {aT rT D%g R%g} A%g S%g to%gact. +Arguments acts_irreducibly {aT rT D%g R%g} A%g S%g to%gact. Notation "''C_' ( | to ) ( A )" := (gacent to A) (at level 8, format "''C_' ( | to ) ( A )") : group_scope. @@ -2705,8 +2703,8 @@ Canonical aut_groupAction := GroupAction autact_is_groupAction. End AutAct. -Arguments aut_action _ _%g. -Arguments aut_groupAction _ _%g. +Arguments aut_action {gT} G%g. +Arguments aut_groupAction {gT} G%g. Notation "[ 'Aut' G ]" := (aut_action G) : action_scope. Notation "[ 'Aut' G ]" := (aut_groupAction G) : groupAction_scope. diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v index 1165a33..a68bc9f 100644 --- a/mathcomp/fingroup/fingroup.v +++ b/mathcomp/fingroup/fingroup.v @@ -493,7 +493,7 @@ Qed. End PreGroupIdentities. Hint Resolve commute1. -Arguments invg_inj {T}. +Arguments invg_inj {T} [x1 x2]. Prenex Implicits commute invgK. Section GroupIdentities. @@ -643,7 +643,7 @@ Definition gnorm := (gsimp, (mulgK, mulgKV, (mulgA, invMg))). Arguments mulgI [T]. Arguments mulIg [T]. -Arguments conjg_inj [T]. +Arguments conjg_inj {T} x [x1 x2]. Arguments commgP {T x y}. Arguments conjg_fixP {T x y}. diff --git a/mathcomp/fingroup/quotient.v b/mathcomp/fingroup/quotient.v index 322fc4e..97b2eba 100644 --- a/mathcomp/fingroup/quotient.v +++ b/mathcomp/fingroup/quotient.v @@ -750,8 +750,8 @@ Qed. End EqIso. -Arguments qisom_inj [gT G H]. -Arguments morphim_qisom_inj [gT G H]. +Arguments qisom_inj {gT G H} eqGH [x1 x2]. +Arguments morphim_qisom_inj {gT G H} eqGH [x1 x2]. Section FirstIsomorphism. diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 5f1a013..746898f 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -111,16 +111,16 @@ Definition gen_rank A := #|[arg min_(B < A | <<B>> == A) #|B|]|. End AbelianDefs. -Arguments exponent _ _%g. -Arguments abelem _ _%N _%g. -Arguments is_abelem _ _%g. -Arguments pElem _ _%N _%g. -Arguments pnElem _ _%N _%N _%g. -Arguments nElem _ _%N _%g. -Arguments pmaxElem _ _%N _%g. -Arguments p_rank _ _%N _%g. -Arguments rank _ _%g. -Arguments gen_rank _ _%g. +Arguments exponent {gT} A%g. +Arguments abelem {gT} p%N A%g. +Arguments is_abelem {gT} A%g. +Arguments pElem {gT} p%N A%g. +Arguments pnElem {gT} p%N n%N A%g. +Arguments nElem {gT} n%N A%g. +Arguments pmaxElem {gT} p%N A%g. +Arguments p_rank {gT} p%N A%g. +Arguments rank {gT} A%g. +Arguments gen_rank {gT} A%g. Notation "''Ldiv_' n ()" := (Ldiv _ n) (at level 8, n at level 2, format "''Ldiv_' n ()") : group_scope. @@ -192,10 +192,10 @@ Qed. End Functors. -Arguments Ohm _%N _ _%g. -Arguments Ohm_group _%N _ _%g. -Arguments Mho _%N _ _%g. -Arguments Mho_group _%N _ _%g. +Arguments Ohm n%N {gT} A%g. +Arguments Ohm_group n%N {gT} A%g. +Arguments Mho n%N {gT} A%g. +Arguments Mho_group n%N {gT} A%g. Arguments OhmPredP {n gT x}. Notation "''Ohm_' n ( G )" := (Ohm n G) @@ -2023,8 +2023,8 @@ Qed. End AbelianStructure. -Arguments abelian_type {_} _%g. -Arguments homocyclic {_} _%g. +Arguments abelian_type {gT} A%g. +Arguments homocyclic {gT} A%g. Section IsogAbelian. diff --git a/mathcomp/solvable/burnside_app.v b/mathcomp/solvable/burnside_app.v index 1c804cc..10cbbaa 100644 --- a/mathcomp/solvable/burnside_app.v +++ b/mathcomp/solvable/burnside_app.v @@ -26,7 +26,7 @@ rewrite big_uniq // -(card_uniqP Us) (eq_card sG) -Frobenius_Cauchy. by apply/actsP=> ? _ ?; rewrite !inE. Qed. -Arguments burnside_formula [gT]. +Arguments burnside_formula {gT}. Section colouring. diff --git a/mathcomp/solvable/center.v b/mathcomp/solvable/center.v index 98434ba..88774db 100644 --- a/mathcomp/solvable/center.v +++ b/mathcomp/solvable/center.v @@ -56,11 +56,11 @@ Canonical center_group (G : {group gT}) : {group gT} := End Defs. -Arguments center _ _%g. +Arguments center {gT} A%g. Notation "''Z' ( A )" := (center A) : group_scope. Notation "''Z' ( H )" := (center_group H) : Group_scope. -Lemma morphim_center : GFunctor.pcontinuous center. +Lemma morphim_center : GFunctor.pcontinuous (@center). Proof. by move=> gT rT G D f; apply: morphim_subcent. Qed. Canonical center_igFun := [igFun by fun _ _ => subsetIl _ _ & morphim_center]. diff --git a/mathcomp/solvable/commutator.v b/mathcomp/solvable/commutator.v index dcd53ce..7895116 100644 --- a/mathcomp/solvable/commutator.v +++ b/mathcomp/solvable/commutator.v @@ -33,7 +33,7 @@ Definition derived_at_rec n (gT : finGroupType) (A : {set gT}) := (* "cooking" destroys it. *) Definition derived_at := nosimpl derived_at_rec. -Arguments derived_at _%N _ _%g. +Arguments derived_at n%N {gT} A%g. Notation "G ^` ( n )" := (derived_at n G) : group_scope. Section DerivedBasics. @@ -354,7 +354,7 @@ End Commutator_properties. Arguments derG1P {gT G}. -Lemma der_cont n : GFunctor.continuous (derived_at n). +Lemma der_cont n : GFunctor.continuous (@derived_at n). Proof. by move=> aT rT G f; rewrite morphim_der. Qed. Canonical der_igFun n := [igFun by der_sub^~ n & der_cont n]. diff --git a/mathcomp/solvable/cyclic.v b/mathcomp/solvable/cyclic.v index 046f4a2..e370a7e 100644 --- a/mathcomp/solvable/cyclic.v +++ b/mathcomp/solvable/cyclic.v @@ -289,9 +289,9 @@ Proof. by rewrite /order => /(<[a]> =P _)->. Qed. End Cyclic. -Arguments cyclic {_} _%g. -Arguments generator {_}_%g _%g. -Arguments expg_invn {_} _%g _%N. +Arguments cyclic {gT} A%g. +Arguments generator {gT} A%g a%g. +Arguments expg_invn {gT} A%g k%N. Arguments cyclicP {gT A}. Prenex Implicits cyclic Zpm. @@ -556,7 +556,7 @@ Qed. End Metacyclic. -Arguments metacyclic {_} _%g. +Arguments metacyclic {gT} A%g. Arguments metacyclicP {gT A}. (* Automorphisms of cyclic groups. *) diff --git a/mathcomp/solvable/frobenius.v b/mathcomp/solvable/frobenius.v index f7edfc9..01ba8f3 100644 --- a/mathcomp/solvable/frobenius.v +++ b/mathcomp/solvable/frobenius.v @@ -98,15 +98,15 @@ Variant has_Frobenius_action G H : Prop := End Definitions. -Arguments semiregular _ _%g _%g. -Arguments semiprime _ _%g _%g. -Arguments normedTI _ _%g _%g _%g. -Arguments Frobenius_group_with_complement _ _%g _%g. -Arguments Frobenius_group _ _%g. -Arguments Frobenius_group_with_kernel _ _%g _%g. -Arguments Frobenius_group_with_kernel_and_complement _ _%g _%g _%g. -Arguments Frobenius_action _ _%g _%g _ _%g _%act. -Arguments has_Frobenius_action _ _%g _%g. +Arguments semiregular {gT} K%g H%g. +Arguments semiprime {gT} K%g H%g. +Arguments normedTI {gT} A%g G%g L%g. +Arguments Frobenius_group_with_complement {gT} G%g H%g. +Arguments Frobenius_group {gT} G%g. +Arguments Frobenius_group_with_kernel {gT} G%g K%g. +Arguments Frobenius_group_with_kernel_and_complement {gT} G%g K%g H%g. +Arguments Frobenius_action {gT} G%g H%g {sT} S%g to%act. +Arguments has_Frobenius_action {gT} G%g H%g. Notation "[ 'Frobenius' G 'with' 'complement' H ]" := (Frobenius_group_with_complement G H) diff --git a/mathcomp/solvable/gseries.v b/mathcomp/solvable/gseries.v index a1830b9..3e99bfb 100644 --- a/mathcomp/solvable/gseries.v +++ b/mathcomp/solvable/gseries.v @@ -71,16 +71,16 @@ Definition simple A := minnormal A A. Definition chief_factor A V U := maxnormal V U A && (U <| A). End GroupDefs. -Arguments subnormal {_} _%g _%g. -Arguments invariant_factor _ _%g _%g _%g. -Arguments stable_factor _ _%g _%g _%g. -Arguments central_factor _ _%g _%g _%g. -Arguments maximal {_} _%g _%g. -Arguments maximal_eq _ _%g _%g. -Arguments maxnormal _ _%g _%g _%g. -Arguments minnormal _ _%g _%g. -Arguments simple {_} _%g. -Arguments chief_factor _ _%g _%g _%g. +Arguments subnormal {gT} A%g B%g. +Arguments invariant_factor {gT} A%g B%g C%g. +Arguments stable_factor {gT} A%g V%g U%g. +Arguments central_factor {gT} A%g V%g U%g. +Arguments maximal {gT} A%g B%g. +Arguments maximal_eq {gT} A%g B%g. +Arguments maxnormal {gT} A%g B%g U%g. +Arguments minnormal {gT} A%g B%g. +Arguments simple {gT} A%g. +Arguments chief_factor {gT} A%g V%g U%g. Notation "H <|<| G" := (subnormal H G) (at level 70, no associativity) : group_scope. @@ -94,7 +94,7 @@ Notation "A .-central" := (central_factor A) Notation "G .-chief" := (chief_factor G) (at level 2, format "G .-chief") : group_rel_scope. -Arguments group_rel_of _ _%group_rel_scope _%G _%G : extra scopes. +Arguments group_rel_of {gT} r%group_rel_scope _%G _%G : extra scopes. Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r))) (at level 2, format "r .-series") : group_scope. diff --git a/mathcomp/solvable/jordanholder.v b/mathcomp/solvable/jordanholder.v index 91cc709..bda66bd 100644 --- a/mathcomp/solvable/jordanholder.v +++ b/mathcomp/solvable/jordanholder.v @@ -475,8 +475,8 @@ Qed. End StableCompositionSeries. -Arguments maxainv _ _ _%G _%G _%gact _%g _%g. -Arguments asimple _ _ _%G _%G _%gact _%g. +Arguments maxainv {aT rT D%G A%G} to%gact B%g C%g. +Arguments asimple {aT rT D%G A%G} to%gact K%g. Section StrongJordanHolder. diff --git a/mathcomp/solvable/maximal.v b/mathcomp/solvable/maximal.v index 5f7a9ed..781abbe 100644 --- a/mathcomp/solvable/maximal.v +++ b/mathcomp/solvable/maximal.v @@ -102,16 +102,14 @@ Definition SCN_at n B := [set A in SCN B | n <= 'r(A)]. End Defs. -Arguments charsimple _ _%g. -Arguments Frattini _ _%g. -Arguments Fitting _ _%g. -Arguments critical _ _%g _%g. -Arguments special _ _%g. -Arguments extraspecial _ _%g. -Arguments SCN _ _%g. -Arguments SCN_at _ _%N _%g. - -Prenex Implicits maximal simple charsimple critical special extraspecial. +Arguments charsimple {gT} A%g. +Arguments Frattini {gT} A%g. +Arguments Fitting {gT} A%g. +Arguments critical {gT} A%g B%g. +Arguments special {gT} A%g. +Arguments extraspecial {gT} A%g. +Arguments SCN {gT} B%g. +Arguments SCN_at {gT} n%N B%g. Notation "''Phi' ( A )" := (Frattini A) (at level 8, format "''Phi' ( A )") : group_scope. @@ -459,7 +457,7 @@ Section FittingFun. Implicit Types gT rT : finGroupType. -Lemma morphim_Fitting : GFunctor.pcontinuous Fitting. +Lemma morphim_Fitting : GFunctor.pcontinuous (@Fitting). Proof. move=> gT rT G D f; apply: Fitting_max. by rewrite morphim_normal ?Fitting_normal. diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v index d631919..aee3113 100644 --- a/mathcomp/solvable/nilpotent.v +++ b/mathcomp/solvable/nilpotent.v @@ -52,8 +52,8 @@ Definition lower_central_at n := lower_central_at_rec n.-1. (* "cooking" destroys it. *) Definition upper_central_at := nosimpl upper_central_at_rec. -Arguments lower_central_at _%N _ _%g. -Arguments upper_central_at _%N _ _%g. +Arguments lower_central_at n%N {gT} A%g. +Arguments upper_central_at n%N {gT} A%g. Notation "''L_' n ( G )" := (lower_central_at n G) (at level 8, n at level 2, format "''L_' n ( G )") : group_scope. @@ -75,9 +75,9 @@ Definition solvable := End PropertiesDefs. -Arguments nilpotent {_} _%g. -Arguments nil_class {_} _%g. -Arguments solvable {_} _%g. +Arguments nilpotent {gT} A%g. +Arguments nil_class {gT} A%g. +Arguments solvable {gT} A%g. Section NilpotentProps. @@ -320,7 +320,7 @@ End LowerCentral. Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope. -Lemma lcn_cont n : GFunctor.continuous (lower_central_at n). +Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n). Proof. case: n => //; elim=> // n IHn g0T h0T H phi. by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn. @@ -338,7 +338,7 @@ Implicit Type gT : finGroupType. Lemma ucn_pmap : exists hZ : GFunctor.pmap, @upper_central_at n = hZ. Proof. elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun. -by exists [pgFun of center %% hZ]; rewrite /= -defZ. +by exists [pgFun of @center %% hZ]; rewrite /= -defZ. Qed. (* Now extract all the intermediate facts of the last proof. *) @@ -351,7 +351,7 @@ Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G). Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G. Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed. -Lemma morphim_ucn : GFunctor.pcontinuous (upper_central_at n). +Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n). Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed. Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn]. diff --git a/mathcomp/solvable/pgroup.v b/mathcomp/solvable/pgroup.v index 6c02e7b..d62154f 100644 --- a/mathcomp/solvable/pgroup.v +++ b/mathcomp/solvable/pgroup.v @@ -83,15 +83,15 @@ Definition Sylow A B := p_group B && Hall A B. End PgroupDefs. -Arguments pgroup {_} _%N _%g. -Arguments psubgroup _ _%N _%g _%g. -Arguments p_group _ _%g. -Arguments p_elt _ _%N. -Arguments constt _ _%g _%N. -Arguments Hall {_} _%g _%g. -Arguments pHall _ _%N _%g _%g. -Arguments Syl _ _%N _%g. -Arguments Sylow {_} _%g _%g. +Arguments pgroup {gT} pi%N A%g. +Arguments psubgroup {gT} pi%N A%g B%g. +Arguments p_group {gT} A%g. +Arguments p_elt {gT} pi%N x. +Arguments constt {gT} x%g pi%N. +Arguments Hall {gT} A%g B%g. +Arguments pHall {gT} pi%N A%g B%g. +Arguments Syl {gT} p%N A%g. +Arguments Sylow {gT} A%g B%g. Notation "pi .-group" := (pgroup pi) (at level 2, format "pi .-group") : group_scope. @@ -861,8 +861,8 @@ Canonical pcore_group : {group gT} := Eval hnf in [group of pcore]. End PcoreDef. -Arguments pcore _ _%N _%g. -Arguments pcore_group _ _%N _%G. +Arguments pcore pi%N {gT} A%g. +Arguments pcore_group pi%N {gT} A%G. Notation "''O_' pi ( G )" := (pcore pi G) (at level 8, pi at level 2, format "''O_' pi ( G )") : group_scope. Notation "''O_' pi ( G )" := (pcore_group pi G) : Group_scope. @@ -884,7 +884,7 @@ Canonical pseries_group : {group gT} := group pseries_group_set. End PseriesDefs. -Arguments pseries _ _%SEQ _%g. +Arguments pseries pis%SEQ {gT} _%g. Local Notation ConsPred p := (@Cons nat_pred p%N) (only parsing). Notation "''O_{' p1 , .. , pn } ( A )" := (pseries (ConsPred p1 .. (ConsPred pn [::]) ..) A) @@ -977,7 +977,7 @@ Section MorphPcore. Implicit Types (pi : nat_pred) (gT rT : finGroupType). -Lemma morphim_pcore pi : GFunctor.pcontinuous (pcore pi). +Lemma morphim_pcore pi : GFunctor.pcontinuous (@pcore pi). Proof. move=> gT rT D G f; apply/bigcapsP=> M /normal_sub_max_pgroup; apply. by rewrite morphim_pgroup ?pcore_pgroup. @@ -1054,7 +1054,7 @@ Lemma pseries_rcons pi pis gT (A : {set gT}) : Proof. by rewrite /pseries rev_rcons. Qed. Lemma pseries_subfun pis : - GFunctor.closed (pseries pis) /\ GFunctor.pcontinuous (pseries pis). + GFunctor.closed (@pseries pis) /\ GFunctor.pcontinuous (@pseries pis). Proof. elim/last_ind: pis => [|pis pi [sFpi fFpi]]. by split=> [gT G | gT rT D G f]; rewrite (sub1G, morphim1). @@ -1064,13 +1064,13 @@ split=> [gT G | gT rT D G f]; rewrite !pseries_rcons ?(pcore_mod_sub F) //. exact: (morphim_pcore_mod F). Qed. -Lemma pseries_sub pis : GFunctor.closed (pseries pis). +Lemma pseries_sub pis : GFunctor.closed (@pseries pis). Proof. by case: (pseries_subfun pis). Qed. -Lemma morphim_pseries pis : GFunctor.pcontinuous (pseries pis). +Lemma morphim_pseries pis : GFunctor.pcontinuous (@pseries pis). Proof. by case: (pseries_subfun pis). Qed. -Lemma pseriesS pis : GFunctor.hereditary (pseries pis). +Lemma pseriesS pis : GFunctor.hereditary (@pseries pis). Proof. exact: (morphim_pseries pis). Qed. Canonical pseries_igFun pis := [igFun by pseries_sub pis & morphim_pseries pis]. @@ -1149,7 +1149,7 @@ apply: (quotient_inj nH2H). by apply/andP; rewrite /= -cats1 pseries_sub_catl pseries_norm2. rewrite /= quotient_pseries /= -IHpi -rcons_cat. rewrite -[G / _ / _](morphim_invm inj_f) //= {2}im_f //. -rewrite -(@injmF [igFun of pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries. +rewrite -(@injmF [igFun of @pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries. by rewrite -im_f ?morphim_invm ?morphimS ?normal_sub. Qed. diff --git a/mathcomp/solvable/primitive_action.v b/mathcomp/solvable/primitive_action.v index 58a5f20..fa27e75 100644 --- a/mathcomp/solvable/primitive_action.v +++ b/mathcomp/solvable/primitive_action.v @@ -43,14 +43,12 @@ Definition primitive := End PrimitiveDef. -Arguments imprimitivity_system _ _ _%g _%g _%act _%g. -Arguments primitive _ _ _%g _%g _%act. +Arguments imprimitivity_system {aT sT} A%g S%g to%act Q%g. +Arguments primitive {aT sT} A%g S%g to%act. Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to) (at level 0, format "[ 'primitive' A , 'on' S | to ]") : form_scope. -Prenex Implicits imprimitivity_system. - Section Primitive. Variables (aT : finGroupType) (sT : finType). @@ -183,9 +181,9 @@ Qed. End NTransitive. -Arguments dtuple_on _ _%N _%g. -Arguments ntransitive _ _ _%N _%g _%g _%act. -Arguments n_act [gT sT] _ [n]. +Arguments dtuple_on {sT} n%N S%g. +Arguments ntransitive {gT sT} n%N A%g S%g to%act. +Arguments n_act {gT sT} to {n} t a. Notation "n .-dtuple ( S )" := (dtuple_on n S) (at level 8, format "n .-dtuple ( S )") : set_scope. diff --git a/mathcomp/solvable/sylow.v b/mathcomp/solvable/sylow.v index f940ec9..a428c0d 100644 --- a/mathcomp/solvable/sylow.v +++ b/mathcomp/solvable/sylow.v @@ -535,7 +535,7 @@ Qed. End Zgroups. -Arguments Zgroup {_} _%g. +Arguments Zgroup {gT} A%g. Section NilPGroups. diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 4487ab4..7473ed7 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -460,7 +460,7 @@ Notation "x |-> y" := (FunDelta x y) format "'[hv' x '/ ' |-> y ']'") : fun_delta_scope. Delimit Scope fun_delta_scope with FUN_DELTA. -Arguments app_fdelta _ _%type _%FUN_DELTA _ _. +Arguments app_fdelta {aT rT%type} df%FUN_DELTA f z. Notation "[ 'fun' z : T => F 'with' d1 , .. , dn ]" := (SimplFunDelta (fun z : T => @@ -603,7 +603,7 @@ Arguments vrefl_rect {T P}. Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. Arguments insub {T P sT}. Arguments insubT [T] P [sT x]. -Arguments val_inj {T P sT}. +Arguments val_inj {T P sT} [x1 x2]. Prenex Implicits val insubd. Local Notation inlined_sub_rect := @@ -779,7 +779,7 @@ Proof. by case/andP. Qed. End ProdEqType. -Arguments pair_eq {T1 T2} _ _ /. +Arguments pair_eq {T1 T2} u v /. Arguments pair_eqP {T1 T2}. Definition predX T1 T2 (p1 : pred T1) (p2 : pred T2) := @@ -805,7 +805,7 @@ Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin. End OptionEqType. -Arguments opt_eq {T} !_ !_. +Arguments opt_eq {T} !u !v. Section TaggedAs. @@ -851,7 +851,7 @@ Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed. End TagEqType. -Arguments tag_eq {I T_} !_ !_. +Arguments tag_eq {I T_} !u !v. Arguments tag_eqP {I T_ x y}. Section SumEqType. @@ -875,5 +875,5 @@ Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed. End SumEqType. -Arguments sum_eq {T1 T2} !_ !_. +Arguments sum_eq {T1 T2} !u !v. Arguments sum_eqP {T1 T2 x y}. diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v index 3fd10fa..4ad02c6 100644 --- a/mathcomp/ssreflect/finset.v +++ b/mathcomp/ssreflect/finset.v @@ -130,7 +130,7 @@ Delimit Scope set_scope with SET. Bind Scope set_scope with set_type. Bind Scope set_scope with set_of. Open Scope set_scope. -Arguments finfun_of_set _ _%SET. +Arguments finfun_of_set {T} A%SET. Notation "{ 'set' T }" := (set_of (Phant T)) (at level 0, format "{ 'set' T }") : type_scope. @@ -955,7 +955,7 @@ Proof. by rewrite setDE disjoints_subset => /properI/andP[-> /proper_sub]. Qed. End setOps. Arguments set1P {T x a}. -Arguments set1_inj {T}. +Arguments set1_inj {T} [x1 x2]. Arguments set2P {T x a b}. Arguments setIdP {T x pA pB}. Arguments setIP {T x A B}. diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index 4b2952f..d4f564f 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -1760,7 +1760,7 @@ Qed. End EnumRank. -Arguments enum_val_inj {T A} [x1 x2]. +Arguments enum_val_inj {T A} [i1 i2] : rename. Arguments enum_rank_inj {T} [x1 x2]. Prenex Implicits enum_val enum_rank. diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index b24da11..b8388f0 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -174,7 +174,7 @@ Qed. Canonical nat_eqMixin := EqMixin eqnP. Canonical nat_eqType := Eval hnf in EqType nat nat_eqMixin. -Arguments eqn !_ !_. +Arguments eqn !m !n. Arguments eqnP {x y}. Lemma eqnE : eqn = eq_op. Proof. by []. Qed. @@ -1454,7 +1454,7 @@ Qed. Canonical bin_nat_eqMixin := EqMixin eq_binP. Canonical bin_nat_eqType := Eval hnf in EqType N bin_nat_eqMixin. -Arguments N.eqb !_ !_. +Arguments N.eqb !n !m. Section NumberInterpretation. |
