diff options
| author | Enrico Tassi | 2015-07-30 13:18:33 +0200 |
|---|---|---|
| committer | Enrico Tassi | 2015-07-30 13:18:33 +0200 |
| commit | e9163a8339e8c820a127a4a383b0c9427b11cc2a (patch) | |
| tree | 4bc734463568e37f0c93a8098c5649a542dd1059 /mathcomp | |
| parent | d4deb121ee3c9ecfbc202f2c6cf339a0b3365425 (diff) | |
fix trunk compilation
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/ssreflect/Makefile.detect-coq-version | 9 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.ml4 | 6164 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.mllib | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.ml4 | 1290 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.mli | 239 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.ml4 | 6164 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.mllib | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.ml4 | 1290 | ||||
| -rw-r--r-- | mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.mli | 239 |
9 files changed, 9 insertions, 15390 deletions
diff --git a/mathcomp/ssreflect/Makefile.detect-coq-version b/mathcomp/ssreflect/Makefile.detect-coq-version index 7f2202d..2160e36 100644 --- a/mathcomp/ssreflect/Makefile.detect-coq-version +++ b/mathcomp/ssreflect/Makefile.detect-coq-version @@ -1,5 +1,12 @@ +BRANCH_coq = $(shell $(COQBIN)coqtop -v | head -1 | grep trunk \ + | wc -l | sed 's/ *//g') + +ifneq "$(BRANCH_coq)" "0" +BRANCH_coq = trunk +else BRANCH_coq = $(shell $(COQBIN)coqtop -v | head -1 \ | sed 's/.*version \([0-9]\.[0-9]\)[^ ]* .*/v\1/') +endif HASH_coq = $(shell echo Quit. | $(COQBIN)coqtop 2>&1 | head -1 \ | sed 's/^.*(\([a-f0-9]*\)).*/\1/' ) @@ -10,7 +17,9 @@ HASH_coq_v85beta2 = 94afd8996251c30d2188a75934487009538e1303 V=$(BRANCH_coq) ifeq "$(HASH_coq)" "$(HASH_coq_v85beta1)" V=v8.5beta1 +$(error "$(V) not supported: From X Require Y does not find X.Z.Y, use 8.4 or 8.5 > beta2") endif ifeq "$(HASH_coq)" "$(HASH_coq_v85beta2)" V=v8.5beta2 +$(error "$(V) not supported: From X Require Y does not find X.Z.Y (in coqdep), use 8.4 or 8.5 > beta2") endif diff --git a/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.ml4 b/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.ml4 deleted file mode 100644 index f598c21..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.ml4 +++ /dev/null @@ -1,6164 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -(* This line is read by the Makefile's dist target: do not remove. *) -DECLARE PLUGIN "ssreflect" -let ssrversion = "1.5";; -let ssrAstVersion = 1;; -let () = Mltop.add_known_plugin (fun () -> - if Flags.is_verbose () && not !Flags.batch_mode then begin - Printf.printf "\nSmall Scale Reflection version %s loaded.\n" ssrversion; - Printf.printf "Copyright 2005-2014 Microsoft Corporation and INRIA.\n"; - Printf.printf "Distributed under the terms of the CeCILL-B license.\n\n" - end; - (* Disable any semantics associated with bullets *) - Goptions.set_string_option_value_gen - (Some false) ["Bullet";"Behavior"] "None") - "ssreflect" -;; - -(* Defining grammar rules with "xx" in it automatically declares keywords too, - * we thus save the lexer to restore it at the end of the file *) -let frozen_lexer = Lexer.freeze () ;; - -(*i camlp4use: "pa_extend.cmo" i*) -(*i camlp4deps: "grammar/grammar.cma" i*) - -open Names -open Pp -open Pcoq -open Genarg -open Stdarg -open Constrarg -open Term -open Vars -open Context -open Topconstr -open Libnames -open Tactics -open Tacticals -open Termops -open Namegen -open Recordops -open Tacmach -open Coqlib -open Glob_term -open Util -open Evd -open Extend -open Goptions -open Tacexpr -open Tacinterp -open Pretyping -open Constr -open Tactic -open Extraargs -open Ppconstr -open Printer - -open Globnames -open Misctypes -open Decl_kinds -open Evar_kinds -open Constrexpr -open Constrexpr_ops -open Notation_term -open Notation_ops -open Locus -open Locusops - -open Ssrmatching - - -(* Tentative patch from util.ml *) - -let array_fold_right_from n f v a = - let rec fold n = - if n >= Array.length v then a else f v.(n) (fold (succ n)) - in - fold n - -let array_app_tl v l = - if Array.length v = 0 then invalid_arg "array_app_tl"; - array_fold_right_from 1 (fun e l -> e::l) v l - -let array_list_of_tl v = - if Array.length v = 0 then invalid_arg "array_list_of_tl"; - array_fold_right_from 1 (fun e l -> e::l) v [] - -(* end patch *) - -module Intset = Evar.Set - -type loc = Loc.t -let dummy_loc = Loc.ghost -let errorstrm = Errors.errorlabstrm "ssreflect" -let loc_error loc msg = Errors.user_err_loc (loc, msg, str msg) -let anomaly s = Errors.anomaly (str s) - -(** look up a name in the ssreflect internals module *) -let ssrdirpath = make_dirpath [id_of_string "ssreflect"] -let ssrqid name = make_qualid ssrdirpath (id_of_string name) -let ssrtopqid name = make_short_qualid (id_of_string name) -let locate_reference qid = - Smartlocate.global_of_extended_global (Nametab.locate_extended qid) -let mkSsrRef name = - try locate_reference (ssrqid name) with Not_found -> - try locate_reference (ssrtopqid name) with Not_found -> - Errors.error "Small scale reflection library not loaded" -let mkSsrRRef name = GRef (dummy_loc, mkSsrRef name,None), None -let mkSsrConst name env sigma = - Evd.fresh_global env sigma (mkSsrRef name) -let pf_mkSsrConst name gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, t = mkSsrConst name env sigma in - t, re_sig it sigma -let pf_fresh_global name gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma,t = Evd.fresh_global env sigma name in - t, re_sig it sigma - -(** Ssreflect load check. *) - -(* To allow ssrcoq to be fully compatible with the "plain" Coq, we only *) -(* turn on its incompatible features (the new rewrite syntax, and the *) -(* reserved identifiers) when the theory library (ssreflect.v) has *) -(* has actually been required, or is being defined. Because this check *) -(* needs to be done often (for each identifier lookup), we implement *) -(* some caching, repeating the test only when the environment changes. *) -(* We check for protect_term because it is the first constant loaded; *) -(* ssr_have would ultimately be a better choice. *) -let ssr_loaded = Summary.ref ~name:"SSR:loaded" false -let is_ssr_loaded () = - !ssr_loaded || - (if Lexer.is_keyword "SsrSyntax_is_Imported" then ssr_loaded:=true; - !ssr_loaded) - -(* 0 cost pp function. Active only if env variable SSRDEBUG is set *) -(* or if SsrDebug is Set *) -let pp_ref = ref (fun _ -> ()) -let ssr_pp s = pperrnl (str"SSR: "++Lazy.force s) -let _ = try ignore(Sys.getenv "SSRDEBUG"); pp_ref := ssr_pp with Not_found -> () -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect debugging"; - Goptions.optkey = ["SsrDebug"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !pp_ref == ssr_pp); - Goptions.optwrite = (fun b -> - Ssrmatching.debug b; - if b then pp_ref := ssr_pp else pp_ref := fun _ -> ()) } -let pp s = !pp_ref s - -(** Utils {{{ *****************************************************************) -let env_size env = List.length (Environ.named_context env) -let safeDestApp c = - match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |] -let get_index = function ArgArg i -> i | _ -> - anomaly "Uninterpreted index" -(* Toplevel constr must be globalized twice ! *) -let glob_constr ist genv = function - | _, Some ce -> - let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in - let ltacvars = { - Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in - Constrintern.intern_gen WithoutTypeConstraint ~ltacvars genv ce - | rc, None -> rc - -(* Term printing utilities functions for deciding bracketing. *) -let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")") -(* String lexing utilities *) -let skip_wschars s = - let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop -let skip_numchars s = - let rec loop i = match s.[i] with '0'..'9' -> loop (i + 1) | _ -> i in loop -(* We also guard characters that might interfere with the ssreflect *) -(* tactic syntax. *) -let guard_term ch1 s i = match s.[i] with - | '(' -> false - | '{' | '/' | '=' -> true - | _ -> ch1 = '(' -(* The call 'guard s i' should return true if the contents of s *) -(* starting at i need bracketing to avoid ambiguities. *) -let pr_guarded guard prc c = - msg_with Format.str_formatter (prc c); - let s = Format.flush_str_formatter () ^ "$" in - if guard s (skip_wschars s 0) then pr_paren prc c else prc c -(* More sensible names for constr printers *) -let prl_constr = pr_lconstr -let pr_constr = pr_constr -let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c -let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c -let prl_constr_expr = pr_lconstr_expr -let pr_constr_expr = pr_constr_expr -let prl_glob_constr_and_expr = function - | _, Some c -> prl_constr_expr c - | c, None -> prl_glob_constr c -let pr_glob_constr_and_expr = function - | _, Some c -> pr_constr_expr c - | c, None -> pr_glob_constr c -let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c -let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c - -(** Adding a new uninterpreted generic argument type *) -let add_genarg tag pr = - let wit = Genarg.make0 None tag in - let glob ist x = (ist, x) in - let subst _ x = x in - let interp ist gl x = (gl.Evd.sigma, x) in - let gen_pr _ _ _ = pr in - let () = Genintern.register_intern0 wit glob in - let () = Genintern.register_subst0 wit subst in - let () = Geninterp.register_interp0 wit interp in - Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr; - wit - -(** Constructors for cast type *) -let dC t = CastConv t - -(** Constructors for constr_expr *) -let mkCProp loc = CSort (loc, GProp) -let mkCType loc = CSort (loc, GType []) -let mkCVar loc id = CRef (Ident (loc, id),None) -let isCVar = function CRef (Ident _,_) -> true | _ -> false -let destCVar = function CRef (Ident (_, id),_) -> id | _ -> - anomaly "not a CRef" -let rec mkCHoles loc n = - if n <= 0 then [] else CHole (loc, None, IntroAnonymous, None) :: mkCHoles loc (n - 1) -let mkCHole loc = CHole (loc, None, IntroAnonymous, None) -let rec isCHoles = function CHole _ :: cl -> isCHoles cl | cl -> cl = [] -let mkCExplVar loc id n = - CAppExpl (loc, (None, Ident (loc, id), None), mkCHoles loc n) -let mkCLambda loc name ty t = - CLambdaN (loc, [[loc, name], Default Explicit, ty], t) -let mkCLetIn loc name bo t = - CLetIn (loc, (loc, name), bo, t) -let mkCArrow loc ty t = - CProdN (loc, [[dummy_loc,Anonymous], Default Explicit, ty], t) -let mkCCast loc t ty = CCast (loc,t, dC ty) -(** Constructors for rawconstr *) -let mkRHole = GHole (dummy_loc, InternalHole, IntroAnonymous, None) -let rec mkRHoles n = if n > 0 then mkRHole :: mkRHoles (n - 1) else [] -let rec isRHoles = function GHole _ :: cl -> isRHoles cl | cl -> cl = [] -let mkRApp f args = if args = [] then f else GApp (dummy_loc, f, args) -let mkRVar id = GRef (dummy_loc, VarRef id,None) -let mkRltacVar id = GVar (dummy_loc, id) -let mkRCast rc rt = GCast (dummy_loc, rc, dC rt) -let mkRType = GSort (dummy_loc, GType []) -let mkRProp = GSort (dummy_loc, GProp) -let mkRArrow rt1 rt2 = GProd (dummy_loc, Anonymous, Explicit, rt1, rt2) -let mkRConstruct c = GRef (dummy_loc, ConstructRef c,None) -let mkRInd mind = GRef (dummy_loc, IndRef mind,None) -let mkRLambda n s t = GLambda (dummy_loc, n, Explicit, s, t) - -(** Constructors for constr *) -let pf_e_type_of gl t = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, ty = Typing.e_type_of env sigma t in - re_sig it sigma, ty - -let mkAppRed f c = match kind_of_term f with -| Lambda (_, _, b) -> subst1 c b -| _ -> mkApp (f, [|c|]) - -let mkProt t c gl = - let prot, gl = pf_mkSsrConst "protect_term" gl in - mkApp (prot, [|t; c|]), gl - -let mkRefl t c gl = - let refl, gl = pf_fresh_global (build_coq_eq_data()).refl gl in - mkApp (refl, [|t; c|]), gl - - -(* Application to a sequence of n rels (for building eta-expansions). *) -(* The rel indices decrease down to imin (inclusive), unless n < 0, *) -(* in which case they're incresing (from imin). *) -let mkEtaApp c n imin = - if n = 0 then c else - let nargs, mkarg = - if n < 0 then -n, (fun i -> mkRel (imin + i)) else - let imax = imin + n - 1 in n, (fun i -> mkRel (imax - i)) in - mkApp (c, Array.init nargs mkarg) -(* Same, but optimizing head beta redexes *) -let rec whdEtaApp c n = - if n = 0 then c else match kind_of_term c with - | Lambda (_, _, c') -> whdEtaApp c' (n - 1) - | _ -> mkEtaApp (lift n c) n 1 -let mkType () = Universes.new_Type (Lib.cwd ()) - -(* ssrterm conbinators *) -let combineCG t1 t2 f g = match t1, t2 with - | (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None) - | (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2)) - | _, (_, (_, None)) -> anomaly "have: mixed C-G constr" - | _ -> anomaly "have: mixed G-C constr" -let loc_ofCG = function - | (_, (s, None)) -> Glob_ops.loc_of_glob_constr s - | (_, (_, Some s)) -> Constrexpr_ops.constr_loc s - -let mk_term k c = k, (mkRHole, Some c) -let mk_lterm c = mk_term ' ' c - -let map_fold_constr g f ctx acc cstr = - let array_f ctx acc x = let x, acc = f ctx acc x in acc, x in - match kind_of_term cstr with - | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> - cstr, acc - | Proj (x,c) -> - let c', acc = f ctx acc c in - (if c == c' then cstr else mkProj (x,c')), acc - | Cast (c,k, t) -> - let c', acc = f ctx acc c in - let t', acc = f ctx acc t in - (if c==c' && t==t' then cstr else mkCast (c', k, t')), acc - | Prod (na,t,c) -> - let t', acc = f ctx acc t in - let c', acc = f (g (na,None,t) ctx) acc c in - (if t==t' && c==c' then cstr else mkProd (na, t', c')), acc - | Lambda (na,t,c) -> - let t', acc = f ctx acc t in - let c', acc = f (g (na,None,t) ctx) acc c in - (if t==t' && c==c' then cstr else mkLambda (na, t', c')), acc - | LetIn (na,b,t,c) -> - let b', acc = f ctx acc b in - let t', acc = f ctx acc t in - let c', acc = f (g (na,Some b,t) ctx) acc c in - (if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')), acc - | App (c,al) -> - let c', acc = f ctx acc c in - let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in - (if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')), - acc - | Evar (e,al) -> - let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in - (if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')), acc - | Case (ci,p,c,bl) -> - let p', acc = f ctx acc p in - let c', acc = f ctx acc c in - let acc, bl' = CArray.smartfoldmap (array_f ctx) acc bl in - (if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else - mkCase (ci, p', c', bl')), - acc - | Fix (ln,(lna,tl,bl)) -> - let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in - let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in - let acc, bl' = CArray.smartfoldmap (array_f ctx') acc bl in - (if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' - then cstr - else mkFix (ln,(lna,tl',bl'))), acc - | CoFix(ln,(lna,tl,bl)) -> - let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in - let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in - let acc,bl' = CArray.smartfoldmap (array_f ctx') acc bl in - (if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' - then cstr - else mkCoFix (ln,(lna,tl',bl'))), acc - -let pf_merge_uc_of sigma gl = - let ucst = Evd.evar_universe_context sigma in - pf_merge_uc ucst gl - -(* }}} *) - -(** Profiling {{{ *************************************************************) -type profiler = { - profile : 'a 'b. ('a -> 'b) -> 'a -> 'b; - reset : unit -> unit; - print : unit -> unit } -let profile_now = ref false -let something_profiled = ref false -let profilers = ref [] -let add_profiler f = profilers := f :: !profilers;; -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect profiling"; - Goptions.optkey = ["SsrProfiling"]; - Goptions.optread = (fun _ -> !profile_now); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> - Ssrmatching.profile b; - profile_now := b; - if b then List.iter (fun f -> f.reset ()) !profilers; - if not b then List.iter (fun f -> f.print ()) !profilers) } -let () = - let prof_total = - let init = ref 0.0 in { - profile = (fun f x -> assert false); - reset = (fun () -> init := Unix.gettimeofday ()); - print = (fun () -> if !something_profiled then - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - "total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in - let prof_legenda = { - profile = (fun f x -> assert false); - reset = (fun () -> ()); - print = (fun () -> if !something_profiled then begin - prerr_endline - (Printf.sprintf "!! %39s ---------- --------- --------- ---------" - (String.make 39 '-')); - prerr_endline - (Printf.sprintf "!! %-39s %10s %9s %9s %9s" - "function" "#calls" "total" "max" "average") end) } in - add_profiler prof_legenda; - add_profiler prof_total -;; - -let mk_profiler s = - let total, calls, max = ref 0.0, ref 0, ref 0.0 in - let reset () = total := 0.0; calls := 0; max := 0.0 in - let profile f x = - if not !profile_now then f x else - let before = Unix.gettimeofday () in - try - incr calls; - let res = f x in - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - res - with exc -> - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - raise exc in - let print () = - if !calls <> 0 then begin - something_profiled := true; - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - s !calls !total !max (!total /. (float_of_int !calls))) end in - let prof = { profile = profile; reset = reset; print = print } in - add_profiler prof; - prof -;; -(* }}} *) - -let inVersion = Libobject.declare_object { - (Libobject.default_object "SSRASTVERSION") with - Libobject.load_function = (fun _ (_,v) -> - if v <> ssrAstVersion then Errors.error "Please recompile your .vo files"); - Libobject.classify_function = (fun v -> Libobject.Keep v); -} - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect version"; - Goptions.optkey = ["SsrAstVersion"]; - Goptions.optread = (fun _ -> true); - Goptions.optdepr = false; - Goptions.optwrite = (fun _ -> - Lib.add_anonymous_leaf (inVersion ssrAstVersion)) } - -let tactic_expr = Tactic.tactic_expr -let gallina_ext = Vernac_.gallina_ext -let sprintf = Printf.sprintf -let tactic_mode = G_vernac.tactic_mode - -(** 1. Utilities *) - - -let ssroldreworder = Summary.ref ~name:"SSR:oldreworder" true -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect 1.3 compatibility flag"; - Goptions.optkey = ["SsrOldRewriteGoalsOrder"]; - Goptions.optread = (fun _ -> !ssroldreworder); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssroldreworder := b) } - -let ssrhaveNOtcresolution = ref false - -let inHaveTCResolution = Libobject.declare_object { - (Libobject.default_object "SSRHAVETCRESOLUTION") with - Libobject.cache_function = (fun (_,v) -> ssrhaveNOtcresolution := v); - Libobject.load_function = (fun _ (_,v) -> ssrhaveNOtcresolution := v); - Libobject.classify_function = (fun v -> Libobject.Keep v); -} - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "have type classes"; - Goptions.optkey = ["SsrHave";"NoTCResolution"]; - Goptions.optread = (fun _ -> !ssrhaveNOtcresolution); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> - Lib.add_anonymous_leaf (inHaveTCResolution b)) } - - -(** Primitive parsing to avoid syntax conflicts with basic tactics. *) - -let accept_before_syms syms strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | _ -> raise Stream.Failure - -let accept_before_syms_or_any_id syms strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | Tok.IDENT _ -> () - | _ -> raise Stream.Failure - -let accept_before_syms_or_ids syms ids strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | Tok.IDENT id when List.mem id ids -> () - | _ -> raise Stream.Failure - -(** Pretty-printing utilities *) - -let pr_id = Ppconstr.pr_id -let pr_name = function Name id -> pr_id id | Anonymous -> str "_" -let pr_spc () = str " " -let pr_bar () = Pp.cut() ++ str "|" -let pr_list = prlist_with_sep - -let tacltop = (5,Ppextend.E) - -(** Tactic-level diagnosis *) - -let pf_pr_constr gl = pr_constr_env (pf_env gl) - -let pf_pr_glob_constr gl = pr_glob_constr_env (pf_env gl) - -(* debug *) - -let pf_msg gl = - let ppgl = pr_lconstr_env (pf_env gl) (project gl) (pf_concl gl) in - msgnl (str "goal is " ++ ppgl) - -let msgtac gl = pf_msg gl; tclIDTAC gl - -(** Tactic utilities *) - -let last_goal gls = let sigma, gll = Refiner.unpackage gls in - Refiner.repackage sigma (List.nth gll (List.length gll - 1)) - -let pf_type_id gl t = id_of_string (hdchar (pf_env gl) t) - -let not_section_id id = not (is_section_variable id) - -let is_pf_var c = isVar c && not_section_id (destVar c) - -let pf_ids_of_proof_hyps gl = - let add_hyp (id, _, _) ids = if not_section_id id then id :: ids else ids in - Context.fold_named_context add_hyp (pf_hyps gl) ~init:[] - -let pf_nf_evar gl e = Reductionops.nf_evar (project gl) e - -let pf_partial_solution gl t evl = - let sigma, g = project gl, sig_it gl in - let sigma = Goal.V82.partial_solution sigma g t in - re_sig (List.map (fun x -> (fst (destEvar x))) evl) sigma - -let pf_new_evar gl ty = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, extra = Evarutil.new_evar env sigma ty in - re_sig it sigma, extra - -(* Basic tactics *) - -let convert_concl_no_check t = convert_concl_no_check t DEFAULTcast -let convert_concl t = convert_concl t DEFAULTcast -let reduct_in_concl t = reduct_in_concl (t, DEFAULTcast) -let havetac id c = Proofview.V82.of_tactic (pose_proof (Name id) c) -let settac id c = letin_tac None (Name id) c None -let posetac id cl = Proofview.V82.of_tactic (settac id cl nowhere) -let basecuttac name c gl = - let hd, gl = pf_mkSsrConst name gl in - let t = mkApp (hd, [|c|]) in - let gl, _ = pf_e_type_of gl t in - Proofview.V82.of_tactic (apply t) gl - -(* we reduce head beta redexes *) -let betared env = - Closure.create_clos_infos - (Closure.RedFlags.mkflags [Closure.RedFlags.fBETA]) - env -;; -let introid name = tclTHEN (fun gl -> - let g, env = pf_concl gl, pf_env gl in - match kind_of_term g with - | App (hd, _) when isLambda hd -> - let g = Closure.whd_val (betared env) (Closure.inject g) in - Proofview.V82.of_tactic (convert_concl_no_check g) gl - | _ -> tclIDTAC gl) - (Proofview.V82.of_tactic (intro_mustbe_force name)) -;; - - -(** Name generation {{{ *******************************************************) - -(* Since Coq now does repeated internal checks of its external lexical *) -(* rules, we now need to carve ssreflect reserved identifiers out of *) -(* out of the user namespace. We use identifiers of the form _id_ for *) -(* this purpose, e.g., we "anonymize" an identifier id as _id_, adding *) -(* an extra leading _ if this might clash with an internal identifier. *) -(* We check for ssreflect identifiers in the ident grammar rule; *) -(* when the ssreflect Module is present this is normally an error, *) -(* but we provide a compatibility flag to reduce this to a warning. *) - -let ssr_reserved_ids = Summary.ref ~name:"SSR:idents" true - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "ssreflect identifiers"; - Goptions.optkey = ["SsrIdents"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !ssr_reserved_ids); - Goptions.optwrite = (fun b -> ssr_reserved_ids := b) - } - -let is_ssr_reserved s = - let n = String.length s in n > 2 && s.[0] = '_' && s.[n - 1] = '_' - -let internal_names = ref [] -let add_internal_name pt = internal_names := pt :: !internal_names -let is_internal_name s = List.exists (fun p -> p s) !internal_names - -let ssr_id_of_string loc s = - if is_ssr_reserved s && is_ssr_loaded () then begin - if !ssr_reserved_ids then - loc_error loc ("The identifier " ^ s ^ " is reserved.") - else if is_internal_name s then - msg_warning (str ("Conflict between " ^ s ^ " and ssreflect internal names.")) - else msg_warning (str ( - "The name " ^ s ^ " fits the _xxx_ format used for anonymous variables.\n" - ^ "Scripts with explicit references to anonymous variables are fragile.")) - end; id_of_string s - -let ssr_null_entry = Gram.Entry.of_parser "ssr_null" (fun _ -> ()) - -let (!@) = Compat.to_coqloc - -GEXTEND Gram - GLOBAL: Prim.ident; - Prim.ident: [[ s = IDENT; ssr_null_entry -> ssr_id_of_string !@loc s ]]; -END - -let mk_internal_id s = - let s' = sprintf "_%s_" s in - for i = 1 to String.length s do if s'.[i] = ' ' then s'.[i] <- '_' done; - add_internal_name ((=) s'); id_of_string s' - -let same_prefix s t n = - let rec loop i = i = n || s.[i] = t.[i] && loop (i + 1) in loop 0 - -let skip_digits s = - let n = String.length s in - let rec loop i = if i < n && is_digit s.[i] then loop (i + 1) else i in loop - -let mk_tagged_id t i = id_of_string (sprintf "%s%d_" t i) -let is_tagged t s = - let n = String.length s - 1 and m = String.length t in - m < n && s.[n] = '_' && same_prefix s t m && skip_digits s m = n - -let perm_tag = "_perm_Hyp_" -let _ = add_internal_name (is_tagged perm_tag) -let mk_perm_id = - let salt = ref 1 in - fun () -> salt := !salt mod 10000 + 1; mk_tagged_id perm_tag !salt - -let evar_tag = "_evar_" -let _ = add_internal_name (is_tagged evar_tag) -let mk_evar_name n = Name (mk_tagged_id evar_tag n) -let nb_evar_deps = function - | Name id -> - let s = string_of_id id in - if not (is_tagged evar_tag s) then 0 else - let m = String.length evar_tag in - (try int_of_string (String.sub s m (String.length s - 1 - m)) with _ -> 0) - | _ -> 0 - -let discharged_tag = "_discharged_" -let mk_discharged_id id = - id_of_string (sprintf "%s%s_" discharged_tag (string_of_id id)) -let has_discharged_tag s = - let m = String.length discharged_tag and n = String.length s - 1 in - m < n && s.[n] = '_' && same_prefix s discharged_tag m -let _ = add_internal_name has_discharged_tag -let is_discharged_id id = has_discharged_tag (string_of_id id) - -let wildcard_tag = "_the_" -let wildcard_post = "_wildcard_" -let mk_wildcard_id i = - id_of_string (sprintf "%s%s%s" wildcard_tag (String.ordinal i) wildcard_post) -let has_wildcard_tag s = - let n = String.length s in let m = String.length wildcard_tag in - let m' = String.length wildcard_post in - n < m + m' + 2 && same_prefix s wildcard_tag m && - String.sub s (n - m') m' = wildcard_post && - skip_digits s m = n - m' - 2 -let _ = add_internal_name has_wildcard_tag - -let max_suffix m (t, j0 as tj0) id = - let s = string_of_id id in let n = String.length s - 1 in - let dn = String.length t - 1 - n in let i0 = j0 - dn in - if not (i0 >= m && s.[n] = '_' && same_prefix s t m) then tj0 else - let rec loop i = - if i < i0 && s.[i] = '0' then loop (i + 1) else - if (if i < i0 then skip_digits s i = n else le_s_t i) then s, i else tj0 - and le_s_t i = - let ds = s.[i] and dt = t.[i + dn] in - if ds = dt then i = n || le_s_t (i + 1) else - dt < ds && skip_digits s i = n in - loop m - -let mk_anon_id t gl = - let m, si0, id0 = - let s = ref (sprintf "_%s_" t) in - if is_internal_name !s then s := "_" ^ !s; - let n = String.length !s - 1 in - let rec loop i j = - let d = !s.[i] in if not (is_digit d) then i + 1, j else - loop (i - 1) (if d = '0' then j else i) in - let m, j = loop (n - 1) n in m, (!s, j), id_of_string !s in - let gl_ids = pf_ids_of_hyps gl in - if not (List.mem id0 gl_ids) then id0 else - let s, i = List.fold_left (max_suffix m) si0 gl_ids in - let n = String.length s - 1 in - let rec loop i = - if s.[i] = '9' then (s.[i] <- '0'; loop (i - 1)) else - if i < m then (s.[n] <- '0'; s.[m] <- '1'; s ^ "_") else - (s.[i] <- Char.chr (Char.code s.[i] + 1); s) in - id_of_string (loop (n - 1)) - -(* We must not anonymize context names discharged by the "in" tactical. *) - -let ssr_anon_hyp = "Hyp" - -let anontac (x, _, _) gl = - let id = match x with - | Name id -> - if is_discharged_id id then id else mk_anon_id (string_of_id id) gl - | _ -> mk_anon_id ssr_anon_hyp gl in - introid id gl - -let rec constr_name c = match kind_of_term c with - | Var id -> Name id - | Cast (c', _, _) -> constr_name c' - | Const (cn,_) -> Name (id_of_label (con_label cn)) - | App (c', _) -> constr_name c' - | _ -> Anonymous - -(* }}} *) - -(** Open term to lambda-term coercion {{{ ************************************) - -(* This operation takes a goal gl and an open term (sigma, t), and *) -(* returns a term t' where all the new evars in sigma are abstracted *) -(* with the mkAbs argument, i.e., for mkAbs = mkLambda then there is *) -(* some duplicate-free array args of evars of sigma such that the *) -(* term mkApp (t', args) is convertible to t. *) -(* This makes a useful shorthand for local definitions in proofs, *) -(* i.e., pose succ := _ + 1 means pose succ := fun n : nat => n + 1, *) -(* and, in context of the the 4CT library, pose mid := maps id means *) -(* pose mid := fun d : detaSet => @maps d d (@id (datum d)) *) -(* Note that this facility does not extend to set, which tries *) -(* instead to fill holes by matching a goal subterm. *) -(* The argument to "have" et al. uses product abstraction, e.g. *) -(* have Hmid: forall s, (maps id s) = s. *) -(* stands for *) -(* have Hmid: forall (d : dataSet) (s : seq d), (maps id s) = s. *) -(* We also use this feature for rewrite rules, so that, e.g., *) -(* rewrite: (plus_assoc _ 3). *) -(* will execute as *) -(* rewrite (fun n => plus_assoc n 3) *) -(* i.e., it will rewrite some subterm .. + (3 + ..) to .. + 3 + ... *) -(* The convention is also used for the argument of the congr tactic, *) -(* e.g., congr (x + _ * 1). *) - -(* Replace new evars with lambda variables, retaining local dependencies *) -(* but stripping global ones. We use the variable names to encode the *) -(* the number of dependencies, so that the transformation is reversible. *) - -let pf_abs_evars gl (sigma, c0) = - let sigma0, ucst = project gl, Evd.evar_universe_context sigma in - let nenv = env_size (pf_env gl) in - let abs_evar n k = - let evi = Evd.find sigma k in - let dc = List.firstn n (evar_filtered_context evi) in - let abs_dc c = function - | x, Some b, t -> mkNamedLetIn x b t (mkArrow t c) - | x, None, t -> mkNamedProd x t c in - let t = Context.fold_named_context_reverse abs_dc ~init:evi.evar_concl dc in - Evarutil.nf_evar sigma t in - let rec put evlist c = match kind_of_term c with - | Evar (k, a) -> - if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else - let n = max 0 (Array.length a - nenv) in - let t = abs_evar n k in (k, (n, t)) :: put evlist t - | _ -> fold_constr put evlist c in - let evlist = put [] c0 in - if evlist = [] then 0, c0,[], ucst else - let rec lookup k i = function - | [] -> 0, 0 - | (k', (n, _)) :: evl -> if k = k' then i, n else lookup k (i + 1) evl in - let rec get i c = match kind_of_term c with - | Evar (ev, a) -> - let j, n = lookup ev i evlist in - if j = 0 then map_constr (get i) c else if n = 0 then mkRel j else - mkApp (mkRel j, Array.init n (fun k -> get i a.(n - 1 - k))) - | _ -> map_constr_with_binders ((+) 1) get i c in - let rec loop c i = function - | (_, (n, t)) :: evl -> - loop (mkLambda (mk_evar_name n, get (i - 1) t, c)) (i - 1) evl - | [] -> c in - List.length evlist, loop (get 1 c0) 1 evlist, List.map fst evlist, ucst - - - -(* As before but if (?i : T(?j)) and (?j : P : Prop), then the lambda for i - * looks like (fun evar_i : (forall pi : P. T(pi))) thanks to "loopP" and all - * occurrences of evar_i are replaced by (evar_i evar_j) thanks to "app". - * - * If P can be solved by ssrautoprop (that defaults to trivial), then - * the corresponding lambda looks like (fun evar_i : T(c)) where c is - * the solution found by ssrautoprop. - *) -let ssrautoprop_tac = ref (fun gl -> assert false) - -(* Thanks to Arnaud Spiwack for this snippet *) -let call_on_evar tac e s = - let { it = gs ; sigma = s } = - tac { it = e ; sigma = s; } in - gs, s - -let pf_abs_evars_pirrel gl (sigma, c0) = - pp(lazy(str"==PF_ABS_EVARS_PIRREL==")); - pp(lazy(str"c0= " ++ pr_constr c0)); - let sigma0 = project gl in - let c0 = Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma c0) in - let nenv = env_size (pf_env gl) in - let abs_evar n k = - let evi = Evd.find sigma k in - let dc = List.firstn n (evar_filtered_context evi) in - let abs_dc c = function - | x, Some b, t -> mkNamedLetIn x b t (mkArrow t c) - | x, None, t -> mkNamedProd x t c in - let t = Context.fold_named_context_reverse abs_dc ~init:evi.evar_concl dc in - Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma t) in - let rec put evlist c = match kind_of_term c with - | Evar (k, a) -> - if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else - let n = max 0 (Array.length a - nenv) in - let k_ty = - Retyping.get_sort_family_of - (pf_env gl) sigma (Evd.evar_concl (Evd.find sigma k)) in - let is_prop = k_ty = InProp in - let t = abs_evar n k in (k, (n, t, is_prop)) :: put evlist t - | _ -> fold_constr put evlist c in - let evlist = put [] c0 in - if evlist = [] then 0, c0 else - let pr_constr t = pr_constr (Reductionops.nf_beta (project gl) t) in - pp(lazy(str"evlist=" ++ pr_list (fun () -> str";") - (fun (k,_) -> str(Evd.string_of_existential k)) evlist)); - let evplist = - let depev = List.fold_left (fun evs (_,(_,t,_)) -> - Intset.union evs (Evarutil.undefined_evars_of_term sigma t)) Intset.empty evlist in - List.filter (fun i,(_,_,b) -> b && Intset.mem i depev) evlist in - let evlist, evplist, sigma = - if evplist = [] then evlist, [], sigma else - List.fold_left (fun (ev, evp, sigma) (i, (_,t,_) as p) -> - try - let ng, sigma = call_on_evar !ssrautoprop_tac i sigma in - if (ng <> []) then errorstrm (str "Should we tell the user?"); - List.filter (fun (j,_) -> j <> i) ev, evp, sigma - with _ -> ev, p::evp, sigma) (evlist, [], sigma) (List.rev evplist) in - let c0 = Evarutil.nf_evar sigma c0 in - let evlist = - List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evlist in - let evplist = - List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evplist in - pp(lazy(str"c0= " ++ pr_constr c0)); - let rec lookup k i = function - | [] -> 0, 0 - | (k', (n,_,_)) :: evl -> if k = k' then i,n else lookup k (i + 1) evl in - let rec get evlist i c = match kind_of_term c with - | Evar (ev, a) -> - let j, n = lookup ev i evlist in - if j = 0 then map_constr (get evlist i) c else if n = 0 then mkRel j else - mkApp (mkRel j, Array.init n (fun k -> get evlist i a.(n - 1 - k))) - | _ -> map_constr_with_binders ((+) 1) (get evlist) i c in - let rec app extra_args i c = match decompose_app c with - | hd, args when isRel hd && destRel hd = i -> - let j = destRel hd in - mkApp (mkRel j, Array.of_list (List.map (lift (i-1)) extra_args @ args)) - | _ -> map_constr_with_binders ((+) 1) (app extra_args) i c in - let rec loopP evlist c i = function - | (_, (n, t, _)) :: evl -> - let t = get evlist (i - 1) t in - let n = Name (id_of_string (ssr_anon_hyp ^ string_of_int n)) in - loopP evlist (mkProd (n, t, c)) (i - 1) evl - | [] -> c in - let rec loop c i = function - | (_, (n, t, _)) :: evl -> - let evs = Evarutil.undefined_evars_of_term sigma t in - let t_evplist = List.filter (fun (k,_) -> Intset.mem k evs) evplist in - let t = loopP t_evplist (get t_evplist 1 t) 1 t_evplist in - let t = get evlist (i - 1) t in - let extra_args = - List.map (fun (k,_) -> mkRel (fst (lookup k i evlist))) - (List.rev t_evplist) in - let c = if extra_args = [] then c else app extra_args 1 c in - loop (mkLambda (mk_evar_name n, t, c)) (i - 1) evl - | [] -> c in - let res = loop (get evlist 1 c0) 1 evlist in - pp(lazy(str"res= " ++ pr_constr res)); - List.length evlist, res - -(* Strip all non-essential dependencies from an abstracted term, generating *) -(* standard names for the abstracted holes. *) - -let pf_abs_cterm gl n c0 = - if n <= 0 then c0 else - let noargs = [|0|] in - let eva = Array.make n noargs in - let rec strip i c = match kind_of_term c with - | App (f, a) when isRel f -> - let j = i - destRel f in - if j >= n || eva.(j) = noargs then mkApp (f, Array.map (strip i) a) else - let dp = eva.(j) in - let nd = Array.length dp - 1 in - let mkarg k = strip i a.(if k < nd then dp.(k + 1) - j else k + dp.(0)) in - mkApp (f, Array.init (Array.length a - dp.(0)) mkarg) - | _ -> map_constr_with_binders ((+) 1) strip i c in - let rec strip_ndeps j i c = match kind_of_term c with - | Prod (x, t, c1) when i < j -> - let dl, c2 = strip_ndeps j (i + 1) c1 in - if noccurn 1 c2 then dl, lift (-1) c2 else - i :: dl, mkProd (x, strip i t, c2) - | LetIn (x, b, t, c1) when i < j -> - let _, _, c1' = destProd c1 in - let dl, c2 = strip_ndeps j (i + 1) c1' in - if noccurn 1 c2 then dl, lift (-1) c2 else - i :: dl, mkLetIn (x, strip i b, strip i t, c2) - | _ -> [], strip i c in - let rec strip_evars i c = match kind_of_term c with - | Lambda (x, t1, c1) when i < n -> - let na = nb_evar_deps x in - let dl, t2 = strip_ndeps (i + na) i t1 in - let na' = List.length dl in - eva.(i) <- Array.of_list (na - na' :: dl); - let x' = - if na' = 0 then Name (pf_type_id gl t2) else mk_evar_name na' in - mkLambda (x', t2, strip_evars (i + 1) c1) -(* if noccurn 1 c2 then lift (-1) c2 else - mkLambda (Name (pf_type_id gl t2), t2, c2) *) - | _ -> strip i c in - strip_evars 0 c0 - -(* Undo the evar abstractions. Also works for non-evar variables. *) - -let pf_unabs_evars gl ise n c0 = - if n = 0 then c0 else - let evv = Array.make n mkProp in - let nev = ref 0 in - let env0 = pf_env gl in - let nenv0 = env_size env0 in - let rec unabs i c = match kind_of_term c with - | Rel j when i - j < !nev -> evv.(i - j) - | App (f, a0) when isRel f -> - let a = Array.map (unabs i) a0 in - let j = i - destRel f in - if j >= !nev then mkApp (f, a) else - let ev, eva = destEvar evv.(j) in - let nd = Array.length eva - nenv0 in - if nd = 0 then mkApp (evv.(j), a) else - let evarg k = if k < nd then a.(nd - 1 - k) else eva.(k) in - let c' = mkEvar (ev, Array.init (nd + nenv0) evarg) in - let na = Array.length a - nd in - if na = 0 then c' else mkApp (c', Array.sub a nd na) - | _ -> map_constr_with_binders ((+) 1) unabs i c in - let push_rel = Environ.push_rel in - let rec mk_evar j env i c = match kind_of_term c with - | Prod (x, t, c1) when i < j -> - mk_evar j (push_rel (x, None, unabs i t) env) (i + 1) c1 - | LetIn (x, b, t, c1) when i < j -> - let _, _, c2 = destProd c1 in - mk_evar j (push_rel (x, Some (unabs i b), unabs i t) env) (i + 1) c2 - | _ -> Evarutil.e_new_evar env ise (unabs i c) in - let rec unabs_evars c = - if !nev = n then unabs n c else match kind_of_term c with - | Lambda (x, t, c1) when !nev < n -> - let i = !nev in - evv.(i) <- mk_evar (i + nb_evar_deps x) env0 i t; - incr nev; unabs_evars c1 - | _ -> unabs !nev c in - unabs_evars c0 - -(* }}} *) - -(** Tactical extensions. {{{ **************************************************) - -(* The TACTIC EXTEND facility can't be used for defining new user *) -(* tacticals, because: *) -(* - the concrete syntax must start with a fixed string *) -(* We use the following workaround: *) -(* - We use the (unparsable) "YouShouldNotTypeThis" token for tacticals that *) -(* don't start with a token, then redefine the grammar and *) -(* printer using GEXTEND and set_pr_ssrtac, respectively. *) - -type ssrargfmt = ArgSsr of string | ArgCoq of argument_type | ArgSep of string - -let ssrtac_name name = { - mltac_plugin = "ssreflect"; - mltac_tactic = "ssr" ^ name; -} - -let set_pr_ssrtac name prec afmt = - let fmt = List.map (function ArgSep s -> Some s | _ -> None) afmt in - let rec mk_akey = function - | ArgSsr s :: afmt' -> ExtraArgType ("ssr" ^ s) :: mk_akey afmt' - | ArgCoq a :: afmt' -> a :: mk_akey afmt' - | ArgSep _ :: afmt' -> mk_akey afmt' - | [] -> [] in - let tacname = ssrtac_name name in - Pptactic.declare_ml_tactic_pprule tacname - { Pptactic.pptac_args = mk_akey afmt; - Pptactic.pptac_prods = (prec, fmt) } - -let ssrtac_atom loc name args = TacML (loc, ssrtac_name name, args) -let ssrtac_expr = ssrtac_atom - - -let ssrevaltac ist gtac = - let debug = match TacStore.get ist.extra f_debug with - | None -> Tactic_debug.DebugOff | Some level -> level - in - Proofview.V82.of_tactic (interp_tac_gen ist.lfun [] debug (globTacticIn (fun _ -> gtac))) - -(* fun gl -> let lfun = [tacarg_id, val_interp ist gl gtac] in - interp_tac_gen lfun [] ist.debug tacarg_expr gl *) - -(** Generic argument-based globbing/typing utilities *) - - -let interp_wit wit ist gl x = - let globarg = in_gen (glbwit wit) x in - let sigma, arg = interp_genarg ist (pf_env gl) (project gl) (pf_concl gl) gl.Evd.it globarg in - sigma, out_gen (topwit wit) arg - -let interp_intro_pattern = interp_wit wit_intro_pattern - -let interp_constr = interp_wit wit_constr - -let interp_open_constr ist gl gc = - interp_wit wit_open_constr ist gl ((), gc) - -let interp_refine ist gl rc = - let constrvars = extract_ltac_constr_values ist (pf_env gl) in - let vars = { Pretyping.empty_lvar with - Pretyping.ltac_constrs = constrvars; ltac_genargs = ist.lfun - } in - let kind = OfType (pf_concl gl) in - let flags = { - use_typeclasses = true; - use_unif_heuristics = true; - use_hook = None; - fail_evar = false; - expand_evars = true } - in - let sigma, c = understand_ltac flags (pf_env gl) (project gl) vars kind rc in -(* pp(lazy(str"sigma@interp_refine=" ++ pr_evar_map None sigma)); *) - pp(lazy(str"c@interp_refine=" ++ pr_constr c)); - (sigma, (sigma, c)) - -let pf_match = pf_apply (fun e s c t -> understand_tcc e s ~expected_type:t c) - -(* Estimate a bound on the number of arguments of a raw constr. *) -(* This is not perfect, because the unifier may fail to *) -(* typecheck the partial application, so we use a minimum of 5. *) -(* Also, we don't handle delayed or iterated coercions to *) -(* FUNCLASS, which is probably just as well since these can *) -(* lead to infinite arities. *) - -let splay_open_constr gl (sigma, c) = - let env = pf_env gl in let t = Retyping.get_type_of env sigma c in - Reductionops.splay_prod env sigma t - -let nbargs_open_constr gl oc = - let pl, _ = splay_open_constr gl oc in List.length pl - -let interp_nbargs ist gl rc = - try - let rc6 = mkRApp rc (mkRHoles 6) in - let sigma, t = interp_open_constr ist gl (rc6, None) in - let si = sig_it gl in - let gl = re_sig si sigma in - 6 + nbargs_open_constr gl t - with _ -> 5 - -let pf_nbargs gl c = nbargs_open_constr gl (project gl, c) - -let isAppInd gl c = - try ignore (pf_reduce_to_atomic_ind gl c); true with _ -> false - -let interp_view_nbimps ist gl rc = - try - let sigma, t = interp_open_constr ist gl (rc, None) in - let si = sig_it gl in - let gl = re_sig si sigma in - let pl, c = splay_open_constr gl t in - if isAppInd gl c then List.length pl else ~-(List.length pl) - with _ -> 0 - -(* }}} *) - -(** Vernacular commands: Prenex Implicits and Search {{{ **********************) - -(* This should really be implemented as an extension to the implicit *) -(* arguments feature, but unfortuately that API is sealed. The current *) -(* workaround uses a combination of notations that works reasonably, *) -(* with the following caveats: *) -(* - The pretty-printing always elides prenex implicits, even when *) -(* they are obviously needed. *) -(* - Prenex Implicits are NEVER exported from a module, because this *) -(* would lead to faulty pretty-printing and scoping errors. *) -(* - The command "Import Prenex Implicits" can be used to reassert *) -(* Prenex Implicits for all the visible constants that had been *) -(* declared as Prenex Implicits. *) - -let declare_one_prenex_implicit locality f = - let fref = - try Smartlocate.global_with_alias f - with _ -> errorstrm (pr_reference f ++ str " is not declared") in - let rec loop = function - | a :: args' when Impargs.is_status_implicit a -> - (ExplByName (Impargs.name_of_implicit a), (true, true, true)) :: loop args' - | args' when List.exists Impargs.is_status_implicit args' -> - errorstrm (str "Expected prenex implicits for " ++ pr_reference f) - | _ -> [] in - let impls = - match Impargs.implicits_of_global fref with - | [cond,impls] -> impls - | [] -> errorstrm (str "Expected some implicits for " ++ pr_reference f) - | _ -> errorstrm (str "Multiple implicits not supported") in - match loop impls with - | [] -> - errorstrm (str "Expected some implicits for " ++ pr_reference f) - | impls -> - Impargs.declare_manual_implicits locality fref ~enriching:false [impls] - -VERNAC COMMAND EXTEND Ssrpreneximplicits CLASSIFIED AS SIDEFF - | [ "Prenex" "Implicits" ne_global_list(fl) ] - -> [ let locality = - Locality.make_section_locality (Locality.LocalityFixme.consume ()) in - List.iter (declare_one_prenex_implicit locality) fl ] -END - -(* Vernac grammar visibility patch *) - -GEXTEND Gram - GLOBAL: gallina_ext; - gallina_ext: - [ [ IDENT "Import"; IDENT "Prenex"; IDENT "Implicits" -> - Vernacexpr.VernacUnsetOption (["Printing"; "Implicit"; "Defensive"]) - ] ] - ; -END - -(** Extend Search to subsume SearchAbout, also adding hidden Type coercions. *) - -(* Main prefilter *) - -type raw_glob_search_about_item = - | RGlobSearchSubPattern of constr_expr - | RGlobSearchString of Loc.t * string * string option - -let pr_search_item = function - | RGlobSearchString (_,s,_) -> str s - | RGlobSearchSubPattern p -> pr_constr_expr p - -let wit_ssr_searchitem = add_genarg "ssr_searchitem" pr_search_item - -let interp_search_notation loc s opt_scope = - try - let interp = Notation.interp_notation_as_global_reference loc in - let ref = interp (fun _ -> true) s opt_scope in - Search.GlobSearchSubPattern (Pattern.PRef ref) - with _ -> - let diagnosis = - try - let ntns = Notation.locate_notation pr_glob_constr s opt_scope in - let ambig = "This string refers to a complex or ambiguous notation." in - str ambig ++ str "\nTry searching with one of\n" ++ ntns - with _ -> str "This string is not part of an identifier or notation." in - Errors.user_err_loc (loc, "interp_search_notation", diagnosis) - -let pr_ssr_search_item _ _ _ = pr_search_item - -(* Workaround the notation API that can only print notations *) - -let is_ident s = try Lexer.check_ident s; true with _ -> false - -let is_ident_part s = is_ident ("H" ^ s) - -let interp_search_notation loc tag okey = - let err msg = Errors.user_err_loc (loc, "interp_search_notation", msg) in - let mk_pntn s for_key = - let n = String.length s in - let s' = String.make (n + 2) ' ' in - let rec loop i i' = - if i >= n then s', i' - 2 else if s.[i] = ' ' then loop (i + 1) i' else - let j = try String.index_from s (i + 1) ' ' with _ -> n in - let m = j - i in - if s.[i] = '\'' && i < j - 2 && s.[j - 1] = '\'' then - (String.blit s (i + 1) s' i' (m - 2); loop (j + 1) (i' + m - 1)) - else if for_key && is_ident (String.sub s i m) then - (s'.[i'] <- '_'; loop (j + 1) (i' + 2)) - else (String.blit s i s' i' m; loop (j + 1) (i' + m + 1)) in - loop 0 1 in - let trim_ntn (pntn, m) = String.sub pntn 1 (max 0 m) in - let pr_ntn ntn = str "(" ++ str ntn ++ str ")" in - let pr_and_list pr = function - | [x] -> pr x - | x :: lx -> pr_list pr_comma pr lx ++ pr_comma () ++ str "and " ++ pr x - | [] -> mt () in - let pr_sc sc = str (if sc = "" then "independently" else sc) in - let pr_scs = function - | [""] -> pr_sc "" - | scs -> str "in " ++ pr_and_list pr_sc scs in - let generator, pr_tag_sc = - let ign _ = mt () in match okey with - | Some key -> - let sc = Notation.find_delimiters_scope loc key in - let pr_sc s_in = str s_in ++ spc() ++ str sc ++ pr_comma() in - Notation.pr_scope ign sc, pr_sc - | None -> Notation.pr_scopes ign, ign in - let qtag s_in = pr_tag_sc s_in ++ qstring tag ++ spc()in - let ptag, ttag = - let ptag, m = mk_pntn tag false in - if m <= 0 then err (str "empty notation fragment"); - ptag, trim_ntn (ptag, m) in - let last = ref "" and last_sc = ref "" in - let scs = ref [] and ntns = ref [] in - let push_sc sc = match !scs with - | "" :: scs' -> scs := "" :: sc :: scs' - | scs' -> scs := sc :: scs' in - let get s _ _ = match !last with - | "Scope " -> last_sc := s; last := "" - | "Lonely notation" -> last_sc := ""; last := "" - | "\"" -> - let pntn, m = mk_pntn s true in - if String.string_contains pntn ptag then begin - let ntn = trim_ntn (pntn, m) in - match !ntns with - | [] -> ntns := [ntn]; scs := [!last_sc] - | ntn' :: _ when ntn' = ntn -> push_sc !last_sc - | _ when ntn = ttag -> ntns := ntn :: !ntns; scs := [!last_sc] - | _ :: ntns' when List.mem ntn ntns' -> () - | ntn' :: ntns' -> ntns := ntn' :: ntn :: ntns' - end; - last := "" - | _ -> last := s in - pp_with (Format.make_formatter get (fun _ -> ())) generator; - let ntn = match !ntns with - | [] -> - err (hov 0 (qtag "in" ++ str "does not occur in any notation")) - | ntn :: ntns' when ntn = ttag -> - if ntns' <> [] then begin - let pr_ntns' = pr_and_list pr_ntn ntns' in - msg_warning (hov 4 (qtag "In" ++ str "also occurs in " ++ pr_ntns')) - end; ntn - | [ntn] -> - msgnl (hov 4 (qtag "In" ++ str "is part of notation " ++ pr_ntn ntn)); ntn - | ntns' -> - let e = str "occurs in" ++ spc() ++ pr_and_list pr_ntn ntns' in - err (hov 4 (str "ambiguous: " ++ qtag "in" ++ e)) in - let (nvars, body), ((_, pat), osc) = match !scs with - | [sc] -> Notation.interp_notation loc ntn (None, [sc]) - | scs' -> - try Notation.interp_notation loc ntn (None, []) with _ -> - let e = pr_ntn ntn ++ spc() ++ str "is defined " ++ pr_scs scs' in - err (hov 4 (str "ambiguous: " ++ pr_tag_sc "in" ++ e)) in - let sc = Option.default "" osc in - let _ = - let m_sc = - if osc <> None then str "In " ++ str sc ++ pr_comma() else mt() in - let ntn_pat = trim_ntn (mk_pntn pat false) in - let rbody = glob_constr_of_notation_constr loc body in - let m_body = hov 0 (Constrextern.without_symbols prl_glob_constr rbody) in - let m = m_sc ++ pr_ntn ntn_pat ++ spc () ++ str "denotes " ++ m_body in - msgnl (hov 0 m) in - if List.length !scs > 1 then - let scs' = List.remove (=) sc !scs in - let w = pr_ntn ntn ++ str " is also defined " ++ pr_scs scs' in - msg_warning (hov 4 w) - else if String.string_contains ntn " .. " then - err (pr_ntn ntn ++ str " is an n-ary notation"); - let nvars = List.filter (fun (_,(_,typ)) -> typ = NtnTypeConstr) nvars in - let rec sub () = function - | NVar x when List.mem_assoc x nvars -> GPatVar (loc, (false, x)) - | c -> - glob_constr_of_notation_constr_with_binders loc (fun _ x -> (), x) sub () c in - let _, npat = Patternops.pattern_of_glob_constr (sub () body) in - Search.GlobSearchSubPattern npat - -ARGUMENT EXTEND ssr_search_item TYPED AS ssr_searchitem - PRINTED BY pr_ssr_search_item - | [ string(s) ] -> [ RGlobSearchString (loc,s,None) ] - | [ string(s) "%" preident(key) ] -> [ RGlobSearchString (loc,s,Some key) ] - | [ constr_pattern(p) ] -> [ RGlobSearchSubPattern p ] -END - -let pr_ssr_search_arg _ _ _ = - let pr_item (b, p) = str (if b then "-" else "") ++ pr_search_item p in - pr_list spc pr_item - -ARGUMENT EXTEND ssr_search_arg TYPED AS (bool * ssr_searchitem) list - PRINTED BY pr_ssr_search_arg - | [ "-" ssr_search_item(p) ssr_search_arg(a) ] -> [ (false, p) :: a ] - | [ ssr_search_item(p) ssr_search_arg(a) ] -> [ (true, p) :: a ] - | [ ] -> [ [] ] -END - -(* Main type conclusion pattern filter *) - -let rec splay_search_pattern na = function - | Pattern.PApp (fp, args) -> splay_search_pattern (na + Array.length args) fp - | Pattern.PLetIn (_, _, bp) -> splay_search_pattern na bp - | Pattern.PRef hr -> hr, na - | _ -> Errors.error "no head constant in head search pattern" - -let coerce_search_pattern_to_sort hpat = - let env = Global.env () and sigma = Evd.empty in - let mkPApp fp n_imps args = - let args' = Array.append (Array.make n_imps (Pattern.PMeta None)) args in - Pattern.PApp (fp, args') in - let hr, na = splay_search_pattern 0 hpat in - let dc, ht = - Reductionops.splay_prod env sigma (Universes.unsafe_type_of_global hr) in - let np = List.length dc in - if np < na then Errors.error "too many arguments in head search pattern" else - let hpat' = if np = na then hpat else mkPApp hpat (np - na) [||] in - let warn () = - msg_warning (str "Listing only lemmas with conclusion matching " ++ - pr_constr_pattern hpat') in - if isSort ht then begin warn (); true, hpat' end else - let filter_head, coe_path = - try - let _, cp = - Classops.lookup_path_to_sort_from (push_rels_assum dc env) sigma ht in - warn (); - true, cp - with _ -> false, [] in - let coerce hp coe_index = - let coe = Classops.get_coercion_value coe_index in - try - let coe_ref = reference_of_constr coe in - let n_imps = Option.get (Classops.hide_coercion coe_ref) in - mkPApp (Pattern.PRef coe_ref) n_imps [|hp|] - with _ -> - errorstrm (str "need explicit coercion " ++ pr_constr coe ++ spc () - ++ str "to interpret head search pattern as type") in - filter_head, List.fold_left coerce hpat' coe_path - -let rec interp_head_pat hpat = - let filter_head, p = coerce_search_pattern_to_sort hpat in - let rec loop c = match kind_of_term c with - | Cast (c', _, _) -> loop c' - | Prod (_, _, c') -> loop c' - | LetIn (_, _, _, c') -> loop c' - | _ -> Constr_matching.is_matching (Global.env()) Evd.empty p c in - filter_head, loop - -let all_true _ = true - -let rec interp_search_about args accu = match args with -| [] -> accu -| (flag, arg) :: rem -> - fun gr env typ -> - let ans = Search.search_about_filter arg gr env typ in - (if flag then ans else not ans) && interp_search_about rem accu gr env typ - -let interp_search_arg arg = - let arg = List.map (fun (x,arg) -> x, match arg with - | RGlobSearchString (loc,s,key) -> - if is_ident_part s then Search.GlobSearchString s else - interp_search_notation loc s key - | RGlobSearchSubPattern p -> - try - let intern = Constrintern.intern_constr_pattern in - Search.GlobSearchSubPattern (snd (intern (Global.env()) p)) - with e -> let e = Errors.push e in iraise (Cerrors.process_vernac_interp_error e)) arg in - let hpat, a1 = match arg with - | (_, Search.GlobSearchSubPattern (Pattern.PMeta _)) :: a' -> all_true, a' - | (true, Search.GlobSearchSubPattern p) :: a' -> - let filter_head, p = interp_head_pat p in - if filter_head then p, a' else all_true, arg - | _ -> all_true, arg in - let is_string = - function (_, Search.GlobSearchString _) -> true | _ -> false in - let a2, a3 = List.partition is_string a1 in - interp_search_about (a2 @ a3) (fun gr env typ -> hpat typ) - -(* Module path postfilter *) - -let pr_modloc (b, m) = if b then str "-" ++ pr_reference m else pr_reference m - -let wit_ssrmodloc = add_genarg "ssrmodloc" pr_modloc - -let pr_ssr_modlocs _ _ _ ml = - if ml = [] then str "" else spc () ++ str "in " ++ pr_list spc pr_modloc ml - -ARGUMENT EXTEND ssr_modlocs TYPED AS ssrmodloc list PRINTED BY pr_ssr_modlocs - | [ ] -> [ [] ] -END - -GEXTEND Gram - GLOBAL: ssr_modlocs; - modloc: [[ "-"; m = global -> true, m | m = global -> false, m]]; - ssr_modlocs: [[ "in"; ml = LIST1 modloc -> ml ]]; -END - -let interp_modloc mr = - let interp_mod (_, mr) = - let (loc, qid) = qualid_of_reference mr in - try Nametab.full_name_module qid with Not_found -> - Errors.user_err_loc (loc, "interp_modloc", str "No Module " ++ pr_qualid qid) in - let mr_out, mr_in = List.partition fst mr in - let interp_bmod b = function - | [] -> fun _ _ _ -> true - | rmods -> Search.module_filter (List.map interp_mod rmods, b) in - let is_in = interp_bmod false mr_in and is_out = interp_bmod true mr_out in - fun gr env typ -> is_in gr env typ && is_out gr env typ - -(* The unified, extended vernacular "Search" command *) - -let ssrdisplaysearch gr env t = - let pr_res = pr_global gr ++ spc () ++ str " " ++ pr_lconstr_env env Evd.empty t in - msg (hov 2 pr_res ++ fnl ()) - -VERNAC COMMAND EXTEND SsrSearchPattern CLASSIFIED AS QUERY -| [ "Search" ssr_search_arg(a) ssr_modlocs(mr) ] -> - [ let hpat = interp_search_arg a in - let in_mod = interp_modloc mr in - let post_filter gr env typ = in_mod gr env typ && hpat gr env typ in - let display gr env typ = - if post_filter gr env typ then ssrdisplaysearch gr env typ - in - Search.generic_search None display ] -END - -(* }}} *) - -(** Alternative notations for "match" and anonymous arguments. {{{ ************) - -(* Syntax: *) -(* if <term> is <pattern> then ... else ... *) -(* if <term> is <pattern> [in ..] return ... then ... else ... *) -(* let: <pattern> := <term> in ... *) -(* let: <pattern> [in ...] := <term> return ... in ... *) -(* The scope of a top-level 'as' in the pattern extends over the *) -(* 'return' type (dependent if/let). *) -(* Note that the optional "in ..." appears next to the <pattern> *) -(* rather than the <term> in then "let:" syntax. The alternative *) -(* would lead to ambiguities in, e.g., *) -(* let: p1 := (*v---INNER LET:---v *) *) -(* let: p2 := let: p3 := e3 in k return t in k2 in k1 return t' *) -(* in b (*^--ALTERNATIVE INNER LET--------^ *) *) - -(* Caveat : There is no pretty-printing support, since this would *) -(* require a modification to the Coq kernel (adding a new match *) -(* display style -- why aren't these strings?); also, the v8.1 *) -(* pretty-printer only allows extension hooks for printing *) -(* integer or string literals. *) -(* Also note that in the v8 grammar "is" needs to be a keyword; *) -(* as this can't be done from an ML extension file, the new *) -(* syntax will only work when ssreflect.v is imported. *) - -let no_ct = None, None and no_rt = None in -let aliasvar = function - | [_, [CPatAlias (loc, _, id)]] -> Some (loc,Name id) - | _ -> None in -let mk_cnotype mp = aliasvar mp, None in -let mk_ctype mp t = aliasvar mp, Some t in -let mk_rtype t = Some t in -let mk_dthen loc (mp, ct, rt) c = (loc, mp, c), ct, rt in -let mk_let loc rt ct mp c1 = - CCases (loc, LetPatternStyle, rt, ct, [loc, mp, c1]) in -GEXTEND Gram - GLOBAL: binder_constr; - ssr_rtype: [[ "return"; t = operconstr LEVEL "100" -> mk_rtype t ]]; - ssr_mpat: [[ p = pattern -> [!@loc, [p]] ]]; - ssr_dpat: [ - [ mp = ssr_mpat; "in"; t = pattern; rt = ssr_rtype -> mp, mk_ctype mp t, rt - | mp = ssr_mpat; rt = ssr_rtype -> mp, mk_cnotype mp, rt - | mp = ssr_mpat -> mp, no_ct, no_rt - ] ]; - ssr_dthen: [[ dp = ssr_dpat; "then"; c = lconstr -> mk_dthen !@loc dp c ]]; - ssr_elsepat: [[ "else" -> [!@loc, [CPatAtom (!@loc, None)]] ]]; - ssr_else: [[ mp = ssr_elsepat; c = lconstr -> !@loc, mp, c ]]; - binder_constr: [ - [ "if"; c = operconstr LEVEL "200"; "is"; db1 = ssr_dthen; b2 = ssr_else -> - let b1, ct, rt = db1 in CCases (!@loc, MatchStyle, rt, [c, ct], [b1; b2]) - | "if"; c = operconstr LEVEL "200";"isn't";db1 = ssr_dthen; b2 = ssr_else -> - let b1, ct, rt = db1 in - let b1, b2 = - let (l1, p1, r1), (l2, p2, r2) = b1, b2 in (l1, p1, r2), (l2, p2, r1) in - CCases (!@loc, MatchStyle, rt, [c, ct], [b1; b2]) - | "let"; ":"; mp = ssr_mpat; ":="; c = lconstr; "in"; c1 = lconstr -> - mk_let (!@loc) no_rt [c, no_ct] mp c1 - | "let"; ":"; mp = ssr_mpat; ":="; c = lconstr; - rt = ssr_rtype; "in"; c1 = lconstr -> - mk_let (!@loc) rt [c, mk_cnotype mp] mp c1 - | "let"; ":"; mp = ssr_mpat; "in"; t = pattern; ":="; c = lconstr; - rt = ssr_rtype; "in"; c1 = lconstr -> - mk_let (!@loc) rt [c, mk_ctype mp t] mp c1 - ] ]; -END - -GEXTEND Gram - GLOBAL: closed_binder; - closed_binder: [ - [ ["of" | "&"]; c = operconstr LEVEL "99" -> - [LocalRawAssum ([!@loc, Anonymous], Default Explicit, c)] - ] ]; -END -(* }}} *) - -(** Tacticals (+, -, *, done, by, do, =>, first, and last). {{{ ***************) - -(** Bracketing tactical *) - -(* The tactic pretty-printer doesn't know that some extended tactics *) -(* are actually tacticals. To prevent it from improperly removing *) -(* parentheses we override the parsing rule for bracketed tactic *) -(* expressions so that the pretty-print always reflects the input. *) -(* (Removing user-specified parentheses is dubious anyway). *) - -GEXTEND Gram - GLOBAL: tactic_expr; - ssrparentacarg: [[ "("; tac = tactic_expr; ")" -> !@loc, Tacexp tac ]]; - tactic_expr: LEVEL "0" [[ arg = ssrparentacarg -> TacArg arg ]]; -END - -(** The internal "done" and "ssrautoprop" tactics. *) - -(* For additional flexibility, "done" and "ssrautoprop" are *) -(* defined in Ltac. *) -(* Although we provide a default definition in ssreflect, *) -(* we look up the definition dynamically at each call point, *) -(* to allow for user extensions. "ssrautoprop" defaults to *) -(* trivial. *) - -let donetac gl = - let tacname = - try Nametab.locate_tactic (qualid_of_ident (id_of_string "done")) - with Not_found -> try Nametab.locate_tactic (ssrqid "done") - with Not_found -> Errors.error "The ssreflect library was not loaded" in - let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in - Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl - -let prof_donetac = mk_profiler "donetac";; -let donetac gl = prof_donetac.profile donetac gl;; - -let ssrautoprop gl = - try - let tacname = - try Nametab.locate_tactic (qualid_of_ident (id_of_string "ssrautoprop")) - with Not_found -> Nametab.locate_tactic (ssrqid "ssrautoprop") in - let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in - Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl - with Not_found -> Proofview.V82.of_tactic (Auto.full_trivial []) gl - -let () = ssrautoprop_tac := ssrautoprop - -let tclBY tac = tclTHEN tac donetac - -(** Tactical arguments. *) - -(* We have four kinds: simple tactics, [|]-bracketed lists, hints, and swaps *) -(* The latter two are used in forward-chaining tactics (have, suffice, wlog) *) -(* and subgoal reordering tacticals (; first & ; last), respectively. *) - -(* Force use of the tactic_expr parsing entry, to rule out tick marks. *) -let pr_ssrtacarg _ _ prt = prt tacltop -ARGUMENT EXTEND ssrtacarg TYPED AS tactic PRINTED BY pr_ssrtacarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END -GEXTEND Gram - GLOBAL: ssrtacarg; - ssrtacarg: [[ tac = tactic_expr LEVEL "5" -> tac ]]; -END - -(* Lexically closed tactic for tacticals. *) -let pr_ssrtclarg _ _ prt tac = prt tacltop tac -ARGUMENT EXTEND ssrtclarg TYPED AS ssrtacarg - PRINTED BY pr_ssrtclarg -| [ ssrtacarg(tac) ] -> [ tac ] -END -let eval_tclarg ist tac = ssrevaltac ist tac - -let pr_ortacs prt = - let rec pr_rec = function - | [None] -> spc() ++ str "|" ++ spc() - | None :: tacs -> spc() ++ str "|" ++ pr_rec tacs - | Some tac :: tacs -> spc() ++ str "| " ++ prt tacltop tac ++ pr_rec tacs - | [] -> mt() in - function - | [None] -> spc() - | None :: tacs -> pr_rec tacs - | Some tac :: tacs -> prt tacltop tac ++ pr_rec tacs - | [] -> mt() -let pr_ssrortacs _ _ = pr_ortacs - -ARGUMENT EXTEND ssrortacs TYPED AS tactic option list PRINTED BY pr_ssrortacs -| [ ssrtacarg(tac) "|" ssrortacs(tacs) ] -> [ Some tac :: tacs ] -| [ ssrtacarg(tac) "|" ] -> [ [Some tac; None] ] -| [ ssrtacarg(tac) ] -> [ [Some tac] ] -| [ "|" ssrortacs(tacs) ] -> [ None :: tacs ] -| [ "|" ] -> [ [None; None] ] -END - -let pr_hintarg prt = function - | true, tacs -> hv 0 (str "[ " ++ pr_ortacs prt tacs ++ str " ]") - | false, [Some tac] -> prt tacltop tac - | _, _ -> mt() - -let pr_ssrhintarg _ _ = pr_hintarg - -let mk_hint tac = false, [Some tac] -let mk_orhint tacs = true, tacs -let nullhint = true, [] -let nohint = false, [] - -ARGUMENT EXTEND ssrhintarg TYPED AS bool * ssrortacs PRINTED BY pr_ssrhintarg -| [ "[" "]" ] -> [ nullhint ] -| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ] -| [ ssrtacarg(arg) ] -> [ mk_hint arg ] -END - -ARGUMENT EXTEND ssrortacarg TYPED AS ssrhintarg PRINTED BY pr_ssrhintarg -| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ] -END - -let hinttac ist is_by (is_or, atacs) = - let dtac = if is_by then donetac else tclIDTAC in - let mktac = function - | Some atac -> tclTHEN (ssrevaltac ist atac) dtac - | _ -> dtac in - match List.map mktac atacs with - | [] -> if is_or then dtac else tclIDTAC - | [tac] -> tac - | tacs -> tclFIRST tacs - -(** The "-"/"+"/"*" tacticals. *) - -(* These are just visual cues to flag the beginning of the script for *) -(* new subgoals, when indentation is not appropriate (typically after *) -(* tactics that generate more than two subgoals). *) - -TACTIC EXTEND ssrtclplus -| [ "YouShouldNotTypeThis" "+" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclplus" 5 [ArgSep "+ "; ArgSsr "tclarg"] - -TACTIC EXTEND ssrtclminus -| [ "YouShouldNotTypeThis" "-" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclminus" 5 [ArgSep "- "; ArgSsr "tclarg"] - -TACTIC EXTEND ssrtclstar -| [ "YouShouldNotTypeThis" "*" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclstar" 5 [ArgSep "- "; ArgSsr "tclarg"] - -let gen_tclarg = in_gen (rawwit wit_ssrtclarg) - -GEXTEND Gram - GLOBAL: tactic tactic_mode; - tactic: [ - [ "+"; tac = ssrtclarg -> ssrtac_expr !@loc "tclplus" [gen_tclarg tac] - | "-"; tac = ssrtclarg -> ssrtac_expr !@loc "tclminus" [gen_tclarg tac] - | "*"; tac = ssrtclarg -> ssrtac_expr !@loc "tclstar" [gen_tclarg tac] - ] ]; - tactic_mode: [ - [ "+"; tac = G_vernac.subgoal_command -> tac None - | "-"; tac = G_vernac.subgoal_command -> tac None - | "*"; tac = G_vernac.subgoal_command -> tac None - ] ]; -END - -(** The "by" tactical. *) - -let pr_hint prt arg = - if arg = nohint then mt() else str "by " ++ pr_hintarg prt arg -let pr_ssrhint _ _ = pr_hint - -ARGUMENT EXTEND ssrhint TYPED AS ssrhintarg PRINTED BY pr_ssrhint -| [ ] -> [ nohint ] -END - -TACTIC EXTEND ssrtclby -| [ "YouShouldNotTypeThis" ssrhint(tac) ] -> [ Proofview.V82.tactic (hinttac ist true tac) ] -END -set_pr_ssrtac "tclby" 0 [ArgSsr "hint"] - -(* We can't parse "by" in ARGUMENT EXTEND because it will only be made *) -(* into a keyword in ssreflect.v; so we anticipate this in GEXTEND. *) - -GEXTEND Gram - GLOBAL: ssrhint simple_tactic; - ssrhint: [[ "by"; arg = ssrhintarg -> arg ]]; - simple_tactic: [ - [ "by"; arg = ssrhintarg -> - let garg = in_gen (rawwit wit_ssrhint) arg in - ssrtac_atom !@loc "tclby" [garg] - ] ]; -END -(* }}} *) - -(** Bound assumption argument *) - -(* The Ltac API does have a type for assumptions but it is level-dependent *) -(* and therefore impratical to use for complex arguments, so we substitute *) -(* our own to have a uniform representation. Also, we refuse to intern *) -(* idents that match global/section constants, since this would lead to *) -(* fragile Ltac scripts. *) - -type ssrhyp = SsrHyp of loc * identifier - -let hyp_id (SsrHyp (_, id)) = id -let pr_hyp (SsrHyp (_, id)) = pr_id id -let pr_ssrhyp _ _ _ = pr_hyp - -let wit_ssrhyprep = add_genarg "ssrhyprep" pr_hyp - -let hyp_err loc msg id = - Errors.user_err_loc (loc, "ssrhyp", str msg ++ pr_id id) - -let intern_hyp ist (SsrHyp (loc, id) as hyp) = - let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_var) (loc, id)) in - if not_section_id id then hyp else - hyp_err loc "Can't clear section hypothesis " id - -let interp_hyp ist gl (SsrHyp (loc, id)) = - let s, id' = interp_wit wit_var ist gl (loc, id) in - if not_section_id id' then s, SsrHyp (loc, id') else - hyp_err loc "Can't clear section hypothesis " id' - -ARGUMENT EXTEND ssrhyp TYPED AS ssrhyprep PRINTED BY pr_ssrhyp - INTERPRETED BY interp_hyp - GLOBALIZED BY intern_hyp - | [ ident(id) ] -> [ SsrHyp (loc, id) ] -END - -type ssrhyp_or_id = Hyp of ssrhyp | Id of ssrhyp - -let hoik f = function Hyp x -> f x | Id x -> f x -let hoi_id = hoik hyp_id -let pr_hoi = hoik pr_hyp -let pr_ssrhoi _ _ _ = pr_hoi - -let wit_ssrhoirep = add_genarg "ssrhoirep" pr_hoi - -let intern_ssrhoi ist = function - | Hyp h -> Hyp (intern_hyp ist h) - | Id (SsrHyp (_, id)) as hyp -> - let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_ident) id) in - hyp - -let interp_ssrhoi ist gl = function - | Hyp h -> let s, h' = interp_hyp ist gl h in s, Hyp h' - | Id (SsrHyp (loc, id)) -> - let s, id' = interp_wit wit_ident ist gl id in - s, Id (SsrHyp (loc, id')) - -ARGUMENT EXTEND ssrhoi_hyp TYPED AS ssrhoirep PRINTED BY pr_ssrhoi - INTERPRETED BY interp_ssrhoi - GLOBALIZED BY intern_ssrhoi - | [ ident(id) ] -> [ Hyp (SsrHyp(loc, id)) ] -END -ARGUMENT EXTEND ssrhoi_id TYPED AS ssrhoirep PRINTED BY pr_ssrhoi - INTERPRETED BY interp_ssrhoi - GLOBALIZED BY intern_ssrhoi - | [ ident(id) ] -> [ Id (SsrHyp(loc, id)) ] -END - -type ssrhyps = ssrhyp list - -let pr_hyps = pr_list pr_spc pr_hyp -let pr_ssrhyps _ _ _ = pr_hyps -let hyps_ids = List.map hyp_id - -let rec check_hyps_uniq ids = function - | SsrHyp (loc, id) :: _ when List.mem id ids -> - hyp_err loc "Duplicate assumption " id - | SsrHyp (_, id) :: hyps -> check_hyps_uniq (id :: ids) hyps - | [] -> () - -let check_hyp_exists hyps (SsrHyp(_, id)) = - try ignore(Context.lookup_named id hyps) - with Not_found -> errorstrm (str"No assumption is named " ++ pr_id id) - -let interp_hyps ist gl ghyps = - let hyps = List.map snd (List.map (interp_hyp ist gl) ghyps) in - check_hyps_uniq [] hyps; Tacmach.project gl, hyps - -ARGUMENT EXTEND ssrhyps TYPED AS ssrhyp list PRINTED BY pr_ssrhyps - INTERPRETED BY interp_hyps - | [ ssrhyp_list(hyps) ] -> [ check_hyps_uniq [] hyps; hyps ] -END - -(** Terms parsing. {{{ ********************************************************) - -(* Because we allow wildcards in term references, we need to stage the *) -(* interpretation of terms so that it occurs at the right time during *) -(* the execution of the tactic (e.g., so that we don't report an error *) -(* for a term that isn't actually used in the execution). *) -(* The term representation tracks whether the concrete initial term *) -(* started with an opening paren, which might avoid a conflict between *) -(* the ssrreflect term syntax and Gallina notation. *) - -(* kinds of terms *) - -type ssrtermkind = char (* print flag *) - -let input_ssrtermkind strm = match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "(" -> '(' - | Tok.KEYWORD "@" -> '@' - | _ -> ' ' - -let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind - -let id_of_Cterm t = match id_of_cpattern t with - | Some x -> x - | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here" -let ssrhyp_of_ssrterm = function - | k, (_, Some c) as o -> - SsrHyp (constr_loc c, id_of_Cterm (cpattern_of_term o)), String.make 1 k - | _, (_, None) -> assert false - -(* terms *) -let pr_ssrterm _ _ _ = pr_term -let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c -let intern_term ist sigma env (_, c) = glob_constr ist env c -let interp_term ist gl (_, c) = snd (interp_open_constr ist gl c) -let force_term ist gl (_, c) = interp_constr ist gl c -let glob_ssrterm gs = function - | k, (_, Some c) -> k, Tacintern.intern_constr gs c - | ct -> ct -let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c -let interp_ssrterm _ gl t = Tacmach.project gl, t - -ARGUMENT EXTEND ssrterm - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_ssrterm SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "YouShouldNotTypeThis" constr(c) ] -> [ mk_lterm c ] -END - -GEXTEND Gram - GLOBAL: ssrterm; - ssrterm: [[ k = ssrtermkind; c = constr -> mk_term k c ]]; -END -(* }}} *) - -(** The "in" pseudo-tactical {{{ **********************************************) - -(* We can't make "in" into a general tactical because this would create a *) -(* crippling conflict with the ltac let .. in construct. Hence, we add *) -(* explicitly an "in" suffix to all the extended tactics for which it is *) -(* relevant (including move, case, elim) and to the extended do tactical *) -(* below, which yields a general-purpose "in" of the form do [...] in ... *) - -(* This tactical needs to come before the intro tactics because the latter *) -(* must take precautions in order not to interfere with the discharged *) -(* assumptions. This is especially difficult for discharged "let"s, which *) -(* the default simpl and unfold tactics would erase blindly. *) - -(** Clear switch *) - -type ssrclear = ssrhyps - -let pr_clear_ne clr = str "{" ++ pr_hyps clr ++ str "}" -let pr_clear sep clr = if clr = [] then mt () else sep () ++ pr_clear_ne clr - -let pr_ssrclear _ _ _ = pr_clear mt - -ARGUMENT EXTEND ssrclear_ne TYPED AS ssrhyps PRINTED BY pr_ssrclear -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ check_hyps_uniq [] clr; clr ] -END - -ARGUMENT EXTEND ssrclear TYPED AS ssrclear_ne PRINTED BY pr_ssrclear -| [ ssrclear_ne(clr) ] -> [ clr ] -| [ ] -> [ [] ] -END - -let cleartac clr = check_hyps_uniq [] clr; clear (hyps_ids clr) - -(* type ssrwgen = ssrclear * ssrhyp * string *) - -let pr_wgen = function - | (clr, Some((id,k),None)) -> spc() ++ pr_clear mt clr ++ str k ++ pr_hoi id - | (clr, Some((id,k),Some p)) -> - spc() ++ pr_clear mt clr ++ str"(" ++ str k ++ pr_hoi id ++ str ":=" ++ - pr_cpattern p ++ str ")" - | (clr, None) -> spc () ++ pr_clear mt clr -let pr_ssrwgen _ _ _ = pr_wgen - -(* no globwith for char *) -ARGUMENT EXTEND ssrwgen - TYPED AS ssrclear * ((ssrhoi_hyp * string) * cpattern option) option - PRINTED BY pr_ssrwgen -| [ ssrclear_ne(clr) ] -> [ clr, None ] -| [ ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, " "), None) ] -| [ "@" ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, "@"), None) ] -| [ "(" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id," "),Some p) ] -| [ "(" ssrhoi_id(id) ")" ] -> [ [], Some ((id,"("), None) ] -| [ "(@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id,"@"),Some p) ] -| [ "(" "@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id,"@"),Some p) ] -END - -type ssrclseq = InGoal | InHyps - | InHypsGoal | InHypsSeqGoal | InSeqGoal | InHypsSeq | InAll | InAllHyps - -let pr_clseq = function - | InGoal | InHyps -> mt () - | InSeqGoal -> str "|- *" - | InHypsSeqGoal -> str " |- *" - | InHypsGoal -> str " *" - | InAll -> str "*" - | InHypsSeq -> str " |-" - | InAllHyps -> str "* |-" - -let wit_ssrclseq = add_genarg "ssrclseq" pr_clseq -let pr_clausehyps = pr_list pr_spc pr_wgen -let pr_ssrclausehyps _ _ _ = pr_clausehyps - -ARGUMENT EXTEND ssrclausehyps -TYPED AS ssrwgen list PRINTED BY pr_ssrclausehyps -| [ ssrwgen(hyp) "," ssrclausehyps(hyps) ] -> [ hyp :: hyps ] -| [ ssrwgen(hyp) ssrclausehyps(hyps) ] -> [ hyp :: hyps ] -| [ ssrwgen(hyp) ] -> [ [hyp] ] -END - -(* type ssrclauses = ssrahyps * ssrclseq *) - -let pr_clauses (hyps, clseq) = - if clseq = InGoal then mt () - else str "in " ++ pr_clausehyps hyps ++ pr_clseq clseq -let pr_ssrclauses _ _ _ = pr_clauses - -ARGUMENT EXTEND ssrclauses TYPED AS ssrwgen list * ssrclseq - PRINTED BY pr_ssrclauses - | [ "in" ssrclausehyps(hyps) "|-" "*" ] -> [ hyps, InHypsSeqGoal ] - | [ "in" ssrclausehyps(hyps) "|-" ] -> [ hyps, InHypsSeq ] - | [ "in" ssrclausehyps(hyps) "*" ] -> [ hyps, InHypsGoal ] - | [ "in" ssrclausehyps(hyps) ] -> [ hyps, InHyps ] - | [ "in" "|-" "*" ] -> [ [], InSeqGoal ] - | [ "in" "*" ] -> [ [], InAll ] - | [ "in" "*" "|-" ] -> [ [], InAllHyps ] - | [ ] -> [ [], InGoal ] -END - -let nohide = mkRel 0 -let hidden_goal_tag = "the_hidden_goal" - -(* Reduction that preserves the Prod/Let spine of the "in" tactical. *) - -let inc_safe n = if n = 0 then n else n + 1 -let rec safe_depth c = match kind_of_term c with -| LetIn (Name x, _, _, c') when is_discharged_id x -> safe_depth c' + 1 -| LetIn (_, _, _, c') | Prod (_, _, c') -> inc_safe (safe_depth c') -| _ -> 0 - -let red_safe r e s c0 = - let rec red_to e c n = match kind_of_term c with - | Prod (x, t, c') when n > 0 -> - let t' = r e s t in let e' = Environ.push_rel (x, None, t') e in - mkProd (x, t', red_to e' c' (n - 1)) - | LetIn (x, b, t, c') when n > 0 -> - let t' = r e s t in let e' = Environ.push_rel (x, None, t') e in - mkLetIn (x, r e s b, t', red_to e' c' (n - 1)) - | _ -> r e s c in - red_to e c0 (safe_depth c0) - -let check_wgen_uniq gens = - let clears = List.flatten (List.map fst gens) in - check_hyps_uniq [] clears; - let ids = CList.map_filter - (function (_,Some ((id,_),_)) -> Some (hoi_id id) | _ -> None) gens in - let rec check ids = function - | id :: _ when List.mem id ids -> - errorstrm (str"Duplicate generalization " ++ pr_id id) - | id :: hyps -> check (id :: ids) hyps - | [] -> () in - check [] ids - -let pf_clauseids gl gens clseq = - let keep_clears = List.map (fun x, _ -> x, None) in - if gens <> [] then (check_wgen_uniq gens; gens) else - if clseq <> InAll && clseq <> InAllHyps then keep_clears gens else - Errors.error "assumptions should be named explicitly" - -let hidden_clseq = function InHyps | InHypsSeq | InAllHyps -> true | _ -> false - -let hidetacs clseq idhide cl0 = - if not (hidden_clseq clseq) then [] else - [posetac idhide cl0; - Proofview.V82.of_tactic (convert_concl_no_check (mkVar idhide))] - -let discharge_hyp (id', (id, mode)) gl = - let cl' = subst_var id (pf_concl gl) in - match pf_get_hyp gl id, mode with - | (_, None, t), _ | (_, Some _, t), "(" -> - apply_type (mkProd (Name id', t, cl')) [mkVar id] gl - | (_, Some v, t), _ -> - Proofview.V82.of_tactic (convert_concl (mkLetIn (Name id', v, t, cl'))) gl - -let endclausestac id_map clseq gl_id cl0 gl = - let not_hyp' id = not (List.mem_assoc id id_map) in - let orig_id id = try List.assoc id id_map with _ -> id in - let dc, c = Term.decompose_prod_assum (pf_concl gl) in - let hide_goal = hidden_clseq clseq in - let c_hidden = hide_goal && c = mkVar gl_id in - let rec fits forced = function - | (id, _) :: ids, (Name id', _, _) :: dc' when id' = id -> - fits true (ids, dc') - | ids, dc' -> - forced && ids = [] && (not hide_goal || dc' = [] && c_hidden) in - let rec unmark c = match kind_of_term c with - | Var id when hidden_clseq clseq && id = gl_id -> cl0 - | Prod (Name id, t, c') when List.mem_assoc id id_map -> - mkProd (Name (orig_id id), unmark t, unmark c') - | LetIn (Name id, v, t, c') when List.mem_assoc id id_map -> - mkLetIn (Name (orig_id id), unmark v, unmark t, unmark c') - | _ -> map_constr unmark c in - let utac hyp = - Proofview.V82.of_tactic - (convert_hyp_no_check (map_named_declaration unmark hyp)) in - let utacs = List.map utac (pf_hyps gl) in - let ugtac gl' = - Proofview.V82.of_tactic - (convert_concl_no_check (unmark (pf_concl gl'))) gl' in - let ctacs = if hide_goal then [clear [gl_id]] else [] in - let mktac itacs = tclTHENLIST (itacs @ utacs @ ugtac :: ctacs) in - let itac (_, id) = Proofview.V82.of_tactic (introduction id) in - if fits false (id_map, List.rev dc) then mktac (List.map itac id_map) gl else - let all_ids = ids_of_rel_context dc @ pf_ids_of_hyps gl in - if List.for_all not_hyp' all_ids && not c_hidden then mktac [] gl else - Errors.error "tampering with discharged assumptions of \"in\" tactical" - -let is_id_constr c = match kind_of_term c with - | Lambda(_,_,c) when isRel c -> 1 = destRel c - | _ -> false - -let red_product_skip_id env sigma c = match kind_of_term c with - | App(hd,args) when Array.length args = 1 && is_id_constr hd -> args.(0) - | _ -> try Tacred.red_product env sigma c with _ -> c - -let abs_wgen keep_let ist f gen (gl,args,c) = - let sigma, env = project gl, pf_env gl in - let evar_closed t p = - if occur_existential t then - Errors.user_err_loc (loc_of_cpattern p,"ssreflect", - pr_constr_pat t ++ - str" contains holes and matches no subterm of the goal") in - match gen with - | _, Some ((x, mode), None) when mode = "@" || (mode = " " && keep_let) -> - let x = hoi_id x in - let _, bo, ty = pf_get_hyp gl x in - gl, - (if bo <> None then args else mkVar x :: args), - mkProd_or_LetIn (Name (f x),bo,ty) (subst_var x c) - | _, Some ((x, _), None) -> - let x = hoi_id x in - gl, mkVar x :: args, mkProd (Name (f x), pf_get_hyp_typ gl x, subst_var x c) - | _, Some ((x, "@"), Some p) -> - let x = hoi_id x in - let cp = interp_cpattern ist gl p None in - let (t, ucst), c = - try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1 - with NoMatch -> redex_of_pattern env cp, c in - evar_closed t p; - let ut = red_product_skip_id env sigma t in - pf_merge_uc ucst gl, args, mkLetIn(Name (f x), ut, pf_type_of gl t, c) - | _, Some ((x, _), Some p) -> - let x = hoi_id x in - let cp = interp_cpattern ist gl p None in - let (t, ucst), c = - try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1 - with NoMatch -> redex_of_pattern env cp, c in - evar_closed t p; - pf_merge_uc ucst gl, t :: args, mkProd(Name (f x), pf_type_of gl t, c) - | _ -> gl, args, c - -let clr_of_wgen gen clrs = match gen with - | clr, Some ((x, _), None) -> - let x = hoi_id x in - cleartac clr :: cleartac [SsrHyp(Loc.ghost,x)] :: clrs - | clr, _ -> cleartac clr :: clrs - -let tclCLAUSES ist tac (gens, clseq) gl = - if clseq = InGoal || clseq = InSeqGoal then tac gl else - let clr_gens = pf_clauseids gl gens clseq in - let clear = tclTHENLIST (List.rev(List.fold_right clr_of_wgen clr_gens [])) in - let gl_id = mk_anon_id hidden_goal_tag gl in - let cl0 = pf_concl gl in - let dtac gl = - let c = pf_concl gl in - let gl, args, c = - List.fold_right (abs_wgen true ist mk_discharged_id) gens (gl,[], c) in - apply_type c args gl in - let endtac = - let id_map = CList.map_filter (function - | _, Some ((x,_),_) -> let id = hoi_id x in Some (mk_discharged_id id, id) - | _, None -> None) gens in - endclausestac id_map clseq gl_id cl0 in - tclTHENLIST (hidetacs clseq gl_id cl0 @ [dtac; clear; tac; endtac]) gl -(* }}} *) - -(** Simpl switch *) - -type ssrsimpl = Simpl | Cut | SimplCut | Nop - -let pr_simpl = function - | Simpl -> str "/=" - | Cut -> str "//" - | SimplCut -> str "//=" - | Nop -> mt () - -let pr_ssrsimpl _ _ _ = pr_simpl - -let wit_ssrsimplrep = add_genarg "ssrsimplrep" pr_simpl - -ARGUMENT EXTEND ssrsimpl_ne TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl -| [ "/=" ] -> [ Simpl ] -| [ "//" ] -> [ Cut ] -| [ "//=" ] -> [ SimplCut ] -END - -ARGUMENT EXTEND ssrsimpl TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl -| [ ssrsimpl_ne(sim) ] -> [ sim ] -| [ ] -> [ Nop ] -END - -(* We must avoid zeta-converting any "let"s created by the "in" tactical. *) - -let safe_simpltac gl = - let cl' = red_safe Tacred.simpl (pf_env gl) (project gl) (pf_concl gl) in - Proofview.V82.of_tactic (convert_concl_no_check cl') gl - -let simpltac = function - | Simpl -> safe_simpltac - | Cut -> tclTRY donetac - | SimplCut -> tclTHEN safe_simpltac (tclTRY donetac) - | Nop -> tclIDTAC - -(** Rewriting direction *) - -let pr_dir = function L2R -> str "->" | R2L -> str "<-" -let pr_rwdir = function L2R -> mt() | R2L -> str "-" - -let rewritetac dir c = - (* Due to the new optional arg ?tac, application shouldn't be too partial *) - Proofview.V82.of_tactic begin - Equality.general_rewrite (dir = L2R) AllOccurrences true false c - end - -let wit_ssrdir = add_genarg "ssrdir" pr_dir - -let dir_org = function L2R -> 1 | R2L -> 2 - -(** Indexes *) - -(* Since SSR indexes are always positive numbers, we use the 0 value *) -(* to encode an omitted index. We reuse the in or_var type, but we *) -(* supply our own interpretation function, which checks for non *) -(* positive values, and allows the use of constr numerals, so that *) -(* e.g., "let n := eval compute in (1 + 3) in (do n!clear)" works. *) - -type ssrindex = int or_var - -let pr_index = function - | ArgVar (_, id) -> pr_id id - | ArgArg n when n > 0 -> int n - | _ -> mt () -let pr_ssrindex _ _ _ = pr_index - -let noindex = ArgArg 0 -let allocc = Some(false,[]) - -let check_index loc i = - if i > 0 then i else loc_error loc "Index not positive" -let mk_index loc = function ArgArg i -> ArgArg (check_index loc i) | iv -> iv - -let interp_index ist gl idx = - Tacmach.project gl, - match idx with - | ArgArg _ -> idx - | ArgVar (loc, id) -> - let i = - try - let v = Id.Map.find id ist.lfun in - begin match Value.to_int v with - | Some i -> i - | None -> - begin match Value.to_constr v with - | Some c -> - let rc = Detyping.detype false [] (pf_env gl) (project gl) c in - begin match Notation.uninterp_prim_token rc with - | _, Numeral bigi -> int_of_string (Bigint.to_string bigi) - | _ -> raise Not_found - end - | None -> raise Not_found - end end - with _ -> loc_error loc "Index not a number" in - ArgArg (check_index loc i) - -ARGUMENT EXTEND ssrindex TYPED AS int_or_var PRINTED BY pr_ssrindex - INTERPRETED BY interp_index -| [ int_or_var(i) ] -> [ mk_index loc i ] -END - -(** Occurrence switch *) - -(* The standard syntax of complemented occurrence lists involves a single *) -(* initial "-", e.g., {-1 3 5}. An initial *) -(* "+" may be used to indicate positive occurrences (the default). The *) -(* "+" is optional, except if the list of occurrences starts with a *) -(* variable or is empty (to avoid confusion with a clear switch). The *) -(* empty positive switch "{+}" selects no occurrences, while the empty *) -(* negative switch "{-}" selects all occurrences explicitly; this is the *) -(* default, but "{-}" prevents the implicit clear, and can be used to *) -(* force dependent elimination -- see ndefectelimtac below. *) - -type ssrocc = occ - -let pr_occ = function - | Some (true, occ) -> str "{-" ++ pr_list pr_spc int occ ++ str "}" - | Some (false, occ) -> str "{+" ++ pr_list pr_spc int occ ++ str "}" - | None -> str "{}" - -let pr_ssrocc _ _ _ = pr_occ - -ARGUMENT EXTEND ssrocc TYPED AS (bool * int list) option PRINTED BY pr_ssrocc -| [ natural(n) natural_list(occ) ] -> [ - Some (false, List.map (check_index loc) (n::occ)) ] -| [ "-" natural_list(occ) ] -> [ Some (true, occ) ] -| [ "+" natural_list(occ) ] -> [ Some (false, occ) ] -END - -let pf_mkprod gl c ?(name=constr_name c) cl = - let t = pf_type_of gl c in - if name <> Anonymous || noccurn 1 cl then mkProd (name, t, cl) else - mkProd (Name (pf_type_id gl t), t, cl) - -let pf_abs_prod name gl c cl = pf_mkprod gl c ~name (subst_term c cl) - -(** Discharge occ switch (combined occurrence / clear switch *) - -type ssrdocc = ssrclear option * ssrocc option - -let mkocc occ = None, occ -let noclr = mkocc None -let mkclr clr = Some clr, None -let nodocc = mkclr [] - -let pr_docc = function - | None, occ -> pr_occ occ - | Some clr, _ -> pr_clear mt clr - -let pr_ssrdocc _ _ _ = pr_docc - -ARGUMENT EXTEND ssrdocc TYPED AS ssrclear option * ssrocc PRINTED BY pr_ssrdocc -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ mkclr clr ] -| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ] -END - -(** View hint database and View application. {{{ ******************************) - -(* There are three databases of lemmas used to mediate the application *) -(* of reflection lemmas: one for forward chaining, one for backward *) -(* chaining, and one for secondary backward chaining. *) - -(* View hints *) - -let rec isCxHoles = function (CHole _, None) :: ch -> isCxHoles ch | _ -> false - -let pr_raw_ssrhintref prc _ _ = function - | CAppExpl (_, (None, r,x), args) when isCHoles args -> - prc (CRef (r,x)) ++ str "|" ++ int (List.length args) - | CApp (_, (_, CRef _), _) as c -> prc c - | CApp (_, (_, c), args) when isCxHoles args -> - prc c ++ str "|" ++ int (List.length args) - | c -> prc c - -let pr_rawhintref = function - | GApp (_, f, args) when isRHoles args -> - pr_glob_constr f ++ str "|" ++ int (List.length args) - | c -> pr_glob_constr c - -let pr_glob_ssrhintref _ _ _ (c, _) = pr_rawhintref c - -let pr_ssrhintref prc _ _ = prc - -let mkhintref loc c n = match c with - | CRef (r,x) -> CAppExpl (loc, (None, r, x), mkCHoles loc n) - | _ -> mkAppC (c, mkCHoles loc n) - -ARGUMENT EXTEND ssrhintref - PRINTED BY pr_ssrhintref - RAW_TYPED AS constr RAW_PRINTED BY pr_raw_ssrhintref - GLOB_TYPED AS constr GLOB_PRINTED BY pr_glob_ssrhintref - | [ constr(c) ] -> [ c ] - | [ constr(c) "|" natural(n) ] -> [ mkhintref loc c n ] -END - -(* View purpose *) - -let pr_viewpos = function - | 0 -> str " for move/" - | 1 -> str " for apply/" - | 2 -> str " for apply//" - | _ -> mt () - -let pr_ssrviewpos _ _ _ = pr_viewpos - -ARGUMENT EXTEND ssrviewpos TYPED AS int PRINTED BY pr_ssrviewpos - | [ "for" "move" "/" ] -> [ 0 ] - | [ "for" "apply" "/" ] -> [ 1 ] - | [ "for" "apply" "/" "/" ] -> [ 2 ] - | [ "for" "apply" "//" ] -> [ 2 ] - | [ ] -> [ 3 ] -END - -let pr_ssrviewposspc _ _ _ i = pr_viewpos i ++ spc () - -ARGUMENT EXTEND ssrviewposspc TYPED AS ssrviewpos PRINTED BY pr_ssrviewposspc - | [ ssrviewpos(i) ] -> [ i ] -END - -(* The table and its display command *) - -let viewtab : glob_constr list array = Array.make 3 [] - -let _ = - let init () = Array.fill viewtab 0 3 [] in - let freeze _ = Array.copy viewtab in - let unfreeze vt = Array.blit vt 0 viewtab 0 3 in - Summary.declare_summary "ssrview" - { Summary.freeze_function = freeze; - Summary.unfreeze_function = unfreeze; - Summary.init_function = init } - -let mapviewpos f n k = if n < 3 then f n else for i = 0 to k - 1 do f i done - -let print_view_hints i = - let pp_viewname = str "Hint View" ++ pr_viewpos i ++ str " " in - let pp_hints = pr_list spc pr_rawhintref viewtab.(i) in - ppnl (pp_viewname ++ hov 0 pp_hints ++ Pp.cut ()) - -VERNAC COMMAND EXTEND PrintView CLASSIFIED AS QUERY -| [ "Print" "Hint" "View" ssrviewpos(i) ] -> [ mapviewpos print_view_hints i 3 ] -END - -(* Populating the table *) - -let cache_viewhint (_, (i, lvh)) = - let mem_raw h = List.exists (Notation_ops.eq_glob_constr h) in - let add_hint h hdb = if mem_raw h hdb then hdb else h :: hdb in - viewtab.(i) <- List.fold_right add_hint lvh viewtab.(i) - -let subst_viewhint ( subst, (i, lvh as ilvh)) = - let lvh' = List.smartmap (Detyping.subst_glob_constr subst) lvh in - if lvh' == lvh then ilvh else i, lvh' - -let classify_viewhint x = Libobject.Substitute x - -let in_viewhint = - Libobject.declare_object {(Libobject.default_object "VIEW_HINTS") with - Libobject.open_function = (fun i o -> if i = 1 then cache_viewhint o); - Libobject.cache_function = cache_viewhint; - Libobject.subst_function = subst_viewhint; - Libobject.classify_function = classify_viewhint } - -let glob_view_hints lvh = - List.map (Constrintern.intern_constr (Global.env ())) lvh - -let add_view_hints lvh i = Lib.add_anonymous_leaf (in_viewhint (i, lvh)) - -VERNAC COMMAND EXTEND HintView CLASSIFIED AS QUERY - | [ "Hint" "View" ssrviewposspc(n) ne_ssrhintref_list(lvh) ] -> - [ mapviewpos (add_view_hints (glob_view_hints lvh)) n 2 ] -END - -(** Views *) - -(* Views for the "move" and "case" commands are actually open *) -(* terms, but this is handled by interp_view, which is called *) -(* by interp_casearg. We use lists, to support the *) -(* "double-view" feature of the apply command. *) - -(* type ssrview = ssrterm list *) - -let pr_view = pr_list mt (fun c -> str "/" ++ pr_term c) - -let pr_ssrview _ _ _ = pr_view - -ARGUMENT EXTEND ssrview TYPED AS ssrterm list - PRINTED BY pr_ssrview -| [ "/" constr(c) ] -> [ [mk_term ' ' c] ] -| [ "/" constr(c) ssrview(w) ] -> [ (mk_term ' ' c) :: w ] -END - -(* There are two ways of "applying" a view to term: *) -(* 1- using a view hint if the view is an instance of some *) -(* (reflection) inductive predicate. *) -(* 2- applying the view if it coerces to a function, adding *) -(* implicit arguments. *) -(* They require guessing the view hints and the number of *) -(* implicits, respectively, which we do by brute force. *) - -let view_error s gv = - errorstrm (str ("Cannot " ^ s ^ " view ") ++ pr_term gv) - -let interp_view ist si env sigma gv rid = - match intern_term ist sigma env gv with - | GApp (loc, GHole _, rargs) -> - let rv = GApp (loc, rid, rargs) in - snd (interp_open_constr ist (re_sig si sigma) (rv, None)) - | rv -> - let interp rc rargs = - interp_open_constr ist (re_sig si sigma) (mkRApp rc rargs, None) in - let rec simple_view rargs n = - if n < 0 then view_error "use" gv else - try interp rv rargs with _ -> simple_view (mkRHole :: rargs) (n - 1) in - let view_nbimps = interp_view_nbimps ist (re_sig si sigma) rv in - let view_args = [mkRApp rv (mkRHoles view_nbimps); rid] in - let rec view_with = function - | [] -> simple_view [rid] (interp_nbargs ist (re_sig si sigma) rv) - | hint :: hints -> try interp hint view_args with _ -> view_with hints in - snd (view_with (if view_nbimps < 0 then [] else viewtab.(0))) - -let top_id = mk_internal_id "top assumption" - -let with_view ist si env gl0 c name cl prune = - let c2r ist x = { ist with lfun = - Id.Map.add top_id (Value.of_constr x) ist.lfun } in - let rec loop (sigma, c') = function - | f :: view -> - let rid, ist = match kind_of_term c' with - | Var id -> mkRVar id, ist - | _ -> mkRltacVar top_id, c2r ist c' in - loop (interp_view ist si env sigma f rid) view - | [] -> - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - let c' = Reductionops.nf_evar sigma c' in - let n, c', _, ucst = pf_abs_evars gl0 (sigma, c') in - let c' = if not prune then c' else pf_abs_cterm gl0 n c' in - let gl0 = pf_merge_uc ucst gl0 in - pf_abs_prod name gl0 c' (prod_applist cl [c]), c', pf_merge_uc_of sigma gl0 - in loop - -let pf_with_view ist gl (prune, view) cl c = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - with_view ist si env gl c (constr_name c) cl prune (sigma, c) view -(* }}} *) - -(** Extended intro patterns {{{ ***********************************************) - -type ssrtermrep = char * glob_constr_and_expr -type ssripat = - | IpatSimpl of ssrclear * ssrsimpl - | IpatId of identifier - | IpatWild - | IpatCase of ssripats list - | IpatRw of ssrocc * ssrdir - | IpatAll - | IpatAnon - | IpatView of ssrtermrep list - | IpatNoop - | IpatNewHidden of identifier list -and ssripats = ssripat list - -let remove_loc = snd - -let rec ipat_of_intro_pattern = function - | IntroNaming (IntroIdentifier id) -> IpatId id - | IntroAction IntroWildcard -> IpatWild - | IntroAction (IntroOrAndPattern iorpat) -> - IpatCase - (List.map (List.map ipat_of_intro_pattern) - (List.map (List.map remove_loc) iorpat)) - | IntroNaming IntroAnonymous -> IpatAnon - | IntroAction (IntroRewrite b) -> IpatRw (allocc, if b then L2R else R2L) - | IntroNaming (IntroFresh id) -> IpatAnon - | IntroAction (IntroApplyOn _) -> (* to do *) Errors.error "TO DO" - | IntroAction (IntroInjection ips) -> - IpatCase [List.map ipat_of_intro_pattern (List.map remove_loc ips)] - | IntroForthcoming _ -> (* Unable to determine which kind of ipat interp_introid could return [HH] *) - assert false - -let rec pr_ipat = function - | IpatId id -> pr_id id - | IpatSimpl (clr, sim) -> pr_clear mt clr ++ pr_simpl sim - | IpatCase iorpat -> hov 1 (str "[" ++ pr_iorpat iorpat ++ str "]") - | IpatRw (occ, dir) -> pr_occ occ ++ pr_dir dir - | IpatAll -> str "*" - | IpatWild -> str "_" - | IpatAnon -> str "?" - | IpatView v -> pr_view v - | IpatNoop -> str "-" - | IpatNewHidden l -> str "[:" ++ pr_list spc pr_id l ++ str "]" -and pr_iorpat iorpat = pr_list pr_bar pr_ipats iorpat -and pr_ipats ipats = pr_list spc pr_ipat ipats - -let wit_ssripatrep = add_genarg "ssripatrep" pr_ipat - -let pr_ssripat _ _ _ = pr_ipat -let pr_ssripats _ _ _ = pr_ipats -let pr_ssriorpat _ _ _ = pr_iorpat - -let intern_ipat ist ipat = - let rec check_pat = function - | IpatSimpl (clr, _) -> ignore (List.map (intern_hyp ist) clr) - | IpatCase iorpat -> List.iter (List.iter check_pat) iorpat - | _ -> () in - check_pat ipat; ipat - -let intern_ipats ist = List.map (intern_ipat ist) - -let interp_introid ist gl id = - try IntroNaming (IntroIdentifier (hyp_id (snd (interp_hyp ist gl (SsrHyp (dummy_loc, id)))))) - with _ -> snd(snd (interp_intro_pattern ist gl (dummy_loc,IntroNaming (IntroIdentifier id)))) - -let rec add_intro_pattern_hyps (loc, ipat) hyps = match ipat with - | IntroNaming (IntroIdentifier id) -> - if not_section_id id then SsrHyp (loc, id) :: hyps else - hyp_err loc "Can't delete section hypothesis " id - | IntroAction IntroWildcard -> hyps - | IntroAction (IntroOrAndPattern iorpat) -> - List.fold_right (List.fold_right add_intro_pattern_hyps) iorpat hyps - | IntroNaming IntroAnonymous -> [] - | IntroNaming (IntroFresh _) -> [] - | IntroAction (IntroRewrite _) -> hyps - | IntroAction (IntroInjection ips) -> List.fold_right add_intro_pattern_hyps ips hyps - | IntroAction (IntroApplyOn (c,pat)) -> add_intro_pattern_hyps pat hyps - | IntroForthcoming _ -> - (* As in ipat_of_intro_pattern, was unable to determine which kind - of ipat interp_introid could return [HH] *) assert false - -let rec interp_ipat ist gl = - let ltacvar id = Id.Map.mem id ist.lfun in - let rec interp = function - | IpatId id when ltacvar id -> - ipat_of_intro_pattern (interp_introid ist gl id) - | IpatSimpl (clr, sim) -> - let add_hyps (SsrHyp (loc, id) as hyp) hyps = - if not (ltacvar id) then hyp :: hyps else - add_intro_pattern_hyps (loc, (interp_introid ist gl id)) hyps in - let clr' = List.fold_right add_hyps clr [] in - check_hyps_uniq [] clr'; IpatSimpl (clr', sim) - | IpatCase iorpat -> IpatCase (List.map (List.map interp) iorpat) - | IpatNewHidden l -> - IpatNewHidden - (List.map (function - | IntroNaming (IntroIdentifier id) -> id - | _ -> assert false) - (List.map (interp_introid ist gl) l)) - | ipat -> ipat in - interp - -let interp_ipats ist gl l = project gl, List.map (interp_ipat ist gl) l - -let pushIpatRw = function - | pats :: orpat -> (IpatRw (allocc, L2R) :: pats) :: orpat - | [] -> [] - -let pushIpatNoop = function - | pats :: orpat -> (IpatNoop :: pats) :: orpat - | [] -> [] - -ARGUMENT EXTEND ssripat TYPED AS ssripatrep list PRINTED BY pr_ssripats - INTERPRETED BY interp_ipats - GLOBALIZED BY intern_ipats - | [ "_" ] -> [ [IpatWild] ] - | [ "*" ] -> [ [IpatAll] ] - | [ ident(id) ] -> [ [IpatId id] ] - | [ "?" ] -> [ [IpatAnon] ] - | [ ssrsimpl_ne(sim) ] -> [ [IpatSimpl ([], sim)] ] - | [ ssrdocc(occ) "->" ] -> [ match occ with - | None, occ -> [IpatRw (occ, L2R)] - | Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, L2R)]] - | [ ssrdocc(occ) "<-" ] -> [ match occ with - | None, occ -> [IpatRw (occ, R2L)] - | Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, R2L)]] - | [ ssrdocc(occ) ] -> [ match occ with - | Some cl, _ -> check_hyps_uniq [] cl; [IpatSimpl (cl, Nop)] - | _ -> loc_error loc "Only identifiers are allowed here"] - | [ "->" ] -> [ [IpatRw (allocc, L2R)] ] - | [ "<-" ] -> [ [IpatRw (allocc, R2L)] ] - | [ "-" ] -> [ [IpatNoop] ] - | [ "-/" "=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ] - | [ "-/=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ] - | [ "-/" "/" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ] - | [ "-//" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ] - | [ "-/" "/=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ "-//" "=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ "-//=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ ssrview(v) ] -> [ [IpatView v] ] - | [ "[" ":" ident_list(idl) "]" ] -> [ [IpatNewHidden idl] ] -END - -ARGUMENT EXTEND ssripats TYPED AS ssripat PRINTED BY pr_ssripats - | [ ssripat(i) ssripats(tl) ] -> [ i @ tl ] - | [ ] -> [ [] ] -END - -ARGUMENT EXTEND ssriorpat TYPED AS ssripat list PRINTED BY pr_ssriorpat -| [ ssripats(pats) "|" ssriorpat(orpat) ] -> [ pats :: orpat ] -| [ ssripats(pats) "|-" ">" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ] -| [ ssripats(pats) "|-" ssriorpat(orpat) ] -> [ pats :: pushIpatNoop orpat ] -| [ ssripats(pats) "|->" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ] -| [ ssripats(pats) "||" ssriorpat(orpat) ] -> [ pats :: [] :: orpat ] -| [ ssripats(pats) "|||" ssriorpat(orpat) ] -> [ pats :: [] :: [] :: orpat ] -| [ ssripats(pats) "||||" ssriorpat(orpat) ] -> [ [pats; []; []; []] @ orpat ] -| [ ssripats(pats) ] -> [ [pats] ] -END - -let reject_ssrhid strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "[" -> - (match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD ":" -> raise Stream.Failure - | _ -> ()) - | _ -> () - -let test_nohidden = Gram.Entry.of_parser "test_ssrhid" reject_ssrhid - -ARGUMENT EXTEND ssrcpat TYPED AS ssripatrep PRINTED BY pr_ssripat - | [ "YouShouldNotTypeThis" ssriorpat(x) ] -> [ IpatCase x ] -END - -GEXTEND Gram - GLOBAL: ssrcpat; - ssrcpat: [[ test_nohidden; "["; iorpat = ssriorpat; "]" -> IpatCase iorpat ]]; -END - -GEXTEND Gram - GLOBAL: ssripat; - ssripat: [[ pat = ssrcpat -> [pat] ]]; -END - -ARGUMENT EXTEND ssripats_ne TYPED AS ssripat PRINTED BY pr_ssripats - | [ ssripat(i) ssripats(tl) ] -> [ i @ tl ] -END - -(* subsets of patterns *) -let check_ssrhpats loc w_binders ipats = - let err_loc s = Errors.user_err_loc (loc, "ssreflect", s) in - let clr, ipats = - let rec aux clr = function - | IpatSimpl (cl, Nop) :: tl -> aux (clr @ cl) tl - | IpatSimpl (cl, sim) :: tl -> clr @ cl, IpatSimpl ([], sim) :: tl - | tl -> clr, tl - in aux [] ipats in - let simpl, ipats = - match List.rev ipats with - | IpatSimpl ([],_) as s :: tl -> [s], List.rev tl - | _ -> [], ipats in - if simpl <> [] && not w_binders then - err_loc (str "No s-item allowed here: " ++ pr_ipats simpl); - let ipat, binders = - let rec loop ipat = function - | [] -> ipat, [] - | ( IpatId _| IpatAnon| IpatCase _| IpatRw _ as i) :: tl -> - if w_binders then - if simpl <> [] && tl <> [] then - err_loc(str"binders XOR s-item allowed here: "++pr_ipats(tl@simpl)) - else if not (List.for_all (function IpatId _ -> true | _ -> false) tl) - then err_loc (str "Only binders allowed here: " ++ pr_ipats tl) - else ipat @ [i], tl - else - if tl = [] then ipat @ [i], [] - else err_loc (str "No binder or s-item allowed here: " ++ pr_ipats tl) - | hd :: tl -> loop (ipat @ [hd]) tl - in loop [] ipats in - ((clr, ipat), binders), simpl - -let single loc = - function [x] -> x | _ -> loc_error loc "Only one intro pattern is allowed" - -let pr_hpats (((clr, ipat), binders), simpl) = - pr_clear mt clr ++ pr_ipats ipat ++ pr_ipats binders ++ pr_ipats simpl -let pr_ssrhpats _ _ _ = pr_hpats -let pr_ssrhpats_wtransp _ _ _ (_, x) = pr_hpats x - -ARGUMENT EXTEND ssrhpats TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat -PRINTED BY pr_ssrhpats - | [ ssripats(i) ] -> [ check_ssrhpats loc true i ] -END - -ARGUMENT EXTEND ssrhpats_wtransp - TYPED AS bool * (((ssrclear * ssripat) * ssripat) * ssripat) - PRINTED BY pr_ssrhpats_wtransp - | [ ssripats(i) ] -> [ false,check_ssrhpats loc true i ] - | [ ssripats(i) "@" ssripats(j) ] -> [ true,check_ssrhpats loc true (i @ j) ] -END - -ARGUMENT EXTEND ssrhpats_nobs -TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat PRINTED BY pr_ssrhpats - | [ ssripats(i) ] -> [ check_ssrhpats loc false i ] -END - -ARGUMENT EXTEND ssrrpat TYPED AS ssripatrep PRINTED BY pr_ssripat - | [ "->" ] -> [ IpatRw (allocc, L2R) ] - | [ "<-" ] -> [ IpatRw (allocc, R2L) ] -END - -type ssrintros = ssripats - -let pr_intros sep intrs = - if intrs = [] then mt() else sep () ++ str "=> " ++ pr_ipats intrs -let pr_ssrintros _ _ _ = pr_intros mt - -ARGUMENT EXTEND ssrintros_ne TYPED AS ssripat - PRINTED BY pr_ssrintros - | [ "=>" ssripats_ne(pats) ] -> [ pats ] -END - -ARGUMENT EXTEND ssrintros TYPED AS ssrintros_ne PRINTED BY pr_ssrintros - | [ ssrintros_ne(intrs) ] -> [ intrs ] - | [ ] -> [ [] ] -END - -let injecteq_id = mk_internal_id "injection equation" - -let pf_nb_prod gl = nb_prod (pf_concl gl) - -let rev_id = mk_internal_id "rev concl" - -let revtoptac n0 gl = - let n = pf_nb_prod gl - n0 in - let dc, cl = decompose_prod_n n (pf_concl gl) in - let dc' = dc @ [Name rev_id, compose_prod (List.rev dc) cl] in - let f = compose_lam dc' (mkEtaApp (mkRel (n + 1)) (-n) 1) in - refine (mkApp (f, [|Evarutil.mk_new_meta ()|])) gl - -let equality_inj l b id c gl = - let msg = ref "" in - try Proofview.V82.of_tactic (Equality.inj l b None c) gl - with - | Compat.Exc_located(_,Errors.UserError (_,s)) - | Errors.UserError (_,s) - when msg := Pp.string_of_ppcmds s; - !msg = "Not a projectable equality but a discriminable one." || - !msg = "Nothing to inject." -> - msg_warning (str !msg); - discharge_hyp (id, (id, "")) gl - -let injectidl2rtac id c gl = - tclTHEN (equality_inj None true id c) (revtoptac (pf_nb_prod gl)) gl - -let injectl2rtac c = match kind_of_term c with -| Var id -> injectidl2rtac id (mkVar id, NoBindings) -| _ -> - let id = injecteq_id in - tclTHENLIST [havetac id c; injectidl2rtac id (mkVar id, NoBindings); clear [id]] - -let is_injection_case c gl = - let (mind,_), _ = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in - eq_gr (IndRef mind) (build_coq_eq ()) - -let perform_injection c gl = - let mind, t = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in - let dc, eqt = decompose_prod t in - if dc = [] then injectl2rtac c gl else - if not (closed0 eqt) then - Errors.error "can't decompose a quantified equality" else - let cl = pf_concl gl in let n = List.length dc in - let c_eq = mkEtaApp c n 2 in - let cl1 = mkLambda (Anonymous, mkArrow eqt cl, mkApp (mkRel 1, [|c_eq|])) in - let id = injecteq_id in - let id_with_ebind = (mkVar id, NoBindings) in - let injtac = tclTHEN (introid id) (injectidl2rtac id id_with_ebind) in - tclTHENLAST (Proofview.V82.of_tactic (apply (compose_lam dc cl1))) injtac gl - -let simplest_newcase_ref = ref (fun t gl -> assert false) -let simplest_newcase x gl = !simplest_newcase_ref x gl - -let ssrscasetac c gl = - if is_injection_case c gl then perform_injection c gl - else simplest_newcase c gl - -let intro_all gl = - let dc, _ = Term.decompose_prod_assum (pf_concl gl) in - tclTHENLIST (List.map anontac (List.rev dc)) gl - -let rec intro_anon gl = - try anontac (List.hd (fst (Term.decompose_prod_n_assum 1 (pf_concl gl)))) gl - with err0 -> try tclTHEN red_in_concl intro_anon gl with _ -> raise err0 - (* with _ -> Errors.error "No product even after reduction" *) - -let with_top tac = - tclTHENLIST [introid top_id; tac (mkVar top_id); clear [top_id]] - -let rec mapLR f = function [] -> [] | x :: s -> let y = f x in y :: mapLR f s - -let wild_ids = ref [] - -let new_wild_id () = - let i = 1 + List.length !wild_ids in - let id = mk_wildcard_id i in - wild_ids := id :: !wild_ids; - id - -let clear_wilds wilds gl = - clear (List.filter (fun id -> List.mem id wilds) (pf_ids_of_hyps gl)) gl - -let clear_with_wilds wilds clr0 gl = - let extend_clr clr (id, _, _ as nd) = - if List.mem id clr || not (List.mem id wilds) then clr else - let vars = global_vars_set_of_decl (pf_env gl) nd in - let occurs id' = Idset.mem id' vars in - if List.exists occurs clr then id :: clr else clr in - clear (Context.fold_named_context_reverse extend_clr ~init:clr0 (pf_hyps gl)) gl - -let tclTHENS_nonstrict tac tacl taclname gl = - let tacres = tac gl in - let n_gls = List.length (sig_it tacres) in - let n_tac = List.length tacl in - if n_gls = n_tac then tclTHENS (fun _ -> tacres) tacl gl else - if n_gls = 0 then tacres else - let pr_only n1 n2 = if n1 < n2 then str "only " else mt () in - let pr_nb n1 n2 name = - pr_only n1 n2 ++ int n1 ++ str (" " ^ String.plural n1 name) in - errorstrm (pr_nb n_tac n_gls taclname ++ spc () - ++ str "for " ++ pr_nb n_gls n_tac "subgoal") - -(* Forward reference to extended rewrite *) -let ipat_rewritetac = ref (fun _ -> rewritetac) - -let rec is_name_in_ipats name = function - | IpatSimpl(clr,_) :: tl -> - List.exists (function SsrHyp(_,id) -> id = name) clr - || is_name_in_ipats name tl - | IpatId id :: tl -> id = name || is_name_in_ipats name tl - | IpatCase l :: tl -> is_name_in_ipats name (List.flatten l @ tl) - | _ :: tl -> is_name_in_ipats name tl - | [] -> false - -let move_top_with_view = ref (fun _ -> assert false) - -let rec nat_of_n n = - if n = 0 then mkConstruct path_of_O - else mkApp (mkConstruct path_of_S, [|nat_of_n (n-1)|]) - -let ssr_abstract_id = Summary.ref "~name:SSR:abstractid" 0 - -let mk_abstract_id () = incr ssr_abstract_id; nat_of_n !ssr_abstract_id - -let ssrmkabs id gl = - let env, concl = pf_env gl, pf_concl gl in - let step sigma = - let sigma, abstract_proof, abstract_ty = - let sigma, (ty, _) = - Evarutil.new_type_evar env sigma Evd.univ_flexible_alg in - let sigma, ablock = mkSsrConst "abstract_lock" env sigma in - let sigma, lock = Evarutil.new_evar env sigma ablock in - let sigma, abstract = mkSsrConst "abstract" env sigma in - let abstract_ty = mkApp(abstract, [|ty;mk_abstract_id ();lock|]) in - let sigma, m = Evarutil.new_evar env sigma abstract_ty in - sigma, m, abstract_ty in - let sigma, kont = - let rd = Name id, None, abstract_ty in - Evarutil.new_evar (Environ.push_rel rd env) sigma concl in - pp(lazy(pr_constr concl)); - let term = mkApp (mkLambda(Name id,abstract_ty,kont) ,[|abstract_proof|]) in - let sigma, _ = Typing.e_type_of env sigma term in - sigma, term in - Proofview.V82.of_tactic - (Proofview.tclTHEN - (Tactics.New.refine step) - (Proofview.tclFOCUS 1 3 Proofview.shelve)) gl - -let ssrmkabstac ids = - List.fold_right (fun id tac -> tclTHENFIRST (ssrmkabs id) tac) ids tclIDTAC - -(* introstac: for "move" and "clear", tclEQINTROS: for "case" and "elim" *) -(* This block hides the spaghetti-code needed to implement the only two *) -(* tactics that should be used to process intro patters. *) -(* The difficulty is that we don't want to always rename, but we can *) -(* compute needeed renamings only at runtime, so we theread a tree like *) -(* imperativestructure so that outer renamigs are inherited by inner *) -(* ipts and that the cler performed at the end of ipatstac clears hyps *) -(* eventually renamed at runtime. *) -(* TODO: hide wild_ids in this block too *) -let introstac, tclEQINTROS = - let rec map_acc_k f k = function - | [] -> (* tricky: we save wilds now, we get to_cler (aka k) later *) - let clear_ww = clear_with_wilds !wild_ids in - [fun gl -> clear_ww (hyps_ids (List.flatten (List.map (!) k))) gl] - | x :: xs -> let k, x = f k xs x in x :: map_acc_k f k xs in - let rename force to_clr rest clr gl = - let hyps = pf_hyps gl in - pp(lazy(str"rename " ++ pr_clear spc clr)); - let () = if not force then List.iter (check_hyp_exists hyps) clr in - if List.exists (fun x -> force || is_name_in_ipats (hyp_id x) rest) clr then - let ren_clr, ren = - List.split (List.map (fun x -> let x = hyp_id x in - let x' = mk_anon_id (string_of_id x) gl in - SsrHyp (dummy_loc, x'), (x, x')) clr) in - let () = to_clr := ren_clr in - Proofview.V82.of_tactic (rename_hyp ren) gl - else - let () = to_clr := clr in - tclIDTAC gl in - let rec ipattac ?ist k rest = function - | IpatWild -> k, introid (new_wild_id ()) - | IpatCase iorpat -> k, tclIORPAT ?ist k (with_top ssrscasetac) iorpat - | IpatRw (occ, dir) -> k, with_top (!ipat_rewritetac occ dir) - | IpatId id -> k, introid id - | IpatNewHidden idl -> k, ssrmkabstac idl - | IpatSimpl (clr, sim) -> - let to_clr = ref [] in - to_clr :: k, tclTHEN (rename false to_clr rest clr) (simpltac sim) - | IpatAll -> k, intro_all - | IpatAnon -> k, intro_anon - | IpatNoop -> k, tclIDTAC - | IpatView v -> match ist with - | None -> anomaly "ipattac with no ist but view" - | Some ist -> match rest with - | (IpatCase _ | IpatRw _)::_ -> - let to_clr = ref [] in let top_id = ref top_id in - to_clr :: k, - tclTHEN - (!move_top_with_view false top_id (false,v) ist) - (fun gl -> - rename true to_clr rest [SsrHyp (dummy_loc, !top_id)]gl) - | _ -> k, !move_top_with_view true (ref top_id) (true,v) ist - and tclIORPAT ?ist k tac = function - | [[]] -> tac - | orp -> - tclTHENS_nonstrict tac (mapLR (ipatstac ?ist k) orp) "intro pattern" - and ipatstac ?ist k ipats = - tclTHENLIST (map_acc_k (ipattac ?ist) k ipats) in - let introstac ?ist ipats = - wild_ids := []; - let tac = ipatstac ?ist [] ipats in - tclTHENLIST [tac; clear_wilds !wild_ids] in - let tclEQINTROS ?ist tac eqtac ipats = - wild_ids := []; - let rec split_itacs to_clr tac' = function - | (IpatSimpl _ as spat) :: ipats' -> - let to_clr, tac = ipattac ?ist to_clr ipats' spat in - split_itacs to_clr (tclTHEN tac' tac) ipats' - | IpatCase iorpat :: ipats' -> - to_clr, tclIORPAT ?ist to_clr tac' iorpat, ipats' - | ipats' -> to_clr, tac', ipats' in - let to_clr, tac1, ipats' = split_itacs [] tac ipats in - let tac2 = ipatstac ?ist to_clr ipats' in - tclTHENLIST [tac1; eqtac; tac2; clear_wilds !wild_ids] in - introstac, tclEQINTROS -;; - -let rec eqmoveipats eqpat = function - | (IpatSimpl _ as ipat) :: ipats -> ipat :: eqmoveipats eqpat ipats - | (IpatAll :: _ | []) as ipats -> IpatAnon :: eqpat :: ipats - | ipat :: ipats -> ipat :: eqpat :: ipats - -(* General case *) -let tclINTROS ist tac ipats = - tclEQINTROS ~ist (tac ist) tclIDTAC ipats - -(** The "=>" tactical *) - -let ssrintros_sep = - let atom_sep = function - | TacSplit (_, [NoBindings]) -> mt - (* | TacExtend (_, "ssrapply", []) -> mt *) - | _ -> spc in - function - | TacId [] -> mt - | TacArg (_, Tacexp _) -> mt - | TacArg (_, Reference _) -> mt - | TacAtom (_, atom) -> atom_sep atom - | _ -> spc - -let pr_ssrintrosarg _ _ prt (tac, ipats) = - prt tacltop tac ++ pr_intros (ssrintros_sep tac) ipats - -ARGUMENT EXTEND ssrintrosarg TYPED AS tactic * ssrintros - PRINTED BY pr_ssrintrosarg -| [ "YouShouldNotTypeThis" ssrtacarg(arg) ssrintros_ne(ipats) ] -> [ arg, ipats ] -END - -TACTIC EXTEND ssrtclintros -| [ "YouShouldNotTypeThis" ssrintrosarg(arg) ] -> - [ let tac, intros = arg in - Proofview.V82.tactic (tclINTROS ist (fun ist -> ssrevaltac ist tac) intros) ] -END -set_pr_ssrtac "tclintros" 0 [ArgSsr "introsarg"] - -let tclintros_expr loc tac ipats = - let args = [in_gen (rawwit wit_ssrintrosarg) (tac, ipats)] in - ssrtac_expr loc "tclintros" args - -GEXTEND Gram - GLOBAL: tactic_expr; - tactic_expr: LEVEL "1" [ RIGHTA - [ tac = tactic_expr; intros = ssrintros_ne -> tclintros_expr !@loc tac intros - ] ]; -END -(* }}} *) - -(** Multipliers {{{ ***********************************************************) - -(* modality *) - -type ssrmmod = May | Must | Once - -let pr_mmod = function May -> str "?" | Must -> str "!" | Once -> mt () - -let wit_ssrmmod = add_genarg "ssrmmod" pr_mmod -let ssrmmod = Pcoq.create_generic_entry "ssrmmod" (Genarg.rawwit wit_ssrmmod) -GEXTEND Gram - GLOBAL: ssrmmod; - ssrmmod: [[ "!" -> Must | LEFTQMARK -> May | "?" -> May]]; -END - -(* tactical *) - -let tclID tac = tac - -let tclDOTRY n tac = - if n <= 0 then tclIDTAC else - let rec loop i gl = - if i = n then tclTRY tac gl else - tclTRY (tclTHEN tac (loop (i + 1))) gl in - loop 1 - -let tclDO n tac = - let prefix i = str"At iteration " ++ int i ++ str": " in - let tac_err_at i gl = - try tac gl - with - | Errors.UserError (l, s) as e -> - let _, info = Errors.push e in - let e' = Errors.UserError (l, prefix i ++ s) in - Util.iraise (e', info) - | Compat.Exc_located(loc, Errors.UserError (l, s)) -> - raise (Compat.Exc_located(loc, Errors.UserError (l, prefix i ++ s))) in - let rec loop i gl = - if i = n then tac_err_at i gl else - (tclTHEN (tac_err_at i) (loop (i + 1))) gl in - loop 1 - -let tclMULT = function - | 0, May -> tclREPEAT - | 1, May -> tclTRY - | n, May -> tclDOTRY n - | 0, Must -> tclAT_LEAST_ONCE - | n, Must when n > 1 -> tclDO n - | _ -> tclID - -(** The "do" tactical. ********************************************************) - -(* -type ssrdoarg = ((ssrindex * ssrmmod) * ssrhint) * ssrclauses -*) - -let pr_ssrdoarg prc _ prt (((n, m), tac), clauses) = - pr_index n ++ pr_mmod m ++ pr_hintarg prt tac ++ pr_clauses clauses - -ARGUMENT EXTEND ssrdoarg - TYPED AS ((ssrindex * ssrmmod) * ssrhintarg) * ssrclauses - PRINTED BY pr_ssrdoarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let ssrdotac ist (((n, m), tac), clauses) = - let mul = get_index n, m in - tclCLAUSES ist (tclMULT mul (hinttac ist false tac)) clauses - -TACTIC EXTEND ssrtcldo -| [ "YouShouldNotTypeThis" "do" ssrdoarg(arg) ] -> [ Proofview.V82.tactic (ssrdotac ist arg) ] -END -set_pr_ssrtac "tcldo" 3 [ArgSep "do "; ArgSsr "doarg"] - -let ssrdotac_expr loc n m tac clauses = - let arg = ((n, m), tac), clauses in - ssrtac_expr loc "tcldo" [in_gen (rawwit wit_ssrdoarg) arg] - -GEXTEND Gram - GLOBAL: tactic_expr; - ssrdotac: [ - [ tac = tactic_expr LEVEL "3" -> mk_hint tac - | tacs = ssrortacarg -> tacs - ] ]; - tactic_expr: LEVEL "3" [ RIGHTA - [ IDENT "do"; m = ssrmmod; tac = ssrdotac; clauses = ssrclauses -> - ssrdotac_expr !@loc noindex m tac clauses - | IDENT "do"; tac = ssrortacarg; clauses = ssrclauses -> - ssrdotac_expr !@loc noindex Once tac clauses - | IDENT "do"; n = int_or_var; m = ssrmmod; - tac = ssrdotac; clauses = ssrclauses -> - ssrdotac_expr !@loc (mk_index !@loc n) m tac clauses - ] ]; -END -(* }}} *) - -(** The "first" and "last" tacticals. {{{ *************************************) - -(* type ssrseqarg = ssrindex * (ssrtacarg * ssrtac option) *) - -let pr_seqtacarg prt = function - | (is_first, []), _ -> str (if is_first then "first" else "last") - | tac, Some dtac -> - hv 0 (pr_hintarg prt tac ++ spc() ++ str "|| " ++ prt tacltop dtac) - | tac, _ -> pr_hintarg prt tac - -let pr_ssrseqarg _ _ prt = function - | ArgArg 0, tac -> pr_seqtacarg prt tac - | i, tac -> pr_index i ++ str " " ++ pr_seqtacarg prt tac - -(* We must parse the index separately to resolve the conflict with *) -(* an unindexed tactic. *) -ARGUMENT EXTEND ssrseqarg TYPED AS ssrindex * (ssrhintarg * tactic option) - PRINTED BY pr_ssrseqarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let sq_brace_tacnames = - ["first"; "solve"; "do"; "rewrite"; "have"; "suffices"; "wlog"] - (* "by" is a keyword *) -let accept_ssrseqvar strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT id when not (List.mem id sq_brace_tacnames) -> - accept_before_syms_or_ids ["["] ["first";"last"] strm - | _ -> raise Stream.Failure - -let test_ssrseqvar = Gram.Entry.of_parser "test_ssrseqvar" accept_ssrseqvar - -let swaptacarg (loc, b) = (b, []), Some (TacId []) - -let check_seqtacarg dir arg = match snd arg, dir with - | ((true, []), Some (TacAtom (loc, _))), L2R -> - loc_error loc "expected \"last\"" - | ((false, []), Some (TacAtom (loc, _))), R2L -> - loc_error loc "expected \"first\"" - | _, _ -> arg - -let ssrorelse = Gram.Entry.create "ssrorelse" -GEXTEND Gram - GLOBAL: ssrorelse ssrseqarg; - ssrseqidx: [ - [ test_ssrseqvar; id = Prim.ident -> ArgVar (!@loc, id) - | n = Prim.natural -> ArgArg (check_index !@loc n) - ] ]; - ssrswap: [[ IDENT "first" -> !@loc, true | IDENT "last" -> !@loc, false ]]; - ssrorelse: [[ "||"; tac = tactic_expr LEVEL "2" -> tac ]]; - ssrseqarg: [ - [ arg = ssrswap -> noindex, swaptacarg arg - | i = ssrseqidx; tac = ssrortacarg; def = OPT ssrorelse -> i, (tac, def) - | i = ssrseqidx; arg = ssrswap -> i, swaptacarg arg - | tac = tactic_expr LEVEL "3" -> noindex, (mk_hint tac, None) - ] ]; -END - -let tclPERM perm tac gls = - let subgls = tac gls in - let sigma, subgll = Refiner.unpackage subgls in - let subgll' = perm subgll in - Refiner.repackage sigma subgll' -(* -let tclPERM perm tac gls = - let mkpft n g r = - {Proof_type.open_subgoals = n; Proof_type.goal = g; Proof_type.ref = r} in - let mkleaf g = mkpft 0 g None in - let mkprpft n g pr a = mkpft n g (Some (Proof_type.Prim pr, a)) in - let mkrpft n g c = mkprpft n g (Proof_type.Refine c) in - let mkipft n g = - let mki pft (id, _, _ as d) = - let g' = {g with evar_concl = mkNamedProd_or_LetIn d g.evar_concl} in - mkprpft n g' (Proof_type.Intro id) [pft] in - List.fold_left mki in - let gl = Refiner.sig_it gls in - let mkhyp subgl = - let rec chop_section = function - | (x, _, _ as d) :: e when not_section_id x -> d :: chop_section e - | _ -> [] in - let lhyps = Environ.named_context_of_val subgl.evar_hyps in - mk_perm_id (), subgl, chop_section lhyps in - let mkpfvar (hyp, subgl, lhyps) = - let mkarg args (lhyp, body, _) = - if body = None then mkVar lhyp :: args else args in - mkrpft 0 subgl (applist (mkVar hyp, List.fold_left mkarg [] lhyps)) [] in - let mkpfleaf (_, subgl, lhyps) = mkipft 1 gl (mkleaf subgl) lhyps in - let mkmeta _ = Evarutil.mk_new_meta () in - let mkhypdecl (hyp, subgl, lhyps) = - hyp, None, it_mkNamedProd_or_LetIn subgl.evar_concl lhyps in - let subgls, v as res0 = tac gls in - let sigma, subgll = Refiner.unpackage subgls in - let n = List.length subgll in if n = 0 then res0 else - let hyps = List.map mkhyp subgll in - let hyp_decls = List.map mkhypdecl (List.rev (perm hyps)) in - let c = applist (mkmeta (), List.map mkmeta subgll) in - let pft0 = mkipft 0 gl (v (List.map mkpfvar hyps)) hyp_decls in - let pft1 = mkrpft n gl c (pft0 :: List.map mkpfleaf (perm hyps)) in - let subgll', v' = Refiner.frontier pft1 in - Refiner.repackage sigma subgll', v' -*) - -let tclREV tac gl = tclPERM List.rev tac gl - -let rot_hyps dir i hyps = - let n = List.length hyps in - if i = 0 then List.rev hyps else - if i > n then Errors.error "Not enough subgoals" else - let rec rot i l_hyps = function - | hyp :: hyps' when i > 0 -> rot (i - 1) (hyp :: l_hyps) hyps' - | hyps' -> hyps' @ (List.rev l_hyps) in - rot (match dir with L2R -> i | R2L -> n - i) [] hyps - -let tclSEQAT ist atac1 dir (ivar, ((_, atacs2), atac3)) = - let i = get_index ivar in - let evtac = ssrevaltac ist in - let tac1 = evtac atac1 in - if atacs2 = [] && atac3 <> None then tclPERM (rot_hyps dir i) tac1 else - let evotac = function Some atac -> evtac atac | _ -> tclIDTAC in - let tac3 = evotac atac3 in - let rec mk_pad n = if n > 0 then tac3 :: mk_pad (n - 1) else [] in - match dir, mk_pad (i - 1), List.map evotac atacs2 with - | L2R, [], [tac2] when atac3 = None -> tclTHENFIRST tac1 tac2 - | L2R, [], [tac2] when atac3 = None -> tclTHENLAST tac1 tac2 - | L2R, pad, tacs2 -> tclTHENSFIRSTn tac1 (Array.of_list (pad @ tacs2)) tac3 - | R2L, pad, tacs2 -> tclTHENSLASTn tac1 tac3 (Array.of_list (tacs2 @ pad)) - -(* We can't actually parse the direction separately because this *) -(* would introduce conflicts with the basic ltac syntax. *) -let pr_ssrseqdir _ _ _ = function - | L2R -> str ";" ++ spc () ++ str "first " - | R2L -> str ";" ++ spc () ++ str "last " - -ARGUMENT EXTEND ssrseqdir TYPED AS ssrdir PRINTED BY pr_ssrseqdir -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -TACTIC EXTEND ssrtclseq -| [ "YouShouldNotTypeThis" ssrtclarg(tac) ssrseqdir(dir) ssrseqarg(arg) ] -> - [ Proofview.V82.tactic (tclSEQAT ist tac dir arg) ] -END -set_pr_ssrtac "tclseq" 5 [ArgSsr "tclarg"; ArgSsr "seqdir"; ArgSsr "seqarg"] - -let tclseq_expr loc tac dir arg = - let arg1 = in_gen (rawwit wit_ssrtclarg) tac in - let arg2 = in_gen (rawwit wit_ssrseqdir) dir in - let arg3 = in_gen (rawwit wit_ssrseqarg) (check_seqtacarg dir arg) in - ssrtac_expr loc "tclseq" [arg1; arg2; arg3] - -GEXTEND Gram - GLOBAL: tactic_expr; - ssr_first: [ - [ tac = ssr_first; ipats = ssrintros_ne -> tclintros_expr !@loc tac ipats - | "["; tacl = LIST0 tactic_expr SEP "|"; "]" -> TacFirst tacl - ] ]; - ssr_first_else: [ - [ tac1 = ssr_first; tac2 = ssrorelse -> TacOrelse (tac1, tac2) - | tac = ssr_first -> tac ]]; - tactic_expr: LEVEL "4" [ LEFTA - [ tac1 = tactic_expr; ";"; IDENT "first"; tac2 = ssr_first_else -> - TacThen (tac1, tac2) - | tac = tactic_expr; ";"; IDENT "first"; arg = ssrseqarg -> - tclseq_expr !@loc tac L2R arg - | tac = tactic_expr; ";"; IDENT "last"; arg = ssrseqarg -> - tclseq_expr !@loc tac R2L arg - ] ]; -END -(* }}} *) - -(** 5. Bookkeeping tactics (clear, move, case, elim) *) - -(* post-interpretation of terms *) -let all_ok _ _ = true - -let pf_abs_ssrterm ?(resolve_typeclasses=false) ist gl t = - let sigma, ct as t = interp_term ist gl t in - let sigma, _ as t = - let env = pf_env gl in - if not resolve_typeclasses then t - else - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - sigma, Evarutil.nf_evar sigma ct in - let n, c, abstracted_away, ucst = pf_abs_evars gl t in - List.fold_left Evd.remove sigma abstracted_away, pf_abs_cterm gl n c, ucst - -let pf_interp_ty ?(resolve_typeclasses=false) ist gl ty = - let n_binders = ref 0 in - let ty = match ty with - | a, (t, None) -> - let rec force_type = function - | GProd (l, x, k, s, t) -> incr n_binders; GProd (l, x, k, s, force_type t) - | GLetIn (l, x, v, t) -> incr n_binders; GLetIn (l, x, v, force_type t) - | ty -> mkRCast ty mkRType in - a, (force_type t, None) - | _, (_, Some ty) -> - let rec force_type = function - | CProdN (l, abs, t) -> - n_binders := !n_binders + List.length (List.flatten (List.map pi1 abs)); - CProdN (l, abs, force_type t) - | CLetIn (l, n, v, t) -> incr n_binders; CLetIn (l, n, v, force_type t) - | ty -> mkCCast dummy_loc ty (mkCType dummy_loc) in - mk_term ' ' (force_type ty) in - let strip_cast (sigma, t) = - let rec aux t = match kind_of_type t with - | CastType (t, ty) when !n_binders = 0 && isSort ty -> t - | ProdType(n,s,t) -> decr n_binders; mkProd (n, s, aux t) - | LetInType(n,v,ty,t) -> decr n_binders; mkLetIn (n, v, ty, aux t) - | _ -> anomaly "pf_interp_ty: ssr Type cast deleted by typecheck" in - sigma, aux t in - let sigma, cty as ty = strip_cast (interp_term ist gl ty) in - let ty = - let env = pf_env gl in - if not resolve_typeclasses then ty - else - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - sigma, Evarutil.nf_evar sigma cty in - let n, c, _, ucst = pf_abs_evars gl ty in - let lam_c = pf_abs_cterm gl n c in - let ctx, c = decompose_lam_n n lam_c in - n, compose_prod ctx c, lam_c, ucst -;; - -let whd_app f args = Reductionops.whd_betaiota Evd.empty (mkApp (f, args)) - -let pr_cargs a = - str "[" ++ pr_list pr_spc pr_constr (Array.to_list a) ++ str "]" - -let pp_term gl t = - let t = Reductionops.nf_evar (project gl) t in pr_constr t -let pp_concat hd ?(sep=str", ") = function [] -> hd | x :: xs -> - hd ++ List.fold_left (fun acc x -> acc ++ sep ++ x) x xs - -let fake_pmatcher_end () = - mkProp, L2R, (Evd.empty, Evd.empty_evar_universe_context, mkProp) - -(* TASSI: given (c : ty), generates (c ??? : ty[???/...]) with m evars *) -exception NotEnoughProducts -let prof_saturate_whd = mk_profiler "saturate.whd";; -let saturate ?(beta=false) ?(bi_types=false) env sigma c ?(ty=Retyping.get_type_of env sigma c) m -= - let rec loop ty args sigma n = - if n = 0 then - let args = List.rev args in - (if beta then Reductionops.whd_beta sigma else fun x -> x) - (mkApp (c, Array.of_list (List.map snd args))), ty, args, sigma - else match kind_of_type ty with - | ProdType (_, src, tgt) -> - let sigma, x = - Evarutil.new_evar env (create_evar_defs sigma) - (if bi_types then Reductionops.nf_betaiota sigma src else src) in - loop (subst1 x tgt) ((m - n,x) :: args) sigma (n-1) - | CastType (t, _) -> loop t args sigma n - | LetInType (_, v, _, t) -> loop (subst1 v t) args sigma n - | SortType _ -> assert false - | AtomicType _ -> - let ty = - prof_saturate_whd.profile - (Reductionops.whd_betadeltaiota env sigma) ty in - match kind_of_type ty with - | ProdType _ -> loop ty args sigma n - | _ -> anomaly "saturate did not find enough products" - in - loop ty [] sigma m - -let pf_saturate ?beta ?bi_types gl c ?ty m = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - let t, ty, args, sigma = saturate ?beta ?bi_types env sigma c ?ty m in - t, ty, args, re_sig si sigma - -(** Rewrite redex switch *) - -(** Generalization (discharge) item *) - -(* An item is a switch + term pair. *) - -(* type ssrgen = ssrdocc * ssrterm *) - -let pr_gen (docc, dt) = pr_docc docc ++ pr_cpattern dt - -let pr_ssrgen _ _ _ = pr_gen - -ARGUMENT EXTEND ssrgen TYPED AS ssrdocc * cpattern PRINTED BY pr_ssrgen -| [ ssrdocc(docc) cpattern(dt) ] -> [ docc, dt ] -| [ cpattern(dt) ] -> [ nodocc, dt ] -END - -let has_occ ((_, occ), _) = occ <> None -let hyp_of_var v = SsrHyp (dummy_loc, destVar v) - -let interp_clr = function -| Some clr, (k, c) - when (k = ' ' || k = '@') && is_pf_var c -> hyp_of_var c :: clr -| Some clr, _ -> clr -| None, _ -> [] - -(* XXX the k of the redex should percolate out *) -let pf_interp_gen_aux ist gl to_ind ((oclr, occ), t) = - let pat = interp_cpattern ist gl t None in (* UGLY API *) - let cl, env, sigma = pf_concl gl, pf_env gl, project gl in - let (c, ucst), cl = - try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 - with NoMatch -> redex_of_pattern env pat, cl in - let clr = interp_clr (oclr, (tag_of_cpattern t, c)) in - if not(occur_existential c) then - if tag_of_cpattern t = '@' then - if not (isVar c) then - errorstrm (str "@ can be used with variables only") - else match pf_get_hyp gl (destVar c) with - | _, None, _ -> errorstrm (str "@ can be used with let-ins only") - | name, Some bo, ty -> true, pat, mkLetIn (Name name,bo,ty,cl),c,clr,ucst - else false, pat, pf_mkprod gl c cl, c, clr,ucst - else if to_ind && occ = None then - let nv, p, _, ucst' = pf_abs_evars gl (fst pat, c) in - let ucst = Evd.union_evar_universe_context ucst ucst' in - if nv = 0 then anomaly "occur_existential but no evars" else - false, pat, mkProd (constr_name c, pf_type_of gl p, pf_concl gl), p, clr,ucst - else loc_error (loc_of_cpattern t) "generalized term didn't match" - -let genclrtac cl cs clr = - let tclmyORELSE tac1 tac2 gl = - try tac1 gl - with e when Errors.noncritical e -> tac2 e gl in - (* apply_type may give a type error, but the useful message is - * the one of clear. You type "move: x" and you get - * "x is used in hyp H" instead of - * "The term H has type T x but is expected to have type T x0". *) - tclTHEN - (tclmyORELSE - (apply_type cl cs) - (fun type_err gl -> - tclTHEN - (tclTHEN (Proofview.V82.of_tactic (elim_type (build_coq_False ()))) (cleartac clr)) - (fun gl -> raise type_err) - gl)) - (cleartac clr) - -let gentac ist gen gl = -(* pp(lazy(str"sigma@gentac=" ++ pr_evar_map None (project gl))); *) - let conv, _, cl, c, clr, ucst = pf_interp_gen_aux ist gl false gen in - pp(lazy(str"c@gentac=" ++ pr_constr c)); - let gl = pf_merge_uc ucst gl in - if conv - then tclTHEN (Proofview.V82.of_tactic (convert_concl cl)) (cleartac clr) gl - else genclrtac cl [c] clr gl - -let pf_interp_gen ist gl to_ind gen = - let _, _, a, b, c, ucst = pf_interp_gen_aux ist gl to_ind gen in - a, b ,c, pf_merge_uc ucst gl - -(** Generalization (discharge) sequence *) - -(* A discharge sequence is represented as a list of up to two *) -(* lists of d-items, plus an ident list set (the possibly empty *) -(* final clear switch). The main list is empty iff the command *) -(* is defective, and has length two if there is a sequence of *) -(* dependent terms (and in that case it is the first of the two *) -(* lists). Thus, the first of the two lists is never empty. *) - -(* type ssrgens = ssrgen list *) -(* type ssrdgens = ssrgens list * ssrclear *) - -let gens_sep = function [], [] -> mt | _ -> spc - -let pr_dgens pr_gen (gensl, clr) = - let prgens s gens = str s ++ pr_list spc pr_gen gens in - let prdeps deps = prgens ": " deps ++ spc () ++ str "/" in - match gensl with - | [deps; []] -> prdeps deps ++ pr_clear pr_spc clr - | [deps; gens] -> prdeps deps ++ prgens " " gens ++ pr_clear spc clr - | [gens] -> prgens ": " gens ++ pr_clear spc clr - | _ -> pr_clear pr_spc clr - -let pr_ssrdgens _ _ _ = pr_dgens pr_gen - -let cons_gen gen = function - | gens :: gensl, clr -> (gen :: gens) :: gensl, clr - | _ -> anomaly "missing gen list" - -let cons_dep (gensl, clr) = - if List.length gensl = 1 then ([] :: gensl, clr) else - Errors.error "multiple dependents switches '/'" - -ARGUMENT EXTEND ssrdgens_tl TYPED AS ssrgen list list * ssrclear - PRINTED BY pr_ssrdgens -| [ "{" ne_ssrhyp_list(clr) "}" cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (mkclr clr, dt) dgens ] -| [ "{" ne_ssrhyp_list(clr) "}" ] -> - [ [[]], clr ] -| [ "{" ssrocc(occ) "}" cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (mkocc occ, dt) dgens ] -| [ "/" ssrdgens_tl(dgens) ] -> - [ cons_dep dgens ] -| [ cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (nodocc, dt) dgens ] -| [ ] -> - [ [[]], [] ] -END - -ARGUMENT EXTEND ssrdgens TYPED AS ssrdgens_tl PRINTED BY pr_ssrdgens -| [ ":" ssrgen(gen) ssrdgens_tl(dgens) ] -> [ cons_gen gen dgens ] -END - -let genstac (gens, clr) ist = - tclTHENLIST (cleartac clr :: List.rev_map (gentac ist) gens) - -(* Common code to handle generalization lists along with the defective case *) - -let with_defective maintac deps clr ist gl = - let top_id = - match kind_of_type (pf_concl gl) with - | ProdType (Name id, _, _) - when has_discharged_tag (string_of_id id) -> id - | _ -> top_id in - let top_gen = mkclr clr, cpattern_of_id top_id in - tclTHEN (introid top_id) (maintac deps top_gen ist) gl - -let with_dgens (gensl, clr) maintac ist = match gensl with - | [deps; []] -> with_defective maintac deps clr ist - | [deps; gen :: gens] -> - tclTHEN (genstac (gens, clr) ist) (maintac deps gen ist) - | [gen :: gens] -> tclTHEN (genstac (gens, clr) ist) (maintac [] gen ist) - | _ -> with_defective maintac [] clr ist - -let first_goal gls = - let gl = gls.Evd.it and sig_0 = gls.Evd.sigma in - if List.is_empty gl then Errors.error "first_goal"; - { Evd.it = List.hd gl; Evd.sigma = sig_0; } - -let with_deps deps0 maintac cl0 cs0 clr0 ist gl0 = - let rec loop gl cl cs clr args clrs = function - | [] -> - let n = List.length args in - maintac (if n > 0 then applist (to_lambda n cl, args) else cl) clrs ist gl0 - | dep :: deps -> - let gl' = first_goal (genclrtac cl cs clr gl) in - let cl', c', clr',gl' = pf_interp_gen ist gl' false dep in - loop gl' cl' [c'] clr' (c' :: args) (clr' :: clrs) deps in - loop gl0 cl0 cs0 clr0 cs0 [clr0] (List.rev deps0) - -(** Equations *) - -(* argument *) - -type ssreqid = ssripat option - -let pr_eqid = function Some pat -> str " " ++ pr_ipat pat | None -> mt () -let pr_ssreqid _ _ _ = pr_eqid - -(* We must use primitive parsing here to avoid conflicts with the *) -(* basic move, case, and elim tactics. *) -ARGUMENT EXTEND ssreqid TYPED AS ssripatrep option PRINTED BY pr_ssreqid -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let accept_ssreqid strm = - match Compat.get_tok (Util.stream_nth 0 strm) with - | Tok.IDENT _ -> accept_before_syms [":"] strm - | Tok.KEYWORD ":" -> () - | Tok.KEYWORD pat when List.mem pat ["_"; "?"; "->"; "<-"] -> - accept_before_syms [":"] strm - | _ -> raise Stream.Failure - -let test_ssreqid = Gram.Entry.of_parser "test_ssreqid" accept_ssreqid - -GEXTEND Gram - GLOBAL: ssreqid; - ssreqpat: [ - [ id = Prim.ident -> IpatId id - | "_" -> IpatWild - | "?" -> IpatAnon - | occ = ssrdocc; "->" -> (match occ with - | None, occ -> IpatRw (occ, L2R) - | _ -> loc_error !@loc "Only occurrences are allowed here") - | occ = ssrdocc; "<-" -> (match occ with - | None, occ -> IpatRw (occ, R2L) - | _ -> loc_error !@loc "Only occurrences are allowed here") - | "->" -> IpatRw (allocc, L2R) - | "<-" -> IpatRw (allocc, R2L) - ]]; - ssreqid: [ - [ test_ssreqid; pat = ssreqpat -> Some pat - | test_ssreqid -> None - ]]; -END - -(* creation *) - -let mkEq dir cl c t n gl = - let eqargs = [|t; c; c|] in eqargs.(dir_org dir) <- mkRel n; - let eq, gl = pf_fresh_global (build_coq_eq()) gl in - let refl, gl = mkRefl t c gl in - mkArrow (mkApp (eq, eqargs)) (lift 1 cl), refl, gl - -let pushmoveeqtac cl c gl = - let x, t, cl1 = destProd cl in - let cl2, eqc, gl = mkEq R2L cl1 c t 1 gl in - apply_type (mkProd (x, t, cl2)) [c; eqc] gl - -let pushcaseeqtac cl gl = - let cl1, args = destApplication cl in - let n = Array.length args in - let dc, cl2 = decompose_lam_n n cl1 in - let _, t = List.nth dc (n - 1) in - let cl3, eqc, gl = mkEq R2L cl2 args.(0) t n gl in - let prot, gl = mkProt (pf_type_of gl cl) cl3 gl in - let cl4 = mkApp (compose_lam dc prot, args) in - let gl, _ = pf_e_type_of gl cl4 in - tclTHEN (apply_type cl4 [eqc]) - (Proofview.V82.of_tactic (convert_concl cl4)) gl - -let pushelimeqtac gl = - let _, args = destApplication (pf_concl gl) in - let x, t, _ = destLambda args.(1) in - let cl1 = mkApp (args.(1), Array.sub args 2 (Array.length args - 2)) in - let cl2, eqc, gl = mkEq L2R cl1 args.(2) t 1 gl in - tclTHEN (apply_type (mkProd (x, t, cl2)) [args.(2); eqc]) - (Proofview.V82.of_tactic intro) gl - -(** Bookkeeping (discharge-intro) argument *) - -(* Since all bookkeeping ssr commands have the same discharge-intro *) -(* argument format we use a single grammar entry point to parse them. *) -(* the entry point parses only non-empty arguments to avoid conflicts *) -(* with the basic Coq tactics. *) - -(* type ssrarg = ssrview * (ssreqid * (ssrdgens * ssripats)) *) - -let pr_ssrarg _ _ _ (view, (eqid, (dgens, ipats))) = - let pri = pr_intros (gens_sep dgens) in - pr_view view ++ pr_eqid eqid ++ pr_dgens pr_gen dgens ++ pri ipats - -ARGUMENT EXTEND ssrarg TYPED AS ssrview * (ssreqid * (ssrdgens * ssrintros)) - PRINTED BY pr_ssrarg -| [ ssrview(view) ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] -> - [ view, (eqid, (dgens, ipats)) ] -| [ ssrview(view) ssrclear(clr) ssrintros(ipats) ] -> - [ view, (None, (([], clr), ipats)) ] -| [ ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] -> - [ [], (eqid, (dgens, ipats)) ] -| [ ssrclear_ne(clr) ssrintros(ipats) ] -> - [ [], (None, (([], clr), ipats)) ] -| [ ssrintros_ne(ipats) ] -> - [ [], (None, (([], []), ipats)) ] -END - -(** The "clear" tactic *) - -(* We just add a numeric version that clears the n top assumptions. *) - -let poptac ist n = introstac ~ist (List.init n (fun _ -> IpatWild)) - -TACTIC EXTEND ssrclear - | [ "clear" natural(n) ] -> [ Proofview.V82.tactic (poptac ist n) ] -END - -(** The "move" tactic *) - -let rec improper_intros = function - | IpatSimpl _ :: ipats -> improper_intros ipats - | (IpatId _ | IpatAnon | IpatCase _ | IpatAll) :: _ -> false - | _ -> true - -let check_movearg = function - | view, (eqid, _) when view <> [] && eqid <> None -> - Errors.error "incompatible view and equation in move tactic" - | view, (_, (([gen :: _], _), _)) when view <> [] && has_occ gen -> - Errors.error "incompatible view and occurrence switch in move tactic" - | _, (_, ((dgens, _), _)) when List.length dgens > 1 -> - Errors.error "dependents switch `/' in move tactic" - | _, (eqid, (_, ipats)) when eqid <> None && improper_intros ipats -> - Errors.error "no proper intro pattern for equation in move tactic" - | arg -> arg - -ARGUMENT EXTEND ssrmovearg TYPED AS ssrarg PRINTED BY pr_ssrarg -| [ ssrarg(arg) ] -> [ check_movearg arg ] -END - -let viewmovetac_aux clear name_ref (_, vl as v) _ gen ist gl = - let cl, c, clr, gl = pf_interp_gen ist gl false gen in - let cl, c, gl = if vl = [] then cl, c, gl else pf_with_view ist gl v cl c in - let clr = if clear then clr else [] in - name_ref := (match id_of_cpattern (snd gen) with Some id -> id | _ -> top_id); - genclrtac cl [c] clr gl - -let () = move_top_with_view := - (fun c r v -> with_defective (viewmovetac_aux c r v) [] []) - -let viewmovetac v deps gen ist gl = - viewmovetac_aux true (ref top_id) v deps gen ist gl - -let eqmovetac _ gen ist gl = - let cl, c, _, gl = pf_interp_gen ist gl false gen in pushmoveeqtac cl c gl - -let movehnftac gl = match kind_of_term (pf_concl gl) with - | Prod _ | LetIn _ -> tclIDTAC gl - | _ -> hnf_in_concl gl - -let ssrmovetac ist = function - | _::_ as view, (_, (dgens, ipats)) -> - let dgentac = with_dgens dgens (viewmovetac (true, view)) ist in - tclTHEN dgentac (introstac ~ist ipats) - | _, (Some pat, (dgens, ipats)) -> - let dgentac = with_dgens dgens eqmovetac ist in - tclTHEN dgentac (introstac ~ist (eqmoveipats pat ipats)) - | _, (_, (([gens], clr), ipats)) -> - let gentac = genstac (gens, clr) ist in - tclTHEN gentac (introstac ~ist ipats) - | _, (_, ((_, clr), ipats)) -> - tclTHENLIST [movehnftac; cleartac clr; introstac ~ist ipats] - -TACTIC EXTEND ssrmove -| [ "move" ssrmovearg(arg) ssrrpat(pat) ] -> - [ Proofview.V82.tactic (tclTHEN (ssrmovetac ist arg) (introstac ~ist [pat])) ] -| [ "move" ssrmovearg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrmovetac ist arg) clauses) ] -| [ "move" ssrrpat(pat) ] -> [ Proofview.V82.tactic (introstac ~ist [pat]) ] -| [ "move" ] -> [ Proofview.V82.tactic (movehnftac) ] -END - -(* TASSI: given the type of an elimination principle, it finds the higher order - * argument (index), it computes it's arity and the arity of the eliminator and - * checks if the eliminator is recursive or not *) -let analyze_eliminator elimty env sigma = - let rec loop ctx t = match kind_of_type t with - | AtomicType (hd, args) when isRel hd -> - ctx, destRel hd, not (noccurn 1 t), Array.length args - | CastType (t, _) -> loop ctx t - | ProdType (x, ty, t) -> loop ((x,None,ty) :: ctx) t - | LetInType (x,b,ty,t) -> loop ((x,Some b,ty) :: ctx) (subst1 b t) - | _ -> - let env' = Environ.push_rel_context ctx env in - let t' = Reductionops.whd_betadeltaiota env' sigma t in - if not (Term.eq_constr t t') then loop ctx t' else - errorstrm (str"The eliminator has the wrong shape."++spc()++ - str"A (applied) bound variable was expected as the conclusion of "++ - str"the eliminator's"++Pp.cut()++str"type:"++spc()++pr_constr elimty) in - let ctx, pred_id, elim_is_dep, n_pred_args = loop [] elimty in - let n_elim_args = rel_context_nhyps ctx in - let is_rec_elim = - let count_occurn n term = - let count = ref 0 in - let rec occur_rec n c = match kind_of_term c with - | Rel m -> if m = n then incr count - | _ -> iter_constr_with_binders succ occur_rec n c - in - occur_rec n term; !count in - let occurr2 n t = count_occurn n t > 1 in - not (List.for_all_i - (fun i (_,rd) -> pred_id <= i || not (occurr2 (pred_id - i) rd)) - 1 (assums_of_rel_context ctx)) - in - n_elim_args - pred_id, n_elim_args, is_rec_elim, elim_is_dep, n_pred_args - -(* TASSI: This version of unprotects inlines the unfold tactic definition, - * since we don't want to wipe out let-ins, and it seems there is no flag - * to change that behaviour in the standard unfold code *) -let unprotecttac gl = - let c, gl = pf_mkSsrConst "protect_term" gl in - let prot, _ = destConst c in - onClause (fun idopt -> - let hyploc = Option.map (fun id -> id, InHyp) idopt in - reduct_option - (Reductionops.clos_norm_flags - (Closure.RedFlags.mkflags - [Closure.RedFlags.fBETA; - Closure.RedFlags.fCONST prot; - Closure.RedFlags.fIOTA]), DEFAULTcast) hyploc) - allHypsAndConcl gl - -let dependent_apply_error = - try Errors.error "Could not fill dependent hole in \"apply\"" with err -> err - -(* TASSI: Sometimes Coq's apply fails. According to my experience it may be - * related to goals that are products and with beta redexes. In that case it - * guesses the wrong number of implicit arguments for your lemma. What follows - * is just like apply, but with a user-provided number n of implicits. - * - * Refine.refine function that handles type classes and evars but fails to - * handle "dependently typed higher order evars". - * - * Refiner.refiner that does not handle metas with a non ground type but works - * with dependently typed higher order metas. *) -let applyn ~with_evars ?beta ?(with_shelve=false) n t gl = - if with_evars then - let refine gl = - let t, ty, args, gl = pf_saturate ?beta ~bi_types:true gl t n in -(* pp(lazy(str"sigma@saturate=" ++ pr_evar_map None (project gl))); *) - let gl = pf_unify_HO gl ty (pf_concl gl) in - let gs = CList.map_filter (fun (_, e) -> - if isEvar (pf_nf_evar gl e) then Some e else None) - args in - pf_partial_solution gl t gs - in - Proofview.(V82.of_tactic - (tclTHEN (V82.tactic refine) - (if with_shelve then shelve_unifiable else tclUNIT ()))) gl - else - let t, gl = if n = 0 then t, gl else - let sigma, si = project gl, sig_it gl in - let rec loop sigma bo args = function (* saturate with metas *) - | 0 -> mkApp (t, Array.of_list (List.rev args)), re_sig si sigma - | n -> match kind_of_term bo with - | Lambda (_, ty, bo) -> - if not (closed0 ty) then raise dependent_apply_error; - let m = Evarutil.new_meta () in - loop (meta_declare m ty sigma) bo ((mkMeta m)::args) (n-1) - | _ -> assert false - in loop sigma t [] n in - pp(lazy(str"Refiner.refiner " ++ pr_constr t)); - Refiner.refiner (Proof_type.Refine t) gl - -let refine_with ?(first_goes_last=false) ?beta ?(with_evars=true) oc gl = - let rec mkRels = function 1 -> [] | n -> mkRel n :: mkRels (n-1) in - let uct = Evd.evar_universe_context (fst oc) in - let n, oc = pf_abs_evars_pirrel gl oc in - let gl = pf_merge_uc uct gl in - let oc = if not first_goes_last || n <= 1 then oc else - let l, c = decompose_lam oc in - if not (List.for_all_i (fun i (_,t) -> closedn ~-i t) (1-n) l) then oc else - compose_lam (let xs,y = List.chop (n-1) l in y @ xs) - (mkApp (compose_lam l c, Array.of_list (mkRel 1 :: mkRels n))) - in - pp(lazy(str"after: " ++ pr_constr oc)); - try applyn ~with_evars ~with_shelve:true ?beta n oc gl with _ -> raise dependent_apply_error - -let pf_fresh_inductive_instance ind gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, indu = Evd.fresh_inductive_instance env sigma ind in - indu, re_sig it sigma - -(** The "case" and "elim" tactic *) - -(* A case without explicit dependent terms but with both a view and an *) -(* occurrence switch and/or an equation is treated as dependent, with the *) -(* viewed term as the dependent term (the occurrence switch would be *) -(* meaningless otherwise). When both a view and explicit dependents are *) -(* present, it is forbidden to put a (meaningless) occurrence switch on *) -(* the viewed term. *) - -(* This is both elim and case (defaulting to the former). If ~elim is omitted - * the standard eliminator is chosen. The code is made of 4 parts: - * 1. find the eliminator if not given as ~elim and analyze it - * 2. build the patterns to be matched against the conclusion, looking at - * (occ, c), deps and the pattern inferred from the type of the eliminator - * 3. build the new predicate matching the patterns, and the tactic to - * generalize the equality in case eqid is not None - * 4. build the tactic handle intructions and clears as required in ipats and - * by eqid *) -let ssrelim ?(is_case=false) ?ist deps what ?elim eqid ipats gl = - (* some sanity checks *) - let oc, orig_clr, occ, c_gen, gl = match what with - | `EConstr(_,_,t) when isEvar t -> - anomaly "elim called on a constr evar" - | `EGen _ when ist = None -> - anomaly "no ist and non simple elimination" - | `EGen (_, g) when elim = None && is_wildcard g -> - errorstrm(str"Indeterminate pattern and no eliminator") - | `EGen ((Some clr,occ), g) when is_wildcard g -> - None, clr, occ, None, gl - | `EGen ((None, occ), g) when is_wildcard g -> None,[],occ,None,gl - | `EGen ((_, occ), p as gen) -> - let _, c, clr,gl = pf_interp_gen (Option.get ist) gl true gen in - Some c, clr, occ, Some p,gl - | `EConstr (clr, occ, c) -> Some c, clr, occ, None,gl in - let orig_gl, concl, env = gl, pf_concl gl, pf_env gl in - pp(lazy(str(if is_case then "==CASE==" else "==ELIM=="))); - (* Utils of local interest only *) - let iD s ?t gl = let t = match t with None -> pf_concl gl | Some x -> x in - pp(lazy(str s ++ pr_constr t)); tclIDTAC gl in - let eq, gl = pf_fresh_global (build_coq_eq ()) gl in - let protectC, gl = pf_mkSsrConst "protect_term" gl in - let fire_subst gl t = Reductionops.nf_evar (project gl) t in - let fire_sigma sigma t = Reductionops.nf_evar sigma t in - let is_undef_pat = function - | sigma, T t -> - (match kind_of_term (fire_sigma sigma t) with Evar _ -> true | _ -> false) - | _ -> false in - let match_pat env p occ h cl = - let sigma0 = project orig_gl in - pp(lazy(str"matching: " ++ pp_pattern p)); - let (c,ucst), cl = - fill_occ_pattern ~raise_NoMatch:true env sigma0 cl p occ h in - pp(lazy(str" got: " ++ pr_constr c)); - c, cl, ucst in - let mkTpat gl t = (* takes a term, refreshes it and makes a T pattern *) - let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in - let t, _, _, sigma = saturate ~beta:true env (project gl) t n in - Evd.merge_universe_context sigma ucst, T t in - let unif_redex gl (sigma, r as p) t = (* t is a hint for the redex of p *) - let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in - let t, _, _, sigma = saturate ~beta:true env sigma t n in - let sigma = Evd.merge_universe_context sigma ucst in - match r with - | X_In_T (e, p) -> sigma, E_As_X_In_T (t, e, p) - | _ -> - try unify_HO env sigma t (fst (redex_of_pattern env p)), r - with e when Errors.noncritical e -> p in - (* finds the eliminator applies it to evars and c saturated as needed *) - (* obtaining "elim ??? (c ???)". pred is the higher order evar *) - let cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl = - match elim with - | Some elim -> - let gl, elimty = pf_e_type_of gl elim in - let pred_id, n_elim_args, is_rec, elim_is_dep, n_pred_args = - analyze_eliminator elimty env (project gl) in - let elim, elimty, elim_args, gl = - pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in - let pred = List.assoc pred_id elim_args in - let elimty = Reductionops.whd_betadeltaiota env (project gl) elimty in - None, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl - | None -> - let c = Option.get oc in let c_ty = pf_type_of gl c in - let ((kn, i) as ind, _ as indu), unfolded_c_ty = - pf_reduce_to_quantified_ind gl c_ty in - let sort = elimination_sort_of_goal gl in - let gl, elim = - if not is_case then - let t, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in - gl, t - else - pf_eapply (fun env sigma -> - Indrec.build_case_analysis_scheme env sigma indu true) gl sort in - let elimty = pf_type_of gl elim in - let pred_id,n_elim_args,is_rec,elim_is_dep,n_pred_args = - analyze_eliminator elimty env (project gl) in - let rctx = fst (decompose_prod_assum unfolded_c_ty) in - let n_c_args = rel_context_length rctx in - let c, c_ty, t_args, gl = pf_saturate gl c ~ty:c_ty n_c_args in - let elim, elimty, elim_args, gl = - pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in - let pred = List.assoc pred_id elim_args in - let pc = match n_c_args, c_gen with - | 0, Some p -> interp_cpattern (Option.get ist) orig_gl p None - | _ -> mkTpat gl c in - let cty = Some (c, c_ty, pc) in - let elimty = Reductionops.whd_betadeltaiota env (project gl) elimty in - cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl - in - pp(lazy(str"elim= "++ pr_constr_pat elim)); - pp(lazy(str"elimty= "++ pr_constr elimty)); - let inf_deps_r = match kind_of_type elimty with - | AtomicType (_, args) -> List.rev (Array.to_list args) - | _ -> assert false in - let saturate_until gl c c_ty f = - let rec loop n = try - let c, c_ty, _, gl = pf_saturate gl c ~ty:c_ty n in - let gl' = f c c_ty gl in - Some (c, c_ty, gl, gl') - with NotEnoughProducts -> None | _ -> loop (n+1) in loop 0 in - let elim_is_dep, gl = match cty with - | None -> true, gl - | Some (c, c_ty, _) -> - let res = - if elim_is_dep then None else - let arg = List.assoc (n_elim_args - 1) elim_args in - let arg_ty = pf_type_of gl arg in - match saturate_until gl c c_ty (fun c c_ty gl -> - pf_unify_HO (pf_unify_HO gl c_ty arg_ty) arg c) with - | Some (c, _, _, gl) -> Some (false, gl) - | None -> None in - match res with - | Some x -> x - | None -> - let inf_arg = List.hd inf_deps_r in - let inf_arg_ty = pf_type_of gl inf_arg in - match saturate_until gl c c_ty (fun _ c_ty gl -> - pf_unify_HO gl c_ty inf_arg_ty) with - | Some (c, _, _,gl) -> true, gl - | None -> - errorstrm (str"Unable to apply the eliminator to the term"++ - spc()++pr_constr c++spc()++str"or to unify it's type with"++ - pr_constr inf_arg_ty) in - pp(lazy(str"elim_is_dep= " ++ bool elim_is_dep)); - let predty = pf_type_of gl pred in - (* Patterns for the inductive types indexes to be bound in pred are computed - * looking at the ones provided by the user and the inferred ones looking at - * the type of the elimination principle *) - let pp_pat (_,p,_,_) = pp_pattern p in - let pp_inf_pat gl (_,_,t,_) = pr_constr_pat (fire_subst gl t) in - let patterns, clr, gl = - let rec loop patterns clr i = function - | [],[] -> patterns, clr, gl - | ((oclr, occ), t):: deps, inf_t :: inf_deps -> - let ist = match ist with Some x -> x | None -> assert false in - let p = interp_cpattern ist orig_gl t None in - let clr_t = - interp_clr (oclr,(tag_of_cpattern t,fst (redex_of_pattern env p)))in - (* if we are the index for the equation we do not clear *) - let clr_t = if deps = [] && eqid <> None then [] else clr_t in - let p = if is_undef_pat p then mkTpat gl inf_t else p in - loop (patterns @ [i, p, inf_t, occ]) - (clr_t @ clr) (i+1) (deps, inf_deps) - | [], c :: inf_deps -> - pp(lazy(str"adding inferred pattern " ++ pr_constr_pat c)); - loop (patterns @ [i, mkTpat gl c, c, allocc]) - clr (i+1) ([], inf_deps) - | _::_, [] -> errorstrm (str "Too many dependent abstractions") in - let deps, head_p, inf_deps_r = match what, elim_is_dep, cty with - | `EConstr _, _, None -> anomaly "Simple welim with no term" - | _, false, _ -> deps, [], inf_deps_r - | `EGen gen, true, None -> deps @ [gen], [], inf_deps_r - | _, true, Some (c, _, pc) -> - let occ = if occ = None then allocc else occ in - let inf_p, inf_deps_r = List.hd inf_deps_r, List.tl inf_deps_r in - deps, [1, pc, inf_p, occ], inf_deps_r in - let patterns, clr, gl = - loop [] orig_clr (List.length head_p+1) (List.rev deps, inf_deps_r) in - head_p @ patterns, Util.List.uniquize clr, gl - in - pp(lazy(pp_concat (str"patterns=") (List.map pp_pat patterns))); - pp(lazy(pp_concat (str"inf. patterns=") (List.map (pp_inf_pat gl) patterns))); - (* Predicate generation, and (if necessary) tactic to generalize the - * equation asked by the user *) - let elim_pred, gen_eq_tac, clr, gl = - let error gl t inf_t = errorstrm (str"The given pattern matches the term"++ - spc()++pp_term gl t++spc()++str"while the inferred pattern"++ - spc()++pr_constr_pat (fire_subst gl inf_t)++spc()++ str"doesn't") in - let match_or_postpone (cl, gl, post) (h, p, inf_t, occ) = - let p = unif_redex gl p inf_t in - if is_undef_pat p then - let () = pp(lazy(str"postponing " ++ pp_pattern p)) in - cl, gl, post @ [h, p, inf_t, occ] - else try - let c, cl, ucst = match_pat env p occ h cl in - let gl = pf_merge_uc ucst gl in - let gl = try pf_unify_HO gl inf_t c with _ -> error gl c inf_t in - cl, gl, post - with - | NoMatch | NoProgress -> - let e, ucst = redex_of_pattern env p in - let gl = pf_merge_uc ucst gl in - let n, e, _, _ucst = pf_abs_evars gl (fst p, e) in - let e, _, _, gl = pf_saturate ~beta:true gl e n in - let gl = try pf_unify_HO gl inf_t e with _ -> error gl e inf_t in - cl, gl, post - in - let rec match_all concl gl patterns = - let concl, gl, postponed = - List.fold_left match_or_postpone (concl, gl, []) patterns in - if postponed = [] then concl, gl - else if List.length postponed = List.length patterns then - errorstrm (str "Some patterns are undefined even after all"++spc()++ - str"the defined ones matched") - else match_all concl gl postponed in - let concl, gl = match_all concl gl patterns in - let pred_rctx, _ = decompose_prod_assum (fire_subst gl predty) in - let concl, gen_eq_tac, clr, gl = match eqid with - | Some (IpatId _) when not is_rec -> - let k = List.length deps in - let c = fire_subst gl (List.assoc (n_elim_args - k - 1) elim_args) in - let t = pf_type_of gl c in - let gen_eq_tac, gl = - let refl = mkApp (eq, [|t; c; c|]) in - let new_concl = mkArrow refl (lift 1 (pf_concl orig_gl)) in - let new_concl = fire_subst gl new_concl in - let erefl, gl = mkRefl t c gl in - let erefl = fire_subst gl erefl in - apply_type new_concl [erefl], gl in - let rel = k + if elim_is_dep then 1 else 0 in - let src, gl = mkProt mkProp (mkApp (eq,[|t; c; mkRel rel|])) gl in - let concl = mkArrow src (lift 1 concl) in - let clr = if deps <> [] then clr else [] in - concl, gen_eq_tac, clr, gl - | _ -> concl, tclIDTAC, clr, gl in - let mk_lam t r = mkLambda_or_LetIn r t in - let concl = List.fold_left mk_lam concl pred_rctx in - let gl, concl = - if eqid <> None && is_rec then - let concl, gl = mkProt (pf_type_of gl concl) concl gl in - let gl, _ = pf_e_type_of gl concl in - gl, concl - else gl, concl in - concl, gen_eq_tac, clr, gl in - let gl, pty = pf_e_type_of gl elim_pred in - pp(lazy(str"elim_pred=" ++ pp_term gl elim_pred)); - pp(lazy(str"elim_pred_ty=" ++ pp_term gl pty)); - let gl = pf_unify_HO gl pred elim_pred in - let elim = fire_subst gl elim in - let gl, _ = pf_e_type_of gl elim in - (* check that the patterns do not contain non instantiated dependent metas *) - let () = - let evars_of_term = Evarutil.undefined_evars_of_term (project gl) in - let patterns = List.map (fun (_,_,t,_) -> fire_subst gl t) patterns in - let patterns_ev = List.map evars_of_term patterns in - let ev = List.fold_left Intset.union Intset.empty patterns_ev in - let ty_ev = Intset.fold (fun i e -> - let ex = i in - let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in - Intset.union e (evars_of_term i_ty)) - ev Intset.empty in - let inter = Intset.inter ev ty_ev in - if not (Intset.is_empty inter) then begin - let i = Intset.choose inter in - let pat = List.find (fun t -> Intset.mem i (evars_of_term t)) patterns in - errorstrm(str"Pattern"++spc()++pr_constr_pat pat++spc()++ - str"was not completely instantiated and one of its variables"++spc()++ - str"occurs in the type of another non instantieted pattern variable"); - end - in - (* the elim tactic, with the eliminator and the predicated we computed *) - let elim = project gl, elim in - let elim_tac gl = - tclTHENLIST [refine_with ~with_evars:false elim; cleartac clr] gl in - (* handling of following intro patterns and equation introduction if any *) - let elim_intro_tac gl = - let intro_eq = - match eqid with - | Some (IpatId ipat) when not is_rec -> - let rec intro_eq gl = match kind_of_type (pf_concl gl) with - | ProdType (_, src, tgt) -> - (match kind_of_type src with - | AtomicType (hd, _) when Term.eq_constr hd protectC -> - tclTHENLIST [unprotecttac; introid ipat] gl - | _ -> tclTHENLIST [ iD "IA"; introstac [IpatAnon]; intro_eq] gl) - |_ -> errorstrm (str "Too many names in intro pattern") in - intro_eq - | Some (IpatId ipat) -> - let name gl = mk_anon_id "K" gl in - let intro_lhs gl = - let elim_name = match orig_clr, what with - | [SsrHyp(_, x)], _ -> x - | _, `EConstr(_,_,t) when isVar t -> destVar t - | _ -> name gl in - if is_name_in_ipats elim_name ipats then introid (name gl) gl - else introid elim_name gl - in - let rec gen_eq_tac gl = - let concl = pf_concl gl in - let ctx, last = decompose_prod_assum concl in - let args = match kind_of_type last with - | AtomicType (hd, args) -> assert(Term.eq_constr hd protectC); args - | _ -> assert false in - let case = args.(Array.length args-1) in - if not(closed0 case) then tclTHEN (introstac [IpatAnon]) gen_eq_tac gl - else - let case_ty = pf_type_of gl case in - let refl = mkApp (eq, [|lift 1 case_ty; mkRel 1; lift 1 case|]) in - let new_concl = fire_subst gl - (mkProd (Name (name gl), case_ty, mkArrow refl (lift 2 concl))) in - let erefl, gl = mkRefl case_ty case gl in - let erefl = fire_subst gl erefl in - apply_type new_concl [case;erefl] gl in - tclTHENLIST [gen_eq_tac; intro_lhs; introid ipat] - | _ -> tclIDTAC in - let unprot = if eqid <> None && is_rec then unprotecttac else tclIDTAC in - tclEQINTROS ?ist elim_tac (tclTHENLIST [intro_eq; unprot]) ipats gl - in - tclTHENLIST [gen_eq_tac; elim_intro_tac] orig_gl -;; - -let simplest_newelim x= ssrelim ~is_case:false [] (`EConstr ([],None,x)) None [] -let simplest_newcase x= ssrelim ~is_case:true [] (`EConstr ([],None,x)) None [] -let _ = simplest_newcase_ref := simplest_newcase - -let check_casearg = function -| view, (_, (([_; gen :: _], _), _)) when view <> [] && has_occ gen -> - Errors.error "incompatible view and occurrence switch in dependent case tactic" -| arg -> arg - -ARGUMENT EXTEND ssrcasearg TYPED AS ssrarg PRINTED BY pr_ssrarg -| [ ssrarg(arg) ] -> [ check_casearg arg ] -END - -let ssrcasetac ist (view, (eqid, (dgens, ipats))) = - let ndefectcasetac view eqid ipats deps ((_, occ), _ as gen) ist gl = - let simple = (eqid = None && deps = [] && occ = None) in - let cl, c, clr, gl = pf_interp_gen ist gl true gen in - let _, vc, gl = - if view = [] then c, c, gl else pf_with_view ist gl (false, view) cl c in - if simple && is_injection_case vc gl then - tclTHENLIST [perform_injection vc; cleartac clr; introstac ~ist ipats] gl - else - (* macro for "case/v E: x" ---> "case E: x / (v x)" *) - let deps, clr, occ = - if view <> [] && eqid <> None && deps = [] then [gen], [], None - else deps, clr, occ in - ssrelim ~is_case:true ~ist deps (`EConstr (clr,occ, vc)) eqid ipats gl - in - with_dgens dgens (ndefectcasetac view eqid ipats) ist - -TACTIC EXTEND ssrcase -| [ "case" ssrcasearg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrcasetac ist arg) clauses) ] -| [ "case" ] -> [ Proofview.V82.tactic (with_top ssrscasetac) ] -END - -(** The "elim" tactic *) - -(* Elim views are elimination lemmas, so the eliminated term is not addded *) -(* to the dependent terms as for "case", unless it actually occurs in the *) -(* goal, the "all occurrences" {+} switch is used, or the equation switch *) -(* is used and there are no dependents. *) - -let ssrelimtac ist (view, (eqid, (dgens, ipats))) = - let ndefectelimtac view eqid ipats deps gen ist gl = - let elim = match view with [v] -> Some (snd(force_term ist gl v)) | _ -> None in - ssrelim ~ist deps (`EGen gen) ?elim eqid ipats gl - in - with_dgens dgens (ndefectelimtac view eqid ipats) ist - -TACTIC EXTEND ssrelim -| [ "elim" ssrarg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrelimtac ist arg) clauses) ] -| [ "elim" ] -> [ Proofview.V82.tactic (with_top simplest_newelim) ] -END - -(** 6. Backward chaining tactics: apply, exact, congr. *) - -(** The "apply" tactic *) - -let pr_agen (docc, dt) = pr_docc docc ++ pr_term dt -let pr_ssragen _ _ _ = pr_agen -let pr_ssragens _ _ _ = pr_dgens pr_agen - -ARGUMENT EXTEND ssragen TYPED AS ssrdocc * ssrterm PRINTED BY pr_ssragen -| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ] -> [ mkclr clr, dt ] -| [ ssrterm(dt) ] -> [ nodocc, dt ] -END - -ARGUMENT EXTEND ssragens TYPED AS ssragen list list * ssrclear -PRINTED BY pr_ssragens -| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ssragens(agens) ] -> - [ cons_gen (mkclr clr, dt) agens ] -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ [[]], clr] -| [ ssrterm(dt) ssragens(agens) ] -> - [ cons_gen (nodocc, dt) agens ] -| [ ] -> [ [[]], [] ] -END - -let mk_applyarg views agens intros = views, (None, (agens, intros)) - -let pr_ssraarg _ _ _ (view, (eqid, (dgens, ipats))) = - let pri = pr_intros (gens_sep dgens) in - pr_view view ++ pr_eqid eqid ++ pr_dgens pr_agen dgens ++ pri ipats - -ARGUMENT EXTEND ssrapplyarg -TYPED AS ssrview * (ssreqid * (ssragens * ssrintros)) -PRINTED BY pr_ssraarg -| [ ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] -> - [ mk_applyarg [] (cons_gen gen dgens) intros ] -| [ ssrclear_ne(clr) ssrintros(intros) ] -> - [ mk_applyarg [] ([], clr) intros ] -| [ ssrintros_ne(intros) ] -> - [ mk_applyarg [] ([], []) intros ] -| [ ssrview(view) ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] -> - [ mk_applyarg view (cons_gen gen dgens) intros ] -| [ ssrview(view) ssrclear(clr) ssrintros(intros) ] -> - [ mk_applyarg view ([], clr) intros ] -END - -let interp_agen ist gl ((goclr, _), (k, gc)) (clr, rcs) = -(* pp(lazy(str"sigma@interp_agen=" ++ pr_evar_map None (project gl))); *) - let rc = glob_constr ist (pf_env gl) gc in - let rcs' = rc :: rcs in - match goclr with - | None -> clr, rcs' - | Some ghyps -> - let clr' = snd (interp_hyps ist gl ghyps) @ clr in - if k <> ' ' then clr', rcs' else - match rc with - | GVar (loc, id) when not_section_id id -> SsrHyp (loc, id) :: clr', rcs' - | GRef (loc, VarRef id, _) when not_section_id id -> - SsrHyp (loc, id) :: clr', rcs' - | _ -> clr', rcs' - -let interp_agens ist gl gagens = - match List.fold_right (interp_agen ist gl) gagens ([], []) with - | clr, rlemma :: args -> - let n = interp_nbargs ist gl rlemma - List.length args in - let rec loop i = - if i > n then - errorstrm (str "Cannot apply lemma " ++ pf_pr_glob_constr gl rlemma) - else - try interp_refine ist gl (mkRApp rlemma (mkRHoles i @ args)) - with _ -> loop (i + 1) in - clr, loop 0 - | _ -> assert false - -let apply_rconstr ?ist t gl = -(* pp(lazy(str"sigma@apply_rconstr=" ++ pr_evar_map None (project gl))); *) - let n = match ist, t with - | None, (GVar (_, id) | GRef (_, VarRef id,_)) -> pf_nbargs gl (mkVar id) - | Some ist, _ -> interp_nbargs ist gl t - | _ -> anomaly "apply_rconstr without ist and not RVar" in - let mkRlemma i = mkRApp t (mkRHoles i) in - let cl = pf_concl gl in - let rec loop i = - if i > n then - errorstrm (str"Cannot apply lemma "++pf_pr_glob_constr gl t) - else try pf_match gl (mkRlemma i) (OfType cl) with _ -> loop (i + 1) in - refine_with (loop 0) gl - -let mkRAppView ist gl rv gv = - let nb_view_imps = interp_view_nbimps ist gl rv in - mkRApp rv (mkRHoles (abs nb_view_imps)) - -let prof_apply_interp_with = mk_profiler "ssrapplytac.interp_with";; - -let refine_interp_apply_view i ist gl gv = - let pair i = List.map (fun x -> i, x) in - let rv = pf_intern_term ist gl gv in - let v = mkRAppView ist gl rv gv in - let interp_with (i, hint) = - interp_refine ist gl (mkRApp hint (v :: mkRHoles i)) in - let interp_with x = prof_apply_interp_with.profile interp_with x in - let rec loop = function - | [] -> (try apply_rconstr ~ist rv gl with _ -> view_error "apply" gv) - | h :: hs -> (try refine_with (snd (interp_with h)) gl with _ -> loop hs) in - loop (pair i viewtab.(i) @ if i = 2 then pair 1 viewtab.(1) else []) - -let apply_top_tac gl = - tclTHENLIST [introid top_id; apply_rconstr (mkRVar top_id); clear [top_id]] gl - -let inner_ssrapplytac gviews ggenl gclr ist gl = - let _, clr = interp_hyps ist gl gclr in - let vtac gv i gl' = refine_interp_apply_view i ist gl' gv in - let ggenl, tclGENTAC = - if gviews <> [] && ggenl <> [] then - let ggenl= List.map (fun (x,g) -> x, cpattern_of_term g) (List.hd ggenl) in - [], tclTHEN (genstac (ggenl,[]) ist) - else ggenl, tclTHEN tclIDTAC in - tclGENTAC (fun gl -> - match gviews, ggenl with - | v :: tl, [] -> - let dbl = if List.length tl = 1 then 2 else 1 in - tclTHEN - (List.fold_left (fun acc v -> tclTHENLAST acc (vtac v dbl)) (vtac v 1) tl) - (cleartac clr) gl - | [], [agens] -> - let clr', (sigma, lemma) = interp_agens ist gl agens in - let gl = pf_merge_uc_of sigma gl in - tclTHENLIST [cleartac clr; refine_with ~beta:true lemma; cleartac clr'] gl - | _, _ -> tclTHEN apply_top_tac (cleartac clr) gl) gl - -let ssrapplytac ist (views, (_, ((gens, clr), intros))) = - tclINTROS ist (inner_ssrapplytac views gens clr) intros - -TACTIC EXTEND ssrapply -| [ "apply" ssrapplyarg(arg) ] -> [ Proofview.V82.tactic (ssrapplytac ist arg) ] -| [ "apply" ] -> [ Proofview.V82.tactic apply_top_tac ] -END - -(** The "exact" tactic *) - -let mk_exactarg views dgens = mk_applyarg views dgens [] - -ARGUMENT EXTEND ssrexactarg TYPED AS ssrapplyarg PRINTED BY pr_ssraarg -| [ ":" ssragen(gen) ssragens(dgens) ] -> - [ mk_exactarg [] (cons_gen gen dgens) ] -| [ ssrview(view) ssrclear(clr) ] -> - [ mk_exactarg view ([], clr) ] -| [ ssrclear_ne(clr) ] -> - [ mk_exactarg [] ([], clr) ] -END - -let vmexacttac pf gl = exact_no_check (mkCast (pf, VMcast, pf_concl gl)) gl - -TACTIC EXTEND ssrexact -| [ "exact" ssrexactarg(arg) ] -> [ Proofview.V82.tactic (tclBY (ssrapplytac ist arg)) ] -| [ "exact" ] -> [ Proofview.V82.tactic (tclORELSE donetac (tclBY apply_top_tac)) ] -| [ "exact" "<:" lconstr(pf) ] -> [ Proofview.V82.tactic (vmexacttac pf) ] -END - -(** The "congr" tactic *) - -(* type ssrcongrarg = open_constr * (int * constr) *) - -let pr_ssrcongrarg _ _ _ ((n, f), dgens) = - (if n <= 0 then mt () else str " " ++ int n) ++ - str " " ++ pr_term f ++ pr_dgens pr_gen dgens - -ARGUMENT EXTEND ssrcongrarg TYPED AS (int * ssrterm) * ssrdgens - PRINTED BY pr_ssrcongrarg -| [ natural(n) constr(c) ssrdgens(dgens) ] -> [ (n, mk_term ' ' c), dgens ] -| [ natural(n) constr(c) ] -> [ (n, mk_term ' ' c),([[]],[]) ] -| [ constr(c) ssrdgens(dgens) ] -> [ (0, mk_term ' ' c), dgens ] -| [ constr(c) ] -> [ (0, mk_term ' ' c), ([[]],[]) ] -END - -let rec mkRnat n = - if n <= 0 then GRef (dummy_loc, glob_O, None) else - mkRApp (GRef (dummy_loc, glob_S, None)) [mkRnat (n - 1)] - -let interp_congrarg_at ist gl n rf ty m = - pp(lazy(str"===interp_congrarg_at===")); - let congrn, _ = mkSsrRRef "nary_congruence" in - let args1 = mkRnat n :: mkRHoles n @ [ty] in - let args2 = mkRHoles (3 * n) in - let rec loop i = - if i + n > m then None else - try - let rt = mkRApp congrn (args1 @ mkRApp rf (mkRHoles i) :: args2) in - pp(lazy(str"rt=" ++ pr_glob_constr rt)); - Some (interp_refine ist gl rt) - with _ -> loop (i + 1) in - loop 0 - -let pattern_id = mk_internal_id "pattern value" - -let congrtac ((n, t), ty) ist gl = - pp(lazy(str"===congr===")); - pp(lazy(str"concl=" ++ pr_constr (pf_concl gl))); - let sigma, _ as it = interp_term ist gl t in - let gl = pf_merge_uc_of sigma gl in - let _, f, _, _ucst = pf_abs_evars gl it in - let ist' = {ist with lfun = - Id.Map.add pattern_id (Value.of_constr f) Id.Map.empty } in - let rf = mkRltacVar pattern_id in - let m = pf_nbargs gl f in - let _, cf = if n > 0 then - match interp_congrarg_at ist' gl n rf ty m with - | Some cf -> cf - | None -> errorstrm (str "No " ++ int n ++ str "-congruence with " - ++ pr_term t) - else let rec loop i = - if i > m then errorstrm (str "No congruence with " ++ pr_term t) - else match interp_congrarg_at ist' gl i rf ty m with - | Some cf -> cf - | None -> loop (i + 1) in - loop 1 in - tclTHEN (refine_with cf) (tclTRY (Proofview.V82.of_tactic reflexivity)) gl - -let newssrcongrtac arg ist gl = - pp(lazy(str"===newcongr===")); - pp(lazy(str"concl=" ++ pr_constr (pf_concl gl))); - (* utils *) - let fs gl t = Reductionops.nf_evar (project gl) t in - let tclMATCH_GOAL (c, gl_c) proj t_ok t_fail gl = - match try Some (pf_unify_HO gl_c (pf_concl gl) c) with _ -> None with - | Some gl_c -> - tclTHEN (Proofview.V82.of_tactic (convert_concl (fs gl_c c))) - (t_ok (proj gl_c)) gl - | None -> t_fail () gl in - let mk_evar gl ty = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - let sigma, x = Evarutil.new_evar env (create_evar_defs sigma) ty in - x, re_sig si sigma in - let arr, gl = pf_mkSsrConst "ssr_congr_arrow" gl in - let ssr_congr lr = mkApp (arr, lr) in - (* here thw two cases: simple equality or arrow *) - let equality, _, eq_args, gl' = - let eq, gl = pf_fresh_global (build_coq_eq ()) gl in - pf_saturate gl eq 3 in - tclMATCH_GOAL (equality, gl') (fun gl' -> fs gl' (List.assoc 0 eq_args)) - (fun ty -> congrtac (arg, Detyping.detype false [] (pf_env gl) (project gl) ty) ist) - (fun () -> - let lhs, gl' = mk_evar gl mkProp in let rhs, gl' = mk_evar gl' mkProp in - let arrow = mkArrow lhs (lift 1 rhs) in - tclMATCH_GOAL (arrow, gl') (fun gl' -> [|fs gl' lhs;fs gl' rhs|]) - (fun lr -> tclTHEN (Proofview.V82.of_tactic (apply (ssr_congr lr))) (congrtac (arg, mkRType) ist)) - (fun _ _ -> errorstrm (str"Conclusion is not an equality nor an arrow"))) - gl -;; - -TACTIC EXTEND ssrcongr -| [ "congr" ssrcongrarg(arg) ] -> -[ let arg, dgens = arg in - Proofview.V82.tactic begin - match dgens with - | [gens], clr -> tclTHEN (genstac (gens,clr) ist) (newssrcongrtac arg ist) - | _ -> errorstrm (str"Dependent family abstractions not allowed in congr") - end] -END - -(** 7. Rewriting tactics (rewrite, unlock) *) - -(** Coq rewrite compatibility flag *) - -let ssr_strict_match = ref false - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "strict redex matching"; - Goptions.optkey = ["Match"; "Strict"]; - Goptions.optread = (fun () -> !ssr_strict_match); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssr_strict_match := b) } - -(** Rewrite multiplier *) - -type ssrmult = int * ssrmmod - -let notimes = 0 -let nomult = 1, Once - -let pr_mult (n, m) = - if n > 0 && m <> Once then int n ++ pr_mmod m else pr_mmod m - -let pr_ssrmult _ _ _ = pr_mult - -ARGUMENT EXTEND ssrmult_ne TYPED AS int * ssrmmod PRINTED BY pr_ssrmult - | [ natural(n) ssrmmod(m) ] -> [ check_index loc n, m ] - | [ ssrmmod(m) ] -> [ notimes, m ] -END - -ARGUMENT EXTEND ssrmult TYPED AS ssrmult_ne PRINTED BY pr_ssrmult - | [ ssrmult_ne(m) ] -> [ m ] - | [ ] -> [ nomult ] -END - -(** Rewrite clear/occ switches *) - -let pr_rwocc = function - | None, None -> mt () - | None, occ -> pr_occ occ - | Some clr, _ -> pr_clear_ne clr - -let pr_ssrrwocc _ _ _ = pr_rwocc - -ARGUMENT EXTEND ssrrwocc TYPED AS ssrdocc PRINTED BY pr_ssrrwocc -| [ "{" ssrhyp_list(clr) "}" ] -> [ mkclr clr ] -| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ] -| [ ] -> [ noclr ] -END - -(** Rewrite rules *) - -type ssrwkind = RWred of ssrsimpl | RWdef | RWeq -(* type ssrrule = ssrwkind * ssrterm *) - -let pr_rwkind = function - | RWred s -> pr_simpl s - | RWdef -> str "/" - | RWeq -> mt () - -let wit_ssrrwkind = add_genarg "ssrrwkind" pr_rwkind - -let pr_rule = function - | RWred s, _ -> pr_simpl s - | RWdef, r-> str "/" ++ pr_term r - | RWeq, r -> pr_term r - -let pr_ssrrule _ _ _ = pr_rule - -let noruleterm loc = mk_term ' ' (mkCProp loc) - -ARGUMENT EXTEND ssrrule_ne TYPED AS ssrrwkind * ssrterm PRINTED BY pr_ssrrule - | [ ssrsimpl_ne(s) ] -> [ RWred s, noruleterm loc ] - | [ "/" ssrterm(t) ] -> [ RWdef, t ] - | [ ssrterm(t) ] -> [ RWeq, t ] -END - -ARGUMENT EXTEND ssrrule TYPED AS ssrrule_ne PRINTED BY pr_ssrrule - | [ ssrrule_ne(r) ] -> [ r ] - | [ ] -> [ RWred Nop, noruleterm loc ] -END - -(** Rewrite arguments *) - -(* type ssrrwarg = (ssrdir * ssrmult) * ((ssrdocc * ssrpattern) * ssrrule) *) - -let pr_option f = function None -> mt() | Some x -> f x -let pr_pattern_squarep= pr_option (fun r -> str "[" ++ pr_rpattern r ++ str "]") -let pr_ssrpattern_squarep _ _ _ = pr_pattern_squarep -let pr_rwarg ((d, m), ((docc, rx), r)) = - pr_rwdir d ++ pr_mult m ++ pr_rwocc docc ++ pr_pattern_squarep rx ++ pr_rule r - -let pr_ssrrwarg _ _ _ = pr_rwarg - -let mk_rwarg (d, (n, _ as m)) ((clr, occ as docc), rx) (rt, _ as r) = - if rt <> RWeq then begin - if rt = RWred Nop && not (m = nomult && occ = None && rx = None) - && (clr = None || clr = Some []) then - anomaly "Improper rewrite clear switch"; - if d = R2L && rt <> RWdef then - Errors.error "Right-to-left switch on simplification"; - if n <> 1 && rt = RWred Cut then - Errors.error "Bad or useless multiplier"; - if occ <> None && rx = None && rt <> RWdef then - Errors.error "Missing redex for simplification occurrence" - end; (d, m), ((docc, rx), r) - -let norwmult = L2R, nomult -let norwocc = noclr, None - -(* -let pattern_ident = Prim.pattern_ident in -GEXTEND Gram -GLOBAL: pattern_ident; -pattern_ident: -[[c = pattern_ident -> (CRef (Ident (loc,c)), NoBindings)]]; -END -*) - -ARGUMENT EXTEND ssrpattern_squarep -TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep - | [ "[" rpattern(rdx) "]" ] -> [ Some rdx ] - | [ ] -> [ None ] -END - -ARGUMENT EXTEND ssrpattern_ne_squarep -TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep - | [ "[" rpattern(rdx) "]" ] -> [ Some rdx ] -END - - -ARGUMENT EXTEND ssrrwarg - TYPED AS (ssrdir * ssrmult) * ((ssrdocc * rpattern option) * ssrrule) - PRINTED BY pr_ssrrwarg - | [ "-" ssrmult(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg (R2L, m) (docc, rx) r ] - | [ "-/" ssrterm(t) ] -> (* just in case '-/' should become a token *) - [ mk_rwarg (R2L, nomult) norwocc (RWdef, t) ] - | [ ssrmult_ne(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg (L2R, m) (docc, rx) r ] - | [ "{" ne_ssrhyp_list(clr) "}" ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (mkclr clr, rx) r ] - | [ "{" ne_ssrhyp_list(clr) "}" ssrrule(r) ] -> - [ mk_rwarg norwmult (mkclr clr, None) r ] - | [ "{" ssrocc(occ) "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (mkocc occ, rx) r ] - | [ "{" "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (nodocc, rx) r ] - | [ ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (noclr, rx) r ] - | [ ssrrule_ne(r) ] -> - [ mk_rwarg norwmult norwocc r ] -END - -let simplintac occ rdx sim gl = - let simptac gl = - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let simp env c _ _ = red_safe Tacred.simpl env sigma0 c in - Proofview.V82.of_tactic - (convert_concl_no_check (eval_pattern env0 sigma0 concl0 rdx occ simp)) - gl in - match sim with - | Simpl -> simptac gl - | SimplCut -> tclTHEN simptac (tclTRY donetac) gl - | _ -> simpltac sim gl - -let rec get_evalref c = match kind_of_term c with - | Var id -> EvalVarRef id - | Const (k,_) -> EvalConstRef k - | App (c', _) -> get_evalref c' - | Cast (c', _, _) -> get_evalref c' - | _ -> errorstrm (str "The term " ++ pr_constr c ++ str " is not unfoldable") - -(* Strip a pattern generated by a prenex implicit to its constant. *) -let strip_unfold_term ((sigma, t) as p) kt = match kind_of_term t with - | App (f, a) when kt = ' ' && Array.for_all isEvar a && isConst f -> - (sigma, f), true - | Const _ | Var _ -> p, true - | _ -> p, false - -let unfoldintac occ rdx t (kt,_) gl = - let fs sigma x = Reductionops.nf_evar sigma x in - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let (sigma, t), const = strip_unfold_term t kt in - let body env t c = - Tacred.unfoldn [OnlyOccurrences [1], get_evalref t] env sigma0 c in - let easy = occ = None && rdx = None in - let red_flags = if easy then Closure.betaiotazeta else Closure.betaiota in - let beta env = Reductionops.clos_norm_flags red_flags env sigma0 in - let unfold, conclude = match rdx with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let ise = create_evar_defs sigma in - let ise, u = mk_tpattern env0 sigma0 (ise,t) all_ok L2R t in - let find_T, end_T = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in - (fun env c _ h -> - try find_T env c h (fun env c _ _ -> body env t c) - with NoMatch when easy -> c - | NoMatch | NoProgress -> errorstrm (str"No occurrence of " - ++ pr_constr_pat t ++ spc() ++ str "in " ++ pr_constr c)), - (fun () -> try end_T () with - | NoMatch when easy -> fake_pmatcher_end () - | NoMatch -> anomaly "unfoldintac") - | _ -> - (fun env (c as orig_c) _ h -> - if const then - let rec aux c = - match kind_of_term c with - | Const _ when Term.eq_constr c t -> body env t t - | App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a) - | _ -> let c = Reductionops.whd_betaiotazeta sigma0 c in - match kind_of_term c with - | Const _ when Term.eq_constr c t -> body env t t - | App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a) - | Const f -> aux (body env c c) - | App (f, a) -> aux (mkApp (body env f f, a)) - | _ -> errorstrm (str "The term "++pr_constr orig_c++ - str" contains no " ++ pr_constr t ++ str" even after unfolding") - in aux c - else - try body env t (fs (unify_HO env sigma c t) t) - with _ -> errorstrm (str "The term " ++ - pr_constr c ++spc()++ str "does not unify with " ++ pr_constr_pat t)), - fake_pmatcher_end in - let concl = - try beta env0 (eval_pattern env0 sigma0 concl0 rdx occ unfold) - with Option.IsNone -> errorstrm (str"Failed to unfold " ++ pr_constr_pat t) in - let _ = conclude () in - Proofview.V82.of_tactic (convert_concl concl) gl -;; - -let foldtac occ rdx ft gl = - let fs sigma x = Reductionops.nf_evar sigma x in - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let sigma, t = ft in - let fold, conclude = match rdx with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let ise = create_evar_defs sigma in - let ut = red_product_skip_id env0 sigma t in - let ise, ut = mk_tpattern env0 sigma0 (ise,t) all_ok L2R ut in - let find_T, end_T = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[ut]) in - (fun env c _ h -> try find_T env c h (fun env t _ _ -> t) with NoMatch ->c), - (fun () -> try end_T () with NoMatch -> fake_pmatcher_end ()) - | _ -> - (fun env c _ h -> try let sigma = unify_HO env sigma c t in fs sigma t - with _ -> errorstrm (str "fold pattern " ++ pr_constr_pat t ++ spc () - ++ str "does not match redex " ++ pr_constr_pat c)), - fake_pmatcher_end in - let concl = eval_pattern env0 sigma0 concl0 rdx occ fold in - let _ = conclude () in - Proofview.V82.of_tactic (convert_concl concl) gl -;; - -let converse_dir = function L2R -> R2L | R2L -> L2R - -let rw_progress rhs lhs ise = not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs)) - -(* Coq has a more general form of "equation" (any type with a single *) -(* constructor with no arguments with_rect_r elimination lemmas). *) -(* However there is no clear way of determining the LHS and RHS of *) -(* such a generic Leibnitz equation -- short of inspecting the type *) -(* of the elimination lemmas. *) - -let rec strip_prod_assum c = match kind_of_term c with - | Prod (_, _, c') -> strip_prod_assum c' - | LetIn (_, v, _, c') -> strip_prod_assum (subst1 v c) - | Cast (c', _, _) -> strip_prod_assum c' - | _ -> c - -let rule_id = mk_internal_id "rewrite rule" - -exception PRtype_error -exception PRindetermined_rhs of constr - -let pirrel_rewrite pred rdx rdx_ty new_rdx dir (sigma, c) c_ty gl = -(* pp(lazy(str"sigma@pirrel_rewrite=" ++ pr_evar_map None sigma)); *) - let env = pf_env gl in - let beta = Reductionops.clos_norm_flags Closure.beta env sigma in - let sigma, p = - let sigma = create_evar_defs sigma in - Evarutil.new_evar env sigma (beta (subst1 new_rdx pred)) in - let pred = mkNamedLambda pattern_id rdx_ty pred in - let elim, gl = - let ((kn, i) as ind, _), unfolded_c_ty = pf_reduce_to_quantified_ind gl c_ty in - let sort = elimination_sort_of_goal gl in - let elim, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in - if dir = R2L then elim, gl else (* taken from Coq's rewrite *) - let elim, _ = destConst elim in - let mp,dp,l = repr_con (constant_of_kn (canonical_con elim)) in - let l' = label_of_id (Nameops.add_suffix (id_of_label l) "_r") in - let c1' = Global.constant_of_delta_kn (canonical_con (make_con mp dp l')) in - mkConst c1', gl in - let proof = mkApp (elim, [| rdx_ty; new_rdx; pred; p; rdx; c |]) in - (* We check the proof is well typed *) - let sigma, proof_ty = - try Typing.e_type_of env sigma proof with _ -> raise PRtype_error in - pp(lazy(str"pirrel_rewrite proof term of type: " ++ pr_constr proof_ty)); - try refine_with - ~first_goes_last:(not !ssroldreworder) ~with_evars:false (sigma, proof) gl - with _ -> - (* we generate a msg like: "Unable to find an instance for the variable" *) - let c = Reductionops.nf_evar sigma c in - let hd_ty, miss = match kind_of_term c with - | App (hd, args) -> - let hd_ty = Retyping.get_type_of env sigma hd in - let names = let rec aux t = function 0 -> [] | n -> - let t = Reductionops.whd_betadeltaiota env sigma t in - match kind_of_type t with - | ProdType (name, _, t) -> name :: aux t (n-1) - | _ -> assert false in aux hd_ty (Array.length args) in - hd_ty, Util.List.map_filter (fun (t, name) -> - let evs = Intset.elements (Evarutil.undefined_evars_of_term sigma t) in - let open_evs = List.filter (fun k -> - InProp <> Retyping.get_sort_family_of - env sigma (Evd.evar_concl (Evd.find sigma k))) - evs in - if open_evs <> [] then Some name else None) - (List.combine (Array.to_list args) names) - | _ -> anomaly "rewrite rule not an application" in - errorstrm (Himsg.explain_refiner_error (Logic.UnresolvedBindings miss)++ - (Pp.fnl()++str"Rule's type:" ++ spc() ++ pr_constr hd_ty)) -;; - -let is_const_ref c r = isConst c && eq_gr (ConstRef (fst(destConst c))) r -let is_construct_ref c r = - isConstruct c && eq_gr (ConstructRef (fst(destConstruct c))) r -let is_ind_ref c r = isInd c && eq_gr (IndRef (fst(destInd c))) r - -let rwcltac cl rdx dir sr gl = - let n, r_n,_, ucst = pf_abs_evars gl sr in - let r_n' = pf_abs_cterm gl n r_n in - let r' = subst_var pattern_id r_n' in - let gl = pf_merge_uc ucst gl in - let rdxt = Retyping.get_type_of (pf_env gl) (fst sr) rdx in -(* pp(lazy(str"sigma@rwcltac=" ++ pr_evar_map None (fst sr))); *) - pp(lazy(str"r@rwcltac=" ++ pr_constr (snd sr))); - let cvtac, rwtac, gl = - if closed0 r' then - let env, sigma, c, c_eq = pf_env gl, fst sr, snd sr, build_coq_eq () in - let sigma, c_ty = Typing.e_type_of env sigma c in - pp(lazy(str"c_ty@rwcltac=" ++ pr_constr c_ty)); - match kind_of_type (Reductionops.whd_betadeltaiota env sigma c_ty) with - | AtomicType(e, a) when is_ind_ref e c_eq -> - let new_rdx = if dir = L2R then a.(2) else a.(1) in - pirrel_rewrite cl rdx rdxt new_rdx dir (sigma,c) c_ty, tclIDTAC, gl - | _ -> - let cl' = mkApp (mkNamedLambda pattern_id rdxt cl, [|rdx|]) in - let sigma, _ = Typing.e_type_of env sigma cl' in - let gl = pf_merge_uc_of sigma gl in - Proofview.V82.of_tactic (convert_concl cl'), rewritetac dir r', gl - else - let dc, r2 = decompose_lam_n n r' in - let r3, _, r3t = - try destCast r2 with _ -> - errorstrm (str "no cast from " ++ pr_constr_pat (snd sr) - ++ str " to " ++ pr_constr r2) in - let cl' = mkNamedProd rule_id (compose_prod dc r3t) (lift 1 cl) in - let cl'' = mkNamedProd pattern_id rdxt cl' in - let itacs = [introid pattern_id; introid rule_id] in - let cltac = clear [pattern_id; rule_id] in - let rwtacs = [rewritetac dir (mkVar rule_id); cltac] in - apply_type cl'' [rdx; compose_lam dc r3], tclTHENLIST (itacs @ rwtacs), gl - in - let cvtac' _ = - try cvtac gl with - | PRtype_error -> - if occur_existential (pf_concl gl) - then errorstrm (str "Rewriting impacts evars") - else errorstrm (str "Dependent type error in rewrite of " - ++ pf_pr_constr gl (project gl) (mkNamedLambda pattern_id rdxt cl)) - | Errors.UserError _ as e -> raise e - | e -> anomaly ("cvtac's exception: " ^ Printexc.to_string e); - in - tclTHEN cvtac' rwtac gl - -let prof_rwcltac = mk_profiler "rwrxtac.rwcltac";; -let rwcltac cl rdx dir sr gl = - prof_rwcltac.profile (rwcltac cl rdx dir sr) gl -;; - - -let lz_coq_prod = - let prod = lazy (build_prod ()) in fun () -> Lazy.force prod - -let lz_setoid_relation = - let sdir = ["Classes"; "RelationClasses"] in - let last_srel = ref (Environ.empty_env, None) in - fun env -> match !last_srel with - | env', srel when env' == env -> srel - | _ -> - let srel = - try Some (coq_constant "Class_setoid" sdir "RewriteRelation") - with _ -> None in - last_srel := (env, srel); srel - -let ssr_is_setoid env = - match lz_setoid_relation env with - | None -> fun _ _ _ -> false - | Some srel -> - fun sigma r args -> - Rewrite.is_applied_rewrite_relation env - sigma [] (mkApp (r, args)) <> None - -let prof_rwxrtac_find_rule = mk_profiler "rwrxtac.find_rule";; - -let closed0_check cl p gl = - if closed0 cl then - errorstrm (str"No occurrence of redex "++pf_pr_constr gl (project gl) p) - -let rwprocess_rule dir rule gl = - let env = pf_env gl in - let coq_prod = lz_coq_prod () in - let is_setoid = ssr_is_setoid env in - let r_sigma, rules = - let rec loop d sigma r t0 rs red = - let t = - if red = 1 then Tacred.hnf_constr env sigma t0 - else Reductionops.whd_betaiotazeta sigma t0 in - pp(lazy(str"rewrule="++pr_constr t)); - match kind_of_term t with - | Prod (_, xt, at) -> - let ise, x = Evarutil.new_evar env (create_evar_defs sigma) xt in - loop d ise (mkApp (r, [|x|])) (subst1 x at) rs 0 - | App (pr, a) when is_ind_ref pr coq_prod.Coqlib.typ -> - let sr sigma = match kind_of_term (Tacred.hnf_constr env sigma r) with - | App (c, ra) when is_construct_ref c coq_prod.Coqlib.intro -> - fun i -> ra.(i + 1), sigma - | _ -> let ra = Array.append a [|r|] in - function 1 -> - let sigma, pi1 = Evd.fresh_global env sigma coq_prod.Coqlib.proj1 in - mkApp (pi1, ra), sigma - | _ -> - let sigma, pi2 = Evd.fresh_global env sigma coq_prod.Coqlib.proj2 in - mkApp (pi2, ra), sigma in - if Term.eq_constr a.(0) (build_coq_True ()) then - let s, sigma = sr sigma 2 in - loop (converse_dir d) sigma s a.(1) rs 0 - else - let s, sigma = sr sigma 2 in - let sigma, rs2 = loop d sigma s a.(1) rs 0 in - let s, sigma = sr sigma 1 in - loop d sigma s a.(0) rs2 0 - | App (r_eq, a) when Hipattern.match_with_equality_type t != None -> - let indu = destInd r_eq and rhs = Array.last a in - let np = Inductiveops.inductive_nparamdecls (fst indu) in - let ind_ct = Inductiveops.type_of_constructors env indu in - let lhs0 = last_arg (strip_prod_assum ind_ct.(0)) in - let rdesc = match kind_of_term lhs0 with - | Rel i -> - let lhs = a.(np - i) in - let lhs, rhs = if d = L2R then lhs, rhs else rhs, lhs in -(* msgnl (str "RW: " ++ pr_rwdir d ++ str " " ++ pr_constr_pat r ++ str " : " - ++ pr_constr_pat lhs ++ str " ~> " ++ pr_constr_pat rhs); *) - d, r, lhs, rhs -(* - let l_i, r_i = if d = L2R then i, 1 - ndep else 1 - ndep, i in - let lhs = a.(np - l_i) and rhs = a.(np - r_i) in - let a' = Array.copy a in let _ = a'.(np - l_i) <- mkVar pattern_id in - let r' = mkCast (r, DEFAULTcast, mkApp (r_eq, a')) in - (d, r', lhs, rhs) -*) - | _ -> - let lhs = substl (array_list_of_tl (Array.sub a 0 np)) lhs0 in - let lhs, rhs = if d = R2L then lhs, rhs else rhs, lhs in - let d' = if Array.length a = 1 then d else converse_dir d in - d', r, lhs, rhs in - sigma, rdesc :: rs - | App (s_eq, a) when is_setoid sigma s_eq a -> - let np = Array.length a and i = 3 - dir_org d in - let lhs = a.(np - i) and rhs = a.(np + i - 3) in - let a' = Array.copy a in let _ = a'.(np - i) <- mkVar pattern_id in - let r' = mkCast (r, DEFAULTcast, mkApp (s_eq, a')) in - sigma, (d, r', lhs, rhs) :: rs - | _ -> - if red = 0 then loop d sigma r t rs 1 - else errorstrm (str "not a rewritable relation: " ++ pr_constr_pat t - ++ spc() ++ str "in rule " ++ pr_constr_pat (snd rule)) - in - let sigma, r = rule in - let t = Retyping.get_type_of env sigma r in - loop dir sigma r t [] 0 - in - r_sigma, rules - -let rwrxtac occ rdx_pat dir rule gl = - let env = pf_env gl in - let r_sigma, rules = rwprocess_rule dir rule gl in - let find_rule rdx = - let rec rwtac = function - | [] -> - errorstrm (str "pattern " ++ pr_constr_pat rdx ++ - str " does not match " ++ pr_dir_side dir ++ - str " of " ++ pr_constr_pat (snd rule)) - | (d, r, lhs, rhs) :: rs -> - try - let ise = unify_HO env (create_evar_defs r_sigma) lhs rdx in - if not (rw_progress rhs rdx ise) then raise NoMatch else - d, (ise, Evd.evar_universe_context ise, Reductionops.nf_evar ise r) - with _ -> rwtac rs in - rwtac rules in - let find_rule rdx = prof_rwxrtac_find_rule.profile find_rule rdx in - let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in - let find_R, conclude = match rdx_pat with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let upats_origin = dir, snd rule in - let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in - let find_R, end_R = mk_tpattern_matcher sigma0 occ ~upats_origin rpats in - (fun e c _ i -> find_R ~k:(fun _ _ _ h -> mkRel h) e c i), - fun cl -> let rdx,d,r = end_R () in closed0_check cl rdx gl; (d,r),rdx - | Some(_, (T e | X_In_T (_,e) | E_As_X_In_T (e,_,_) | E_In_X_In_T (e,_,_))) -> - let r = ref None in - (fun env c _ h -> do_once r (fun () -> find_rule c, c); mkRel h), - (fun concl -> closed0_check concl e gl; assert_done r) in - let concl = eval_pattern env0 sigma0 concl0 rdx_pat occ find_R in - let (d, r), rdx = conclude concl in - let r = Evd.merge_universe_context (pi1 r) (pi2 r), pi3 r in - rwcltac concl rdx d r gl -;; - -let prof_rwxrtac = mk_profiler "rwrxtac";; -let rwrxtac occ rdx_pat dir rule gl = - prof_rwxrtac.profile (rwrxtac occ rdx_pat dir rule) gl -;; - -let ssrinstancesofrule ist dir arg gl = - let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in - let rule = interp_term ist gl arg in - let r_sigma, rules = rwprocess_rule dir rule gl in - let find, conclude = - let upats_origin = dir, snd rule in - let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in - mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true sigma0 None ~upats_origin rpats in - let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in - ppnl (str"BEGIN INSTANCES"); - try - while true do - ignore(find env0 concl0 1 ~k:print) - done; raise NoMatch - with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl - -TACTIC EXTEND ssrinstofruleL2R -| [ "ssrinstancesofruleL2R" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist L2R arg) ] -END -TACTIC EXTEND ssrinstofruleR2L -| [ "ssrinstancesofruleR2L" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist R2L arg) ] -END - -(* Resolve forward reference *) -let _ = - ipat_rewritetac := fun occ dir c gl -> rwrxtac occ None dir (project gl, c) gl - -let rwargtac ist ((dir, mult), (((oclr, occ), grx), (kind, gt))) gl = - let fail = ref false in - let interp_rpattern ist gl gc = - try interp_rpattern ist gl gc - with _ when snd mult = May -> fail := true; project gl, T mkProp in - let interp gc gl = - try interp_term ist gl gc - with _ when snd mult = May -> fail := true; (project gl, mkProp) in - let rwtac gl = - let rx = Option.map (interp_rpattern ist gl) grx in - let t = interp gt gl in - (match kind with - | RWred sim -> simplintac occ rx sim - | RWdef -> if dir = R2L then foldtac occ rx t else unfoldintac occ rx t gt - | RWeq -> rwrxtac occ rx dir t) gl in - let ctac = cleartac (interp_clr (oclr, (fst gt, snd (interp gt gl)))) in - if !fail then ctac gl else tclTHEN (tclMULT mult rwtac) ctac gl - -(** Rewrite argument sequence *) - -(* type ssrrwargs = ssrrwarg list *) - -let pr_ssrrwargs _ _ _ rwargs = pr_list spc pr_rwarg rwargs - -ARGUMENT EXTEND ssrrwargs TYPED AS ssrrwarg list PRINTED BY pr_ssrrwargs - | [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let ssr_rw_syntax = Summary.ref ~name:"SSR:rewrite" true - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "ssreflect rewrite"; - Goptions.optkey = ["SsrRewrite"]; - Goptions.optread = (fun _ -> !ssr_rw_syntax); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssr_rw_syntax := b) } - -let test_ssr_rw_syntax = - let test strm = - if not !ssr_rw_syntax then raise Stream.Failure else - if is_ssr_loaded () then () else - match Compat.get_tok (Util.stream_nth 0 strm) with - | Tok.KEYWORD key when List.mem key.[0] ['{'; '['; '/'] -> () - | _ -> raise Stream.Failure in - Gram.Entry.of_parser "test_ssr_rw_syntax" test - -GEXTEND Gram - GLOBAL: ssrrwargs; - ssrrwargs: [[ test_ssr_rw_syntax; a = LIST1 ssrrwarg -> a ]]; -END - -(** The "rewrite" tactic *) - -let ssrrewritetac ist rwargs = - tclTHENLIST (List.map (rwargtac ist) rwargs) - -TACTIC EXTEND ssrrewrite - | [ "rewrite" ssrrwargs(args) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrrewritetac ist args) clauses) ] -END - -(** The "unlock" tactic *) - -let pr_unlockarg (occ, t) = pr_occ occ ++ pr_term t -let pr_ssrunlockarg _ _ _ = pr_unlockarg - -ARGUMENT EXTEND ssrunlockarg TYPED AS ssrocc * ssrterm - PRINTED BY pr_ssrunlockarg - | [ "{" ssrocc(occ) "}" ssrterm(t) ] -> [ occ, t ] - | [ ssrterm(t) ] -> [ None, t ] -END - -let pr_ssrunlockargs _ _ _ args = pr_list spc pr_unlockarg args - -ARGUMENT EXTEND ssrunlockargs TYPED AS ssrunlockarg list - PRINTED BY pr_ssrunlockargs - | [ ssrunlockarg_list(args) ] -> [ args ] -END - -let unfoldtac occ ko t kt gl = - let cl, c = pf_fill_occ_term gl occ (fst (strip_unfold_term t kt)) in - let cl' = subst1 (pf_unfoldn [OnlyOccurrences [1], get_evalref c] gl c) cl in - let f = if ko = None then Closure.betaiotazeta else Closure.betaiota in - Proofview.V82.of_tactic - (convert_concl (pf_reduce (Reductionops.clos_norm_flags f) gl cl')) gl - -let unlocktac ist args gl = - let utac (occ, gt) gl = - unfoldtac occ occ (interp_term ist gl gt) (fst gt) gl in - let locked, gl = pf_mkSsrConst "locked" gl in - let key, gl = pf_mkSsrConst "master_key" gl in - let ktacs = [ - (fun gl -> unfoldtac None None (project gl,locked) '(' gl); - simplest_newcase key ] in - tclTHENLIST (List.map utac args @ ktacs) gl - -TACTIC EXTEND ssrunlock - | [ "unlock" ssrunlockargs(args) ssrclauses(clauses) ] -> -[ Proofview.V82.tactic (tclCLAUSES ist (unlocktac ist args) clauses) ] -END - -(** 8. Forward chaining tactics (pose, set, have, suffice, wlog) *) - -(** Defined identifier *) - -type ssrfwdid = identifier - -let pr_ssrfwdid _ _ _ id = pr_spc () ++ pr_id id - -(* We use a primitive parser for the head identifier of forward *) -(* tactis to avoid syntactic conflicts with basic Coq tactics. *) -ARGUMENT EXTEND ssrfwdid TYPED AS ident PRINTED BY pr_ssrfwdid - | [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let accept_ssrfwdid strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT id -> accept_before_syms_or_any_id [":"; ":="; "("] strm - | _ -> raise Stream.Failure - - -let test_ssrfwdid = Gram.Entry.of_parser "test_ssrfwdid" accept_ssrfwdid - -GEXTEND Gram - GLOBAL: ssrfwdid; - ssrfwdid: [[ test_ssrfwdid; id = Prim.ident -> id ]]; - END - - - -(** Definition value formatting *) - -(* We use an intermediate structure to correctly render the binder list *) -(* abbreviations. We use a list of hints to extract the binders and *) -(* base term from a term, for the two first levels of representation of *) -(* of constr terms. *) - -type 'term ssrbind = - | Bvar of name - | Bdecl of name list * 'term - | Bdef of name * 'term option * 'term - | Bstruct of name - | Bcast of 'term - -let pr_binder prl = function - | Bvar x -> - pr_name x - | Bdecl (xs, t) -> - str "(" ++ pr_list pr_spc pr_name xs ++ str " : " ++ prl t ++ str ")" - | Bdef (x, None, v) -> - str "(" ++ pr_name x ++ str " := " ++ prl v ++ str ")" - | Bdef (x, Some t, v) -> - str "(" ++ pr_name x ++ str " : " ++ prl t ++ - str " := " ++ prl v ++ str ")" - | Bstruct x -> - str "{struct " ++ pr_name x ++ str "}" - | Bcast t -> - str ": " ++ prl t - -type 'term ssrbindval = 'term ssrbind list * 'term - -type ssrbindfmt = - | BFvar - | BFdecl of int (* #xs *) - | BFcast (* final cast *) - | BFdef of bool (* has cast? *) - | BFrec of bool * bool (* has struct? * has cast? *) - -let rec mkBstruct i = function - | Bvar x :: b -> - if i = 0 then [Bstruct x] else mkBstruct (i - 1) b - | Bdecl (xs, _) :: b -> - let i' = i - List.length xs in - if i' < 0 then [Bstruct (List.nth xs i)] else mkBstruct i' b - | _ :: b -> mkBstruct i b - | [] -> [] - -let rec format_local_binders h0 bl0 = match h0, bl0 with - | BFvar :: h, LocalRawAssum ([_, x], _, _) :: bl -> - Bvar x :: format_local_binders h bl - | BFdecl _ :: h, LocalRawAssum (lxs, _, t) :: bl -> - Bdecl (List.map snd lxs, t) :: format_local_binders h bl - | BFdef false :: h, LocalRawDef ((_, x), v) :: bl -> - Bdef (x, None, v) :: format_local_binders h bl - | BFdef true :: h, - LocalRawDef ((_, x), CCast (_, v, CastConv t)) :: bl -> - Bdef (x, Some t, v) :: format_local_binders h bl - | _ -> [] - -let rec format_constr_expr h0 c0 = match h0, c0 with - | BFvar :: h, CLambdaN (_, [[_, x], _, _], c) -> - let bs, c' = format_constr_expr h c in - Bvar x :: bs, c' - | BFdecl _:: h, CLambdaN (_, [lxs, _, t], c) -> - let bs, c' = format_constr_expr h c in - Bdecl (List.map snd lxs, t) :: bs, c' - | BFdef false :: h, CLetIn(_, (_, x), v, c) -> - let bs, c' = format_constr_expr h c in - Bdef (x, None, v) :: bs, c' - | BFdef true :: h, CLetIn(_, (_, x), CCast (_, v, CastConv t), c) -> - let bs, c' = format_constr_expr h c in - Bdef (x, Some t, v) :: bs, c' - | [BFcast], CCast (_, c, CastConv t) -> - [Bcast t], c - | BFrec (has_str, has_cast) :: h, - CFix (_, _, [_, (Some locn, CStructRec), bl, t, c]) -> - let bs = format_local_binders h bl in - let bstr = if has_str then [Bstruct (Name (snd locn))] else [] in - bs @ bstr @ (if has_cast then [Bcast t] else []), c - | BFrec (_, has_cast) :: h, CCoFix (_, _, [_, bl, t, c]) -> - format_local_binders h bl @ (if has_cast then [Bcast t] else []), c - | _, c -> - [], c - -let rec format_glob_decl h0 d0 = match h0, d0 with - | BFvar :: h, (x, _, None, _) :: d -> - Bvar x :: format_glob_decl h d - | BFdecl 1 :: h, (x, _, None, t) :: d -> - Bdecl ([x], t) :: format_glob_decl h d - | BFdecl n :: h, (x, _, None, t) :: d when n > 1 -> - begin match format_glob_decl (BFdecl (n - 1) :: h) d with - | Bdecl (xs, _) :: bs -> Bdecl (x :: xs, t) :: bs - | bs -> Bdecl ([x], t) :: bs - end - | BFdef false :: h, (x, _, Some v, _) :: d -> - Bdef (x, None, v) :: format_glob_decl h d - | BFdef true:: h, (x, _, Some (GCast (_, v, CastConv t)), _) :: d -> - Bdef (x, Some t, v) :: format_glob_decl h d - | _, (x, _, None, t) :: d -> - Bdecl ([x], t) :: format_glob_decl [] d - | _, (x, _, Some v, _) :: d -> - Bdef (x, None, v) :: format_glob_decl [] d - | _, [] -> [] - -let rec format_glob_constr h0 c0 = match h0, c0 with - | BFvar :: h, GLambda (_, x, _, _, c) -> - let bs, c' = format_glob_constr h c in - Bvar x :: bs, c' - | BFdecl 1 :: h, GLambda (_, x, _, t, c) -> - let bs, c' = format_glob_constr h c in - Bdecl ([x], t) :: bs, c' - | BFdecl n :: h, GLambda (_, x, _, t, c) when n > 1 -> - begin match format_glob_constr (BFdecl (n - 1) :: h) c with - | Bdecl (xs, _) :: bs, c' -> Bdecl (x :: xs, t) :: bs, c' - | _ -> [Bdecl ([x], t)], c - end - | BFdef false :: h, GLetIn(_, x, v, c) -> - let bs, c' = format_glob_constr h c in - Bdef (x, None, v) :: bs, c' - | BFdef true :: h, GLetIn(_, x, GCast (_, v, CastConv t), c) -> - let bs, c' = format_glob_constr h c in - Bdef (x, Some t, v) :: bs, c' - | [BFcast], GCast (_, c, CastConv t) -> - [Bcast t], c - | BFrec (has_str, has_cast) :: h, GRec (_, f, _, bl, t, c) - when Array.length c = 1 -> - let bs = format_glob_decl h bl.(0) in - let bstr = match has_str, f with - | true, GFix ([|Some i, GStructRec|], _) -> mkBstruct i bs - | _ -> [] in - bs @ bstr @ (if has_cast then [Bcast t.(0)] else []), c.(0) - | _, c -> - [], c - -(** Forward chaining argument *) - -(* There are three kinds of forward definitions: *) -(* - Hint: type only, cast to Type, may have proof hint. *) -(* - Have: type option + value, no space before type *) -(* - Pose: binders + value, space before binders. *) - -type ssrfwdkind = FwdHint of string * bool | FwdHave | FwdPose - -type ssrfwdfmt = ssrfwdkind * ssrbindfmt list - -let pr_fwdkind = function - | FwdHint (s,_) -> str (s ^ " ") | _ -> str " :=" ++ spc () -let pr_fwdfmt (fk, _ : ssrfwdfmt) = pr_fwdkind fk - -let wit_ssrfwdfmt = add_genarg "ssrfwdfmt" pr_fwdfmt - -(* type ssrfwd = ssrfwdfmt * ssrterm *) - -let mkFwdVal fk c = ((fk, []), mk_term ' ' c) -let mkssrFwdVal fk c = ((fk, []), (c,None)) - -let mkFwdCast fk loc t c = ((fk, [BFcast]), mk_term ' ' (CCast (loc, c, dC t))) -let mkssrFwdCast fk loc t c = ((fk, [BFcast]), (c, Some t)) - -let mkFwdHint s t = - let loc = constr_loc t in - mkFwdCast (FwdHint (s,false)) loc t (mkCHole loc) -let mkFwdHintNoTC s t = - let loc = constr_loc t in - mkFwdCast (FwdHint (s,true)) loc t (mkCHole loc) - -let pr_gen_fwd prval prc prlc fk (bs, c) = - let prc s = str s ++ spc () ++ prval prc prlc c in - match fk, bs with - | FwdHint (s,_), [Bcast t] -> str s ++ spc () ++ prlc t - | FwdHint (s,_), _ -> prc (s ^ "(* typeof *)") - | FwdHave, [Bcast t] -> str ":" ++ spc () ++ prlc t ++ prc " :=" - | _, [] -> prc " :=" - | _, _ -> spc () ++ pr_list spc (pr_binder prlc) bs ++ prc " :=" - -let pr_fwd_guarded prval prval' = function -| (fk, h), (_, (_, Some c)) -> - pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c) -| (fk, h), (_, (c, None)) -> - pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c) - -let pr_unguarded prc prlc = prlc - -let pr_fwd = pr_fwd_guarded pr_unguarded pr_unguarded -let pr_ssrfwd _ _ _ = pr_fwd - -ARGUMENT EXTEND ssrfwd TYPED AS (ssrfwdfmt * ssrterm) PRINTED BY pr_ssrfwd - | [ ":=" lconstr(c) ] -> [ mkFwdVal FwdPose c ] - | [ ":" lconstr (t) ":=" lconstr(c) ] -> [ mkFwdCast FwdPose loc t c ] -END - -(** Independent parsing for binders *) - -(* The pose, pose fix, and pose cofix tactics use these internally to *) -(* parse argument fragments. *) - -let pr_ssrbvar prc _ _ v = prc v - -ARGUMENT EXTEND ssrbvar TYPED AS constr PRINTED BY pr_ssrbvar -| [ ident(id) ] -> [ mkCVar loc id ] -| [ "_" ] -> [ mkCHole loc ] -END - -let bvar_lname = function - | CRef (Ident (loc, id), _) -> loc, Name id - | c -> constr_loc c, Anonymous - -let pr_ssrbinder prc _ _ (_, c) = prc c - -ARGUMENT EXTEND ssrbinder TYPED AS ssrfwdfmt * constr PRINTED BY pr_ssrbinder - | [ ssrbvar(bv) ] -> - [ let xloc, _ as x = bvar_lname bv in - (FwdPose, [BFvar]), - CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ] - | [ "(" ssrbvar(bv) ")" ] -> - [ let xloc, _ as x = bvar_lname bv in - (FwdPose, [BFvar]), - CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ] - | [ "(" ssrbvar(bv) ":" lconstr(t) ")" ] -> - [ let x = bvar_lname bv in - (FwdPose, [BFdecl 1]), - CLambdaN (loc, [[x], Default Explicit, t], mkCHole loc) ] - | [ "(" ssrbvar(bv) ne_ssrbvar_list(bvs) ":" lconstr(t) ")" ] -> - [ let xs = List.map bvar_lname (bv :: bvs) in - let n = List.length xs in - (FwdPose, [BFdecl n]), - CLambdaN (loc, [xs, Default Explicit, t], mkCHole loc) ] - | [ "(" ssrbvar(id) ":" lconstr(t) ":=" lconstr(v) ")" ] -> - [ let loc' = Loc.join_loc (constr_loc t) (constr_loc v) in - let v' = CCast (loc', v, dC t) in - (FwdPose,[BFdef true]), CLetIn (loc,bvar_lname id, v',mkCHole loc) ] - | [ "(" ssrbvar(id) ":=" lconstr(v) ")" ] -> - [ (FwdPose,[BFdef false]), CLetIn (loc,bvar_lname id, v,mkCHole loc) ] -END - -GEXTEND Gram - GLOBAL: ssrbinder; - ssrbinder: [ - [ ["of" | "&"]; c = operconstr LEVEL "99" -> - let loc = !@loc in - (FwdPose, [BFvar]), - CLambdaN (loc,[[loc,Anonymous],Default Explicit,c],mkCHole loc) ] - ]; -END - -let rec binders_fmts = function - | ((_, h), _) :: bs -> h @ binders_fmts bs - | _ -> [] - -let push_binders c2 bs = - let loc2 = constr_loc c2 in let mkloc loc1 = Loc.join_loc loc1 loc2 in - let rec loop ty c = function - | (_, CLambdaN (loc1, b, _)) :: bs when ty -> - CProdN (mkloc loc1, b, loop ty c bs) - | (_, CLambdaN (loc1, b, _)) :: bs -> - CLambdaN (mkloc loc1, b, loop ty c bs) - | (_, CLetIn (loc1, x, v, _)) :: bs -> - CLetIn (mkloc loc1, x, v, loop ty c bs) - | [] -> c - | _ -> anomaly "binder not a lambda nor a let in" in - match c2 with - | CCast (x, ct, CastConv cty) -> - (CCast (x, loop false ct bs, CastConv (loop true cty bs))) - | ct -> loop false ct bs - -let rec fix_binders = function - | (_, CLambdaN (_, [xs, _, t], _)) :: bs -> - LocalRawAssum (xs, Default Explicit, t) :: fix_binders bs - | (_, CLetIn (_, x, v, _)) :: bs -> - LocalRawDef (x, v) :: fix_binders bs - | _ -> [] - -let pr_ssrstruct _ _ _ = function - | Some id -> str "{struct " ++ pr_id id ++ str "}" - | None -> mt () - -ARGUMENT EXTEND ssrstruct TYPED AS ident option PRINTED BY pr_ssrstruct -| [ "{" "struct" ident(id) "}" ] -> [ Some id ] -| [ ] -> [ None ] -END - -(** The "pose" tactic *) - -(* The plain pose form. *) - -let bind_fwd bs = function - | (fk, h), (ck, (rc, Some c)) -> - (fk,binders_fmts bs @ h), (ck,(rc,Some (push_binders c bs))) - | fwd -> fwd - -ARGUMENT EXTEND ssrposefwd TYPED AS ssrfwd PRINTED BY pr_ssrfwd - | [ ssrbinder_list(bs) ssrfwd(fwd) ] -> [ bind_fwd bs fwd ] -END - -(* The pose fix form. *) - -let pr_ssrfixfwd _ _ _ (id, fwd) = str " fix " ++ pr_id id ++ pr_fwd fwd - -let bvar_locid = function - | CRef (Ident (loc, id), _) -> loc, id - | _ -> Errors.error "Missing identifier after \"(co)fix\"" - - -ARGUMENT EXTEND ssrfixfwd TYPED AS ident * ssrfwd PRINTED BY pr_ssrfixfwd - | [ "fix" ssrbvar(bv) ssrbinder_list(bs) ssrstruct(sid) ssrfwd(fwd) ] -> - [ let (_, id) as lid = bvar_locid bv in - let (fk, h), (ck, (rc, oc)) = fwd in - let c = Option.get oc in - let has_cast, t', c' = match format_constr_expr h c with - | [Bcast t'], c' -> true, t', c' - | _ -> false, mkCHole (constr_loc c), c in - let lb = fix_binders bs in - let has_struct, i = - let rec loop = function - (l', Name id') :: _ when Option.equal Id.equal sid (Some id') -> true, (l', id') - | [l', Name id'] when sid = None -> false, (l', id') - | _ :: bn -> loop bn - | [] -> Errors.error "Bad structural argument" in - loop (names_of_local_assums lb) in - let h' = BFrec (has_struct, has_cast) :: binders_fmts bs in - let fix = CFix (loc, lid, [lid, (Some i, CStructRec), lb, t', c']) in - id, ((fk, h'), (ck, (rc, Some fix))) ] -END - - -(* The pose cofix form. *) - -let pr_ssrcofixfwd _ _ _ (id, fwd) = str " cofix " ++ pr_id id ++ pr_fwd fwd - -ARGUMENT EXTEND ssrcofixfwd TYPED AS ssrfixfwd PRINTED BY pr_ssrcofixfwd - | [ "cofix" ssrbvar(bv) ssrbinder_list(bs) ssrfwd(fwd) ] -> - [ let _, id as lid = bvar_locid bv in - let (fk, h), (ck, (rc, oc)) = fwd in - let c = Option.get oc in - let has_cast, t', c' = match format_constr_expr h c with - | [Bcast t'], c' -> true, t', c' - | _ -> false, mkCHole (constr_loc c), c in - let h' = BFrec (false, has_cast) :: binders_fmts bs in - let cofix = CCoFix (loc, lid, [lid, fix_binders bs, t', c']) in - id, ((fk, h'), (ck, (rc, Some cofix))) - ] -END - -let ssrposetac ist (id, (_, t)) gl = - let sigma, t, ucst = pf_abs_ssrterm ist gl t in - posetac id t (pf_merge_uc ucst gl) - - -let prof_ssrposetac = mk_profiler "ssrposetac";; -let ssrposetac arg gl = prof_ssrposetac.profile (ssrposetac arg) gl;; - -TACTIC EXTEND ssrpose -| [ "pose" ssrfixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ] -| [ "pose" ssrcofixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ] -| [ "pose" ssrfwdid(id) ssrposefwd(fwd) ] -> [ Proofview.V82.tactic (ssrposetac ist (id, fwd)) ] -END - -(** The "set" tactic *) - -(* type ssrsetfwd = ssrfwd * ssrdocc *) - -let guard_setrhs s i = s.[i] = '{' - -let pr_setrhs occ prc prlc c = - if occ = nodocc then pr_guarded guard_setrhs prlc c else pr_docc occ ++ prc c - -let pr_fwd_guarded prval prval' = function -| (fk, h), (_, (_, Some c)) -> - pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c) -| (fk, h), (_, (c, None)) -> - pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c) - -(* This does not print the type, it should be fixed... *) -let pr_ssrsetfwd _ _ _ (((fk,_),(t,_)), docc) = - pr_gen_fwd (fun _ _ -> pr_cpattern) - (fun _ -> mt()) (fun _ -> mt()) fk ([Bcast ()],t) - -ARGUMENT EXTEND ssrsetfwd -TYPED AS (ssrfwdfmt * (lcpattern * ssrterm option)) * ssrdocc -PRINTED BY pr_ssrsetfwd -| [ ":" lconstr(t) ":=" "{" ssrocc(occ) "}" cpattern(c) ] -> - [ mkssrFwdCast FwdPose loc (mk_lterm t) c, mkocc occ ] -| [ ":" lconstr(t) ":=" lcpattern(c) ] -> - [ mkssrFwdCast FwdPose loc (mk_lterm t) c, nodocc ] -| [ ":=" "{" ssrocc(occ) "}" cpattern(c) ] -> - [ mkssrFwdVal FwdPose c, mkocc occ ] -| [ ":=" lcpattern(c) ] -> [ mkssrFwdVal FwdPose c, nodocc ] -END - -let ssrsettac ist id ((_, (pat, pty)), (_, occ)) gl = - let pat = interp_cpattern ist gl pat (Option.map snd pty) in - let cl, sigma, env = pf_concl gl, project gl, pf_env gl in - let (c, ucst), cl = - try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 - with NoMatch -> redex_of_pattern ~resolve_typeclasses:true env pat, cl in - if occur_existential c then errorstrm(str"The pattern"++spc()++ - pr_constr_pat c++spc()++str"did not match and has holes."++spc()++ - str"Did you mean pose?") else - let c, cty = match kind_of_term c with - | Cast(t, DEFAULTcast, ty) -> t, ty - | _ -> c, pf_type_of gl c in - let cl' = mkLetIn (Name id, c, cty, cl) in - let gl = pf_merge_uc ucst gl in - tclTHEN (Proofview.V82.of_tactic (convert_concl cl')) (introid id) gl - -TACTIC EXTEND ssrset -| [ "set" ssrfwdid(id) ssrsetfwd(fwd) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrsettac ist id fwd) clauses) ] -END - -(** The "have" tactic *) - -(* type ssrhavefwd = ssrfwd * ssrhint *) - -let pr_ssrhavefwd _ _ prt (fwd, hint) = pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrhavefwd TYPED AS ssrfwd * ssrhint PRINTED BY pr_ssrhavefwd -| [ ":" lconstr(t) ssrhint(hint) ] -> [ mkFwdHint ":" t, hint ] -| [ ":" lconstr(t) ":=" lconstr(c) ] -> [ mkFwdCast FwdHave loc t c, nohint ] -| [ ":" lconstr(t) ":=" ] -> [ mkFwdHintNoTC ":" t, nohint ] -| [ ":=" lconstr(c) ] -> [ mkFwdVal FwdHave c, nohint ] -END - -let intro_id_to_binder = List.map (function - | IpatId id -> - let xloc, _ as x = bvar_lname (mkCVar dummy_loc id) in - (FwdPose, [BFvar]), - CLambdaN (dummy_loc, [[x], Default Explicit, mkCHole xloc], - mkCHole dummy_loc) - | _ -> anomaly "non-id accepted as binder") - -let binder_to_intro_id = List.map (function - | (FwdPose, [BFvar]), CLambdaN (_,[ids,_,_],_) - | (FwdPose, [BFdecl _]), CLambdaN (_,[ids,_,_],_) -> - List.map (function (_, Name id) -> IpatId id | _ -> IpatAnon) ids - | (FwdPose, [BFdef _]), CLetIn (_,(_,Name id),_,_) -> [IpatId id] - | (FwdPose, [BFdef _]), CLetIn (_,(_,Anonymous),_,_) -> [IpatAnon] - | _ -> anomaly "ssrbinder is not a binder") - -let pr_ssrhavefwdwbinders _ _ prt (tr,((hpats, (fwd, hint)))) = - pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrhavefwdwbinders - TYPED AS bool * (ssrhpats * (ssrfwd * ssrhint)) - PRINTED BY pr_ssrhavefwdwbinders -| [ ssrhpats_wtransp(trpats) ssrbinder_list(bs) ssrhavefwd(fwd) ] -> - [ let tr, pats = trpats in - let ((clr, pats), binders), simpl = pats in - let allbs = intro_id_to_binder binders @ bs in - let allbinders = binders @ List.flatten (binder_to_intro_id bs) in - let hint = bind_fwd allbs (fst fwd), snd fwd in - tr, ((((clr, pats), allbinders), simpl), hint) ] -END - -(* Tactic. *) - -let is_Evar_or_CastedMeta x = - isEvar_or_Meta x || - (isCast x && isEvar_or_Meta (pi1 (destCast x))) - -let occur_existential_or_casted_meta c = - let rec occrec c = match kind_of_term c with - | Evar _ -> raise Not_found - | Cast (m,_,_) when isMeta m -> raise Not_found - | _ -> iter_constr occrec c - in try occrec c; false with Not_found -> true - -let examine_abstract id gl = - let tid = pf_type_of gl id in - let abstract, gl = pf_mkSsrConst "abstract" gl in - if not (isApp tid) || not (Term.eq_constr (fst(destApp tid)) abstract) then - errorstrm(strbrk"not an abstract constant: "++pr_constr id); - let _, args_id = destApp tid in - if Array.length args_id <> 3 then - errorstrm(strbrk"not a proper abstract constant: "++pr_constr id); - if not (is_Evar_or_CastedMeta args_id.(2)) then - errorstrm(strbrk"abstract constant "++pr_constr id++str" already used"); - tid, args_id - -let pf_find_abstract_proof check_lock gl abstract_n = - let fire gl t = Reductionops.nf_evar (project gl) t in - let abstract, gl = pf_mkSsrConst "abstract" gl in - let l = Evd.fold_undefined (fun e ei l -> - match kind_of_term ei.Evd.evar_concl with - | App(hd, [|ty; n; lock|]) - when (not check_lock || - (occur_existential_or_casted_meta (fire gl ty) && - is_Evar_or_CastedMeta (fire gl lock))) && - Term.eq_constr hd abstract && Term.eq_constr n abstract_n -> e::l - | _ -> l) (project gl) [] in - match l with - | [e] -> e - | _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++ - strbrk" not found in the evar map exactly once. "++ - strbrk"Did you tamper with it?") - -let unfold cl = - let module R = Reductionops in let module F = Closure.RedFlags in - reduct_in_concl (R.clos_norm_flags (F.mkflags - (List.map (fun c -> F.fCONST (fst (destConst c))) cl @ [F.fBETA; F.fIOTA]))) - -let havegentac ist t gl = - let sigma, c, ucst = pf_abs_ssrterm ist gl t in - let gl = pf_merge_uc ucst gl in - apply_type (mkArrow (pf_type_of gl c) (pf_concl gl)) [c] gl - -let havetac ist - (transp,((((clr, pats), binders), simpl), (((fk, _), t), hint))) - suff namefst gl -= - let concl = pf_concl gl in - let skols, pats = - List.partition (function IpatNewHidden _ -> true | _ -> false) pats in - let itac_mkabs = introstac ~ist skols in - let itac_c = introstac ~ist (IpatSimpl(clr,Nop) :: pats) in - let itac, id, clr = introstac ~ist pats, tclIDTAC, cleartac clr in - let binderstac n = - let rec aux = function 0 -> [] | n -> IpatAnon :: aux (n-1) in - tclTHEN (if binders <> [] then introstac ~ist (aux n) else tclIDTAC) - (introstac ~ist binders) in - let simpltac = introstac ~ist simpl in - let fixtc = - not !ssrhaveNOtcresolution && - match fk with FwdHint(_,true) -> false | _ -> true in - let hint = hinttac ist true hint in - let cuttac t gl = - if transp then - let have_let, gl = pf_mkSsrConst "ssr_have_let" gl in - let step = mkApp (have_let, [|concl;t|]) in - let gl, _ = pf_e_type_of gl step in - applyn ~with_evars:true ~with_shelve:false 2 step gl - else basecuttac "ssr_have" t gl in - (* Introduce now abstract constants, so that everything sees them *) - let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in - let unlock_abs (idty,args_id) gl = - let gl, _ = pf_e_type_of gl idty in - pf_unify_HO gl args_id.(2) abstract_key in - tclTHENFIRST itac_mkabs (fun gl -> - let mkt t = mk_term ' ' t in - let mkl t = (' ', (t, None)) in - let interp gl rtc t = pf_abs_ssrterm ~resolve_typeclasses:rtc ist gl t in - let interp_ty gl rtc t = - let a,b,_,u = pf_interp_ty ~resolve_typeclasses:rtc ist gl t in a,b,u in - let ct, cty, hole, loc = match t with - | _, (_, Some (CCast (loc, ct, CastConv cty))) -> - mkt ct, mkt cty, mkt (mkCHole dummy_loc), loc - | _, (_, Some ct) -> - mkt ct, mkt (mkCHole dummy_loc), mkt (mkCHole dummy_loc), dummy_loc - | _, (GCast (loc, ct, CastConv cty), None) -> - mkl ct, mkl cty, mkl mkRHole, loc - | _, (t, None) -> mkl t, mkl mkRHole, mkl mkRHole, dummy_loc in - let gl, cut, sol, itac1, itac2 = - match fk, namefst, suff with - | FwdHave, true, true -> - errorstrm (str"Suff have does not accept a proof term") - | FwdHave, false, true -> - let cty = combineCG cty hole (mkCArrow loc) mkRArrow in - let _, t, uc = interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in - let gl = pf_merge_uc uc gl in - let ty = pf_type_of gl t in - let ctx, _ = decompose_prod_n 1 ty in - let assert_is_conv gl = - try Proofview.V82.of_tactic (convert_concl (compose_prod ctx concl)) gl - with _ -> errorstrm (str "Given proof term is not of type " ++ - pr_constr (mkArrow (mkVar (id_of_string "_")) concl)) in - gl, ty, tclTHEN assert_is_conv (Proofview.V82.of_tactic (apply t)), id, itac_c - | FwdHave, false, false -> - let skols = List.flatten (List.map (function - | IpatNewHidden ids -> ids - | _ -> assert false) skols) in - let skols_args = - List.map (fun id -> examine_abstract (mkVar id) gl) skols in - let gl = List.fold_right unlock_abs skols_args gl in - let sigma, t, uc = - interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in - let gl = re_sig (sig_it gl) (Evd.merge_universe_context sigma uc) in - let gs = - List.map (fun (_,a) -> - pf_find_abstract_proof false gl a.(1)) skols_args in - let tacopen_skols gl = - let stuff, g = Refiner.unpackage gl in - Refiner.repackage stuff (gs @ [g]) in - let gl, ty = pf_e_type_of gl t in - gl, ty, Proofview.V82.of_tactic (apply t), id, - tclTHEN (tclTHEN itac_c simpltac) - (tclTHEN tacopen_skols (fun gl -> - let abstract, gl = pf_mkSsrConst "abstract" gl in - unfold [abstract; abstract_key] gl)) - | _,true,true -> - let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, mkArrow ty concl, hint, itac, clr - | _,false,true -> - let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, mkArrow ty concl, hint, id, itac_c - | _, false, false -> - let n, cty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, cty, tclTHEN (binderstac n) hint, id, tclTHEN itac_c simpltac - | _, true, false -> assert false in - tclTHENS (cuttac cut) [ tclTHEN sol itac1; itac2 ] gl) - gl -;; - -(* to extend the abstract value one needs: - Utility lemma to partially instantiate an abstract constant type. - Lemma use_abstract T n l (x : abstract T n l) : T. - Proof. by case: l x. Qed. -*) -let ssrabstract ist gens (*last*) gl = - let main _ (_,cid) ist gl = -(* - let proj1, proj2, prod = - let pdata = build_prod () in - pdata.Coqlib.proj1, pdata.Coqlib.proj2, pdata.Coqlib.typ in -*) - let concl, env = pf_concl gl, pf_env gl in - let fire gl t = Reductionops.nf_evar (project gl) t in - let abstract, gl = pf_mkSsrConst "abstract" gl in - let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in - let id = mkVar (Option.get (id_of_cpattern cid)) in - let idty, args_id = examine_abstract id gl in - let abstract_n = args_id.(1) in - let abstract_proof = pf_find_abstract_proof true gl abstract_n in - let gl, proof = - let pf_unify_HO gl a b = - try pf_unify_HO gl a b - with _ -> errorstrm(strbrk"The abstract variable "++pr_constr id++ - strbrk" cannot abstract this goal. Did you generalize it?") in - let rec find_hole p t = - match kind_of_term t with - | Evar _ (*when last*) -> pf_unify_HO gl concl t, p - | Meta _ (*when last*) -> pf_unify_HO gl concl t, p - | Cast(m,_,_) when isEvar_or_Meta m (*when last*) -> pf_unify_HO gl concl t, p -(* - | Evar _ -> - let sigma, it = project gl, sig_it gl in - let sigma, ty = Evarutil.new_type_evar sigma env in - let gl = re_sig it sigma in - let p = mkApp (proj2,[|ty;concl;p|]) in - let concl = mkApp(prod,[|ty; concl|]) in - pf_unify_HO gl concl t, p - | App(hd, [|left; right|]) when Term.eq_constr hd prod -> - find_hole (mkApp (proj1,[|left;right;p|])) left -*) - | _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++ - strbrk" has an unexpected shape. Did you tamper with it?") - in - find_hole - ((*if last then*) id - (*else mkApp(mkSsrConst "use_abstract",Array.append args_id [|id|])*)) - (fire gl args_id.(0)) in - let gl = (*if last then*) pf_unify_HO gl abstract_key args_id.(2) (*else gl*) in - let gl, _ = pf_e_type_of gl idty in - let proof = fire gl proof in -(* if last then *) - let tacopen gl = - let stuff, g = Refiner.unpackage gl in - Refiner.repackage stuff [ g; abstract_proof ] in - tclTHENS tacopen [tclSOLVE [Proofview.V82.of_tactic (apply proof)];unfold[abstract;abstract_key]] gl -(* else apply proof gl *) - in - let introback ist (gens, _) = - introstac ~ist - (List.map (fun (_,cp) -> match id_of_cpattern cp with - | None -> IpatAnon - | Some id -> IpatId id) - (List.tl (List.hd gens))) in - tclTHEN (with_dgens gens main ist) (introback ist gens) gl - -(* The standard TACTIC EXTEND does not work for abstract *) -GEXTEND Gram - GLOBAL: tactic_expr; - tactic_expr: LEVEL "3" - [ RIGHTA [ IDENT "abstract"; gens = ssrdgens -> - Tacexpr.TacML (!@loc, ssrtac_name "abstract", - [Genarg.in_gen (Genarg.rawwit wit_ssrdgens) gens]) ]]; -END -TACTIC EXTEND ssrabstract -| [ "abstract" ssrdgens(gens) ] -> [ - if List.length (fst gens) <> 1 then - errorstrm (str"dependents switches '/' not allowed here"); - Proofview.V82.tactic (ssrabstract ist gens) ] -END - -let prof_havetac = mk_profiler "havetac";; -let havetac arg a b gl = prof_havetac.profile (havetac arg a b) gl;; - -TACTIC EXTEND ssrhave -| [ "have" ssrhavefwdwbinders(fwd) ] -> - [ Proofview.V82.tactic (havetac ist fwd false false) ] -END - -TACTIC EXTEND ssrhavesuff -| [ "have" "suff" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ] -END - -TACTIC EXTEND ssrhavesuffices -| [ "have" "suffices" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ] -END - -TACTIC EXTEND ssrsuffhave -| [ "suff" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ] -END - -TACTIC EXTEND ssrsufficeshave -| [ "suffices" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ] -END - -(** The "suffice" tactic *) - -let pr_ssrsufffwdwbinders _ _ prt (hpats, (fwd, hint)) = - pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrsufffwd - TYPED AS ssrhpats * (ssrfwd * ssrhint) PRINTED BY pr_ssrsufffwdwbinders -| [ ssrhpats(pats) ssrbinder_list(bs) ":" lconstr(t) ssrhint(hint) ] -> - [ let ((clr, pats), binders), simpl = pats in - let allbs = intro_id_to_binder binders @ bs in - let allbinders = binders @ List.flatten (binder_to_intro_id bs) in - let fwd = mkFwdHint ":" t in - (((clr, pats), allbinders), simpl), (bind_fwd allbs fwd, hint) ] -END - -let sufftac ist ((((clr, pats),binders),simpl), ((_, c), hint)) = - let htac = tclTHEN (introstac ~ist pats) (hinttac ist true hint) in - let c = match c with - | (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty) - | (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None) - | _ -> anomaly "suff: ssr cast hole deleted by typecheck" in - let ctac gl = - let _,ty,_,uc = pf_interp_ty ist gl c in let gl = pf_merge_uc uc gl in - basecuttac "ssr_suff" ty gl in - tclTHENS ctac [htac; tclTHEN (cleartac clr) (introstac ~ist (binders@simpl))] - -TACTIC EXTEND ssrsuff -| [ "suff" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ] -END - -TACTIC EXTEND ssrsuffices -| [ "suffices" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ] -END - -(** The "wlog" (Without Loss Of Generality) tactic *) - -(* type ssrwlogfwd = ssrwgen list * ssrfwd *) - -let pr_ssrwlogfwd _ _ _ (gens, t) = - str ":" ++ pr_list mt pr_wgen gens ++ spc() ++ pr_fwd t - -ARGUMENT EXTEND ssrwlogfwd TYPED AS ssrwgen list * ssrfwd - PRINTED BY pr_ssrwlogfwd -| [ ":" ssrwgen_list(gens) "/" lconstr(t) ] -> [ gens, mkFwdHint "/" t] -END - -let destProd_or_LetIn c = - match kind_of_term c with - | Prod (n,ty,c) -> (n,None,ty), c - | LetIn (n,bo,ty,c) -> (n,Some bo,ty), c - | _ -> raise DestKO - -let wlogtac ist (((clr0, pats),_),_) (gens, ((_, ct))) hint suff ghave gl = - let mkabs gen = abs_wgen false ist (fun x -> x) gen in - let mkclr gen clrs = clr_of_wgen gen clrs in - let mkpats = function - | _, Some ((x, _), _) -> fun pats -> IpatId (hoi_id x) :: pats - | _ -> fun x -> x in - let ct = match ct with - | (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty) - | (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None) - | _ -> anomaly "wlog: ssr cast hole deleted by typecheck" in - let cut_implies_goal = not (suff || ghave <> `NoGen) in - let c, args, ct, gl = - let gens = List.filter (function _, Some _ -> true | _ -> false) gens in - let concl = pf_concl gl in - let c = mkProp in - let c = if cut_implies_goal then mkArrow c concl else c in - let gl, args, c = List.fold_right mkabs gens (gl,[],c) in - let env, _ = - List.fold_left (fun (env, c) _ -> - let rd, c = destProd_or_LetIn c in - Environ.push_rel rd env, c) (pf_env gl, c) gens in - let sigma, ev = Evarutil.new_evar env (project gl) Term.mkProp in - let k, _ = Term.destEvar ev in - let fake_gl = {Evd.it = k; Evd.sigma = sigma} in - let _, ct, _, uc = pf_interp_ty ist fake_gl ct in - let rec var2rel c g s = match kind_of_term c, g with - | Prod(Anonymous,_,c), [] -> mkProd(Anonymous, Vars.subst_vars s ct, c) - | Sort _, [] -> Vars.subst_vars s ct - | LetIn(Name id as n,b,ty,c), _::g -> mkLetIn (n,b,ty,var2rel c g (id::s)) - | Prod(Name id as n,ty,c), _::g -> mkProd (n,ty,var2rel c g (id::s)) - | _ -> Errors.anomaly(str"SSR: wlog: var2rel: " ++ pr_constr c) in - let c = var2rel c gens [] in - let rec pired c = function - | [] -> c - | t::ts as args -> match kind_of_term c with - | Prod(_,_,c) -> pired (subst1 t c) ts - | LetIn(id,b,ty,c) -> mkLetIn (id,b,ty,pired c args) - | _ -> Errors.anomaly(str"SSR: wlog: pired: " ++ pr_constr c) in - c, args, pired c args, pf_merge_uc uc gl in - let tacipat pats = introstac ~ist pats in - let tacigens = - tclTHEN - (tclTHENLIST(List.rev(List.fold_right mkclr gens [cleartac clr0]))) - (introstac ~ist (List.fold_right mkpats gens [])) in - let hinttac = hinttac ist true hint in - let cut_kind, fst_goal_tac, snd_goal_tac = - match suff, ghave with - | true, `NoGen -> "ssr_wlog", tclTHEN hinttac (tacipat pats), tacigens - | false, `NoGen -> "ssr_wlog", hinttac, tclTHEN tacigens (tacipat pats) - | true, `Gen _ -> assert false - | false, `Gen id -> - if gens = [] then errorstrm(str"gen have requires some generalizations"); - let clear0 = cleartac clr0 in - let id, name_general_hyp, cleanup, pats = match id, pats with - | None, (IpatId id as ip)::pats -> Some id, tacipat [ip], clear0, pats - | None, _ -> None, tclIDTAC, clear0, pats - | Some (Some id),_ -> Some id, introid id, clear0, pats - | Some _,_ -> - let id = mk_anon_id "tmp" gl in - Some id, introid id, tclTHEN clear0 (clear [id]), pats in - let tac_specialize = match id with - | None -> tclIDTAC - | Some id -> - if pats = [] then tclIDTAC else - let args = Array.of_list args in - pp(lazy(str"specialized="++pr_constr (mkApp (mkVar id,args)))); - pp(lazy(str"specialized_ty="++pr_constr ct)); - tclTHENS (basecuttac "ssr_have" ct) - [Proofview.V82.of_tactic (apply (mkApp (mkVar id,args))); tclIDTAC] in - "ssr_have", - (if hint = nohint then tacigens else hinttac), - tclTHENLIST [name_general_hyp; tac_specialize; tacipat pats; cleanup] - in - tclTHENS (basecuttac cut_kind c) [fst_goal_tac; snd_goal_tac] gl - -TACTIC EXTEND ssrwlog -| [ "wlog" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ] -END - -TACTIC EXTEND ssrwlogs -| [ "wlog" "suff" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwlogss -| [ "wlog" "suffices" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]-> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwithoutloss -| [ "without" "loss" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ] -END - -TACTIC EXTEND ssrwithoutlosss -| [ "without" "loss" "suff" - ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwithoutlossss -| [ "without" "loss" "suffices" - ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]-> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -(* Generally have *) -let pr_idcomma _ _ _ = function - | None -> mt() - | Some None -> str"_, " - | Some (Some id) -> pr_id id ++ str", " - -ARGUMENT EXTEND ssr_idcomma TYPED AS ident option option PRINTED BY pr_idcomma - | [ ] -> [ None ] -END - -let accept_idcomma strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT _ | Tok.KEYWORD "_" -> accept_before_syms [","] strm - | _ -> raise Stream.Failure - -let test_idcomma = Gram.Entry.of_parser "test_idcomma" accept_idcomma - -GEXTEND Gram - GLOBAL: ssr_idcomma; - ssr_idcomma: [ [ test_idcomma; - ip = [ id = IDENT -> Some (id_of_string id) | "_" -> None ]; "," -> - Some ip - ] ]; -END - -let augment_preclr clr1 (((clr0, x),y),z) = (((clr1 @ clr0, x),y),z) - -TACTIC EXTEND ssrgenhave -| [ "gen" "have" ssrclear(clr) - ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ let pats = augment_preclr clr pats in - Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ] -END - -TACTIC EXTEND ssrgenhave2 -| [ "generally" "have" ssrclear(clr) - ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ let pats = augment_preclr clr pats in - Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ] -END - -(** Canonical Structure alias *) - -let def_body : Vernacexpr.definition_expr Gram.Entry.e = Obj.magic - (Grammar.Entry.find (Obj.magic gallina_ext) "vernac:def_body") in - -GEXTEND Gram - GLOBAL: gallina_ext; - - gallina_ext: - (* Canonical structure *) - [[ IDENT "Canonical"; qid = Constr.global -> - Vernacexpr.VernacCanonical (AN qid) - | IDENT "Canonical"; ntn = Prim.by_notation -> - Vernacexpr.VernacCanonical (ByNotation ntn) - | IDENT "Canonical"; qid = Constr.global; - d = def_body -> - let s = coerce_reference_to_id qid in - Vernacexpr.VernacDefinition - ((Some Decl_kinds.Global,Decl_kinds.CanonicalStructure), - (dummy_loc,s),(d )) - ]]; -END - -(** 9. Keyword compatibility fixes. *) - -(* Coq v8.1 notation uses "by" and "of" quasi-keywords, i.e., reserved *) -(* identifiers used as keywords. This is incompatible with ssreflect.v *) -(* which makes "by" and "of" true keywords, because of technicalities *) -(* in the internal lexer-parser API of Coq. We patch this here by *) -(* adding new parsing rules that recognize the new keywords. *) -(* To make matters worse, the Coq grammar for tactics fails to *) -(* export the non-terminals we need to patch. Fortunately, the CamlP5 *) -(* API provides a backdoor access (with loads of Obj.magic trickery). *) - -(* Coq v8.3 defines "by" as a keyword, some hacks are not needed any *) -(* longer and thus comment out. Such comments are marked with v8.3 *) - -let tac_ent = List.fold_left Grammar.Entry.find (Obj.magic simple_tactic) in -let hypident_ent = - tac_ent ["clause_dft_all"; "in_clause"; "hypident_occ"; "hypident"] in -let id_or_meta : Obj.t Gram.Entry.e = Obj.magic - (Grammar.Entry.find hypident_ent "id_or_meta") in -let hypident : (Obj.t * hyp_location_flag) Gram.Entry.e = - Obj.magic hypident_ent in -GEXTEND Gram - GLOBAL: hypident; -hypident: [ - [ "("; IDENT "type"; "of"; id = id_or_meta; ")" -> id, InHypTypeOnly - | "("; IDENT "value"; "of"; id = id_or_meta; ")" -> id, InHypValueOnly - ] ]; -END - -GEXTEND Gram - GLOBAL: hloc; -hloc: [ - [ "in"; "("; "Type"; "of"; id = ident; ")" -> - HypLocation ((dummy_loc,id), InHypTypeOnly) - | "in"; "("; IDENT "Value"; "of"; id = ident; ")" -> - HypLocation ((dummy_loc,id), InHypValueOnly) - ] ]; -END - -let constr_eval - : (Constrexpr.constr_expr,Obj.t,Obj.t) Genredexpr.may_eval Gram.Entry.e - = Obj.magic (Grammar.Entry.find (Obj.magic constr_may_eval) "constr_eval") - -GEXTEND Gram - GLOBAL: constr_eval; - constr_eval: [ - [ IDENT "type"; "of"; c = Constr.constr -> Genredexpr.ConstrTypeOf c ] - ]; -END - -(* We wipe out all the keywords generated by the grammar rules we defined. *) -(* The user is supposed to Require Import ssreflect or Require ssreflect *) -(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *) -(* consequence the extended ssreflect grammar. *) -let () = Lexer.unfreeze frozen_lexer ;; - -(* vim: set filetype=ocaml foldmethod=marker: *) diff --git a/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.mllib b/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.mllib deleted file mode 100644 index 006b70f..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta1/ssreflect.mllib +++ /dev/null @@ -1,2 +0,0 @@ -Ssrmatching -Ssreflect diff --git a/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.ml4 b/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.ml4 deleted file mode 100644 index 2fd0fe6..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.ml4 +++ /dev/null @@ -1,1290 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -(* Defining grammar rules with "xx" in it automatically declares keywords too, - * we thus save the lexer to restore it at the end of the file *) -let frozen_lexer = Lexer.freeze () ;; - -(*i camlp4use: "pa_extend.cmo" i*) -(*i camlp4deps: "grammar/grammar.cma" i*) - -open Names -open Pp -open Pcoq -open Genarg -open Constrarg -open Term -open Vars -open Topconstr -open Libnames -open Tactics -open Tacticals -open Termops -open Namegen -open Recordops -open Tacmach -open Coqlib -open Glob_term -open Util -open Evd -open Extend -open Goptions -open Tacexpr -open Tacinterp -open Pretyping -open Constr -open Tactic -open Extraargs -open Ppconstr -open Printer - -open Globnames -open Misctypes -open Decl_kinds -open Evar_kinds -open Constrexpr -open Constrexpr_ops -open Notation_term -open Notation_ops -open Locus -open Locusops - -DECLARE PLUGIN "ssreflect" - -type loc = Loc.t -let dummy_loc = Loc.ghost -let errorstrm = Errors.errorlabstrm "ssreflect" -let loc_error loc msg = Errors.user_err_loc (loc, msg, str msg) - -(* 0 cost pp function. Active only if env variable SSRDEBUG is set *) -(* or if SsrDebug is Set *) -let pp_ref = ref (fun _ -> ()) -let ssr_pp s = pperrnl (str"SSR: "++Lazy.force s) -let _ = try ignore(Sys.getenv "SSRDEBUG"); pp_ref := ssr_pp with Not_found -> () -let debug b = - if b then pp_ref := ssr_pp else pp_ref := fun _ -> () -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssrmatching debugging"; - Goptions.optkey = ["SsrMatchingDebug"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !pp_ref == ssr_pp); - Goptions.optwrite = debug } -let pp s = !pp_ref s - -(** Utils {{{ *****************************************************************) -let env_size env = List.length (Environ.named_context env) -let safeDestApp c = - match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |] -let get_index = function ArgArg i -> i | _ -> - Errors.anomaly (str"Uninterpreted index") -(* Toplevel constr must be globalized twice ! *) -let glob_constr ist genv = function - | _, Some ce -> - let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in - let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in - Constrintern.intern_gen WithoutTypeConstraint ~ltacvars:ltacvars genv ce - | rc, None -> rc - -(* Term printing utilities functions for deciding bracketing. *) -let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")") -(* String lexing utilities *) -let skip_wschars s = - let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop -(* We also guard characters that might interfere with the ssreflect *) -(* tactic syntax. *) -let guard_term ch1 s i = match s.[i] with - | '(' -> false - | '{' | '/' | '=' -> true - | _ -> ch1 = '(' -(* The call 'guard s i' should return true if the contents of s *) -(* starting at i need bracketing to avoid ambiguities. *) -let pr_guarded guard prc c = - msg_with Format.str_formatter (prc c); - let s = Format.flush_str_formatter () ^ "$" in - if guard s (skip_wschars s 0) then pr_paren prc c else prc c -(* More sensible names for constr printers *) -let pr_constr = pr_constr -let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c -let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c -let prl_constr_expr = pr_lconstr_expr -let pr_constr_expr = pr_constr_expr -let prl_glob_constr_and_expr = function - | _, Some c -> prl_constr_expr c - | c, None -> prl_glob_constr c -let pr_glob_constr_and_expr = function - | _, Some c -> pr_constr_expr c - | c, None -> pr_glob_constr c -let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c -let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c - -(** Adding a new uninterpreted generic argument type *) -let add_genarg tag pr = - let wit = Genarg.make0 None tag in - let glob ist x = (ist, x) in - let subst _ x = x in - let interp ist gl x = (gl.Evd.sigma, x) in - let gen_pr _ _ _ = pr in - let () = Genintern.register_intern0 wit glob in - let () = Genintern.register_subst0 wit subst in - let () = Geninterp.register_interp0 wit interp in - Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr; - wit - -(** Constructors for cast type *) -let dC t = CastConv t -(** Constructors for constr_expr *) -let isCVar = function CRef (Ident _, _) -> true | _ -> false -let destCVar = function CRef (Ident (_, id), _) -> id | _ -> - Errors.anomaly (str"not a CRef") -let mkCHole loc = CHole (loc, None, IntroAnonymous, None) -let mkCLambda loc name ty t = - CLambdaN (loc, [[loc, name], Default Explicit, ty], t) -let mkCLetIn loc name bo t = - CLetIn (loc, (loc, name), bo, t) -let mkCCast loc t ty = CCast (loc,t, dC ty) -(** Constructors for rawconstr *) -let mkRHole = GHole (dummy_loc, InternalHole, IntroAnonymous, None) -let mkRApp f args = if args = [] then f else GApp (dummy_loc, f, args) -let mkRCast rc rt = GCast (dummy_loc, rc, dC rt) -let mkRLambda n s t = GLambda (dummy_loc, n, Explicit, s, t) - -(* ssrterm conbinators *) -let combineCG t1 t2 f g = match t1, t2 with - | (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None) - | (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2)) - | _, (_, (_, None)) -> Errors.anomaly (str"have: mixed C-G constr") - | _ -> Errors.anomaly (str"have: mixed G-C constr") -let loc_ofCG = function - | (_, (s, None)) -> Glob_ops.loc_of_glob_constr s - | (_, (_, Some s)) -> Constrexpr_ops.constr_loc s - -let mk_term k c = k, (mkRHole, Some c) -let mk_lterm = mk_term ' ' - -(* }}} *) - -(** Profiling {{{ *************************************************************) -type profiler = { - profile : 'a 'b. ('a -> 'b) -> 'a -> 'b; - reset : unit -> unit; - print : unit -> unit } -let profile_now = ref false -let something_profiled = ref false -let profilers = ref [] -let add_profiler f = profilers := f :: !profilers;; -let profile b = - profile_now := b; - if b then List.iter (fun f -> f.reset ()) !profilers; - if not b then List.iter (fun f -> f.print ()) !profilers -;; -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssrmatching profiling"; - Goptions.optkey = ["SsrMatchingProfiling"]; - Goptions.optread = (fun _ -> !profile_now); - Goptions.optdepr = false; - Goptions.optwrite = profile } -let () = - let prof_total = - let init = ref 0.0 in { - profile = (fun f x -> assert false); - reset = (fun () -> init := Unix.gettimeofday ()); - print = (fun () -> if !something_profiled then - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - "total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in - let prof_legenda = { - profile = (fun f x -> assert false); - reset = (fun () -> ()); - print = (fun () -> if !something_profiled then begin - prerr_endline - (Printf.sprintf "!! %39s ---------- --------- --------- ---------" - (String.make 39 '-')); - prerr_endline - (Printf.sprintf "!! %-39s %10s %9s %9s %9s" - "function" "#calls" "total" "max" "average") end) } in - add_profiler prof_legenda; - add_profiler prof_total -;; - -let mk_profiler s = - let total, calls, max = ref 0.0, ref 0, ref 0.0 in - let reset () = total := 0.0; calls := 0; max := 0.0 in - let profile f x = - if not !profile_now then f x else - let before = Unix.gettimeofday () in - try - incr calls; - let res = f x in - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - res - with exc -> - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - raise exc in - let print () = - if !calls <> 0 then begin - something_profiled := true; - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - s !calls !total !max (!total /. (float_of_int !calls))) end in - let prof = { profile = profile; reset = reset; print = print } in - add_profiler prof; - prof -;; -(* }}} *) - -exception NoProgress - -(** Unification procedures. *) - -(* To enforce the rigidity of the rooted match we always split *) -(* top applications, so the unification procedures operate on *) -(* arrays of patterns and terms. *) -(* We perform three kinds of unification: *) -(* EQ: exact conversion check *) -(* FO: first-order unification of evars, without conversion *) -(* HO: higher-order unification with conversion *) -(* The subterm unification strategy is to find the first FO *) -(* match, if possible, and the first HO match otherwise, then *) -(* compute all the occurrences that are EQ matches for the *) -(* relevant subterm. *) -(* Additional twists: *) -(* - If FO/HO fails then we attempt to fill evars using *) -(* typeclasses before raising an outright error. We also *) -(* fill typeclasses even after a successful match, since *) -(* beta-reduction and canonical instances may leave *) -(* undefined evars. *) -(* - We do postchecks to rule out matches that are not *) -(* closed or that assign to a global evar; these can be *) -(* disabled for rewrite or dependent family matches. *) -(* - We do a full FO scan before turning to HO, as the FO *) -(* comparison can be much faster than the HO one. *) - -let unif_EQ env sigma p c = - let evars = existential_opt_value sigma in - try let _ = Reduction.conv env p ~evars c in true with _ -> false - -let unif_EQ_args env sigma pa a = - let n = Array.length pa in - let rec loop i = (i = n) || unif_EQ env sigma pa.(i) a.(i) && loop (i + 1) in - loop 0 - -let prof_unif_eq_args = mk_profiler "unif_EQ_args";; -let unif_EQ_args env sigma pa a = - prof_unif_eq_args.profile (unif_EQ_args env sigma pa) a -;; - -let unif_HO env ise p c = Evarconv.the_conv_x env p c ise - -let unif_HOtype env ise p c = Evarconv.the_conv_x_leq env p c ise - -let unif_HO_args env ise0 pa i ca = - let n = Array.length pa in - let rec loop ise j = - if j = n then ise else loop (unif_HO env ise pa.(j) ca.(i + j)) (j + 1) in - loop ise0 0 - -(* FO unification should boil down to calling w_unify with no_delta, but *) -(* alas things are not so simple: w_unify does partial type-checking, *) -(* which breaks down when the no-delta flag is on (as the Coq type system *) -(* requires full convertibility. The workaround here is to convert all *) -(* evars into metas, since 8.2 does not TC metas. This means some lossage *) -(* for HO evars, though hopefully Miller patterns can pick up some of *) -(* those cases, and HO matching will mop up the rest. *) -let flags_FO = - let flags = - { (Unification.default_no_delta_unify_flags ()).Unification.core_unify_flags - with - Unification.modulo_conv_on_closed_terms = None; - Unification.modulo_eta = true; - Unification.modulo_betaiota = true; - Unification.modulo_delta_types = full_transparent_state} - in - { Unification.core_unify_flags = flags; - Unification.merge_unify_flags = flags; - Unification.subterm_unify_flags = flags; - Unification.allow_K_in_toplevel_higher_order_unification = false; - Unification.resolve_evars = - (Unification.default_no_delta_unify_flags ()).Unification.resolve_evars - } -let unif_FO env ise p c = - Unification.w_unify env ise Reduction.CONV ~flags:flags_FO p c - -(* Perform evar substitution in main term and prune substitution. *) -let nf_open_term sigma0 ise c = - let s = ise and s' = ref sigma0 in - let rec nf c' = match kind_of_term c' with - | Evar ex -> - begin try nf (existential_value s ex) with _ -> - let k, a = ex in let a' = Array.map nf a in - if not (Evd.mem !s' k) then - s' := Evd.add !s' k (Evarutil.nf_evar_info s (Evd.find s k)); - mkEvar (k, a') - end - | _ -> map_constr nf c' in - let copy_def k evi () = - if evar_body evi != Evd.Evar_empty then () else - match Evd.evar_body (Evd.find s k) with - | Evar_defined c' -> s' := Evd.define k (nf c') !s' - | _ -> () in - let c' = nf c in let _ = Evd.fold copy_def sigma0 () in - !s', Evd.evar_universe_context s, c' - -let unif_end env sigma0 ise0 pt ok = - let ise = Evarconv.consider_remaining_unif_problems env ise0 in - let s, uc, t = nf_open_term sigma0 ise pt in - let ise1 = create_evar_defs s in - let ise2 = Typeclasses.resolve_typeclasses ~fail:true env ise1 in - if not (ok ise) then raise NoProgress else - if ise2 == ise1 then (s, uc, t) - else - let s, uc', t = nf_open_term sigma0 ise2 t in - s, Evd.union_evar_universe_context uc uc', t - -let pf_unif_HO gl sigma pt p c = - let env = pf_env gl in - let ise = unif_HO env (create_evar_defs sigma) p c in - unif_end env (project gl) ise pt (fun _ -> true) - -let unify_HO env sigma0 t1 t2 = - let sigma = unif_HO env sigma0 t1 t2 in - let sigma, uc, _ = unif_end env sigma0 sigma t2 (fun _ -> true) in - Evd.merge_universe_context sigma uc - -let pf_unify_HO gl t1 t2 = - let env, sigma0, si = pf_env gl, project gl, sig_it gl in - let sigma = unify_HO env sigma0 t1 t2 in - re_sig si sigma - -(* This is what the definition of iter_constr should be... *) -let iter_constr_LR f c = match kind_of_term c with - | Evar (k, a) -> Array.iter f a - | Cast (cc, _, t) -> f cc; f t - | Prod (_, t, b) | Lambda (_, t, b) -> f t; f b - | LetIn (_, v, t, b) -> f v; f t; f b - | App (cf, a) -> f cf; Array.iter f a - | Case (_, p, v, b) -> f v; f p; Array.iter f b - | Fix (_, (_, t, b)) | CoFix (_, (_, t, b)) -> - for i = 0 to Array.length t - 1 do f t.(i); f b.(i) done - | _ -> () - -(* The comparison used to determine which subterms matches is KEYED *) -(* CONVERSION. This looks for convertible terms that either have the same *) -(* same head constant as pat if pat is an application (after beta-iota), *) -(* or start with the same constr constructor (esp. for LetIn); this is *) -(* disregarded if the head term is let x := ... in x, and casts are always *) -(* ignored and removed). *) -(* Record projections get special treatment: in addition to the projection *) -(* constant itself, ssreflect also recognizes head constants of canonical *) -(* projections. *) - -exception NoMatch -type ssrdir = L2R | R2L -let pr_dir_side = function L2R -> str "LHS" | R2L -> str "RHS" -let inv_dir = function L2R -> R2L | R2L -> L2R - - -type pattern_class = - | KpatFixed - | KpatConst - | KpatEvar of existential_key - | KpatLet - | KpatLam - | KpatRigid - | KpatFlex - | KpatProj of constant - -type tpattern = { - up_k : pattern_class; - up_FO : constr; - up_f : constr; - up_a : constr array; - up_t : constr; (* equation proof term or matched term *) - up_dir : ssrdir; (* direction of the rule *) - up_ok : constr -> evar_map -> bool; (* progess test for rewrite *) - } - -let all_ok _ _ = true - -let proj_nparams c = - try 1 + Recordops.find_projection_nparams (ConstRef c) with _ -> 0 - -let isFixed c = match kind_of_term c with - | Var _ | Ind _ | Construct _ | Const _ -> true - | _ -> false - -let isRigid c = match kind_of_term c with - | Prod _ | Sort _ | Lambda _ | Case _ | Fix _ | CoFix _ -> true - | _ -> false - -exception UndefPat - -let hole_var = mkVar (id_of_string "_") -let pr_constr_pat c0 = - let rec wipe_evar c = - if isEvar c then hole_var else map_constr wipe_evar c in - pr_constr (wipe_evar c0) - -(* Turn (new) evars into metas *) -let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 = - let ise = ref ise0 in - let sigma = ref ise0 in - let nenv = env_size env + if hack then 1 else 0 in - let rec put c = match kind_of_term c with - | Evar (k, a as ex) -> - begin try put (existential_value !sigma ex) - with NotInstantiatedEvar -> - if Evd.mem sigma0 k then map_constr put c else - let evi = Evd.find !sigma k in - let dc = List.firstn (max 0 (Array.length a - nenv)) (evar_filtered_context evi) in - let abs_dc (d, c) = function - | x, Some b, t -> d, mkNamedLetIn x (put b) (put t) c - | x, None, t -> mkVar x :: d, mkNamedProd x (put t) c in - let a, t = - Context.fold_named_context_reverse abs_dc ~init:([], (put evi.evar_concl)) dc in - let m = Evarutil.new_meta () in - ise := meta_declare m t !ise; - sigma := Evd.define k (applist (mkMeta m, a)) !sigma; - put (existential_value !sigma ex) - end - | _ -> map_constr put c in - let c1 = put c0 in !ise, c1 - -(* Compile a match pattern from a term; t is the term to fill. *) -(* p_origin can be passed to obtain a better error message *) -let mk_tpattern ?p_origin ?(hack=false) env sigma0 (ise, t) ok dir p = - let k, f, a = - let f, a = Reductionops.whd_betaiota_stack ise p in - match kind_of_term f with - | Const (p,_) -> - let np = proj_nparams p in - if np = 0 || np > List.length a then KpatConst, f, a else - let a1, a2 = List.chop np a in KpatProj p, applist(f, a1), a2 - | Var _ | Ind _ | Construct _ -> KpatFixed, f, a - | Evar (k, _) -> - if Evd.mem sigma0 k then KpatEvar k, f, a else - if a <> [] then KpatFlex, f, a else - (match p_origin with None -> Errors.error "indeterminate pattern" - | Some (dir, rule) -> - errorstrm (str "indeterminate " ++ pr_dir_side dir - ++ str " in " ++ pr_constr_pat rule)) - | LetIn (_, v, _, b) -> - if b <> mkRel 1 then KpatLet, f, a else KpatFlex, v, a - | Lambda _ -> KpatLam, f, a - | _ -> KpatRigid, f, a in - let aa = Array.of_list a in - let ise', p' = evars_for_FO ~hack env sigma0 ise (mkApp (f, aa)) in - ise', - { up_k = k; up_FO = p'; up_f = f; - up_a = aa; up_ok = ok; up_dir = dir; up_t = t} - -(* Specialize a pattern after a successful match: assign a precise head *) -(* kind and arity for Proj and Flex patterns. *) -let ungen_upat lhs (sigma, uc, t) u = - let f, a = safeDestApp lhs in - let k = match kind_of_term f with - | Var _ | Ind _ | Construct _ -> KpatFixed - | Const _ -> KpatConst - | Evar (k, _) -> if is_defined sigma k then raise NoMatch else KpatEvar k - | LetIn _ -> KpatLet - | Lambda _ -> KpatLam - | _ -> KpatRigid in - sigma, uc, {u with up_k = k; up_FO = lhs; up_f = f; up_a = a; up_t = t} - -let nb_cs_proj_args pc f u = - let na k = - List.length (snd (lookup_canonical_conversion (ConstRef pc, k))).o_TCOMPS in - try match kind_of_term f with - | Prod _ -> na Prod_cs - | Sort s -> na (Sort_cs (family_of_sort s)) - | Const (c',_) when Constant.equal c' pc -> Array.length (snd (destApp u.up_f)) - | Var _ | Ind _ | Construct _ | Const _ -> na (Const_cs (global_of_constr f)) - | _ -> -1 - with Not_found -> -1 - -let isEvar_k k f = - match kind_of_term f with Evar (k', _) -> k = k' | _ -> false - -let nb_args c = - match kind_of_term c with App (_, a) -> Array.length a | _ -> 0 - -let mkSubArg i a = if i = Array.length a then a else Array.sub a 0 i -let mkSubApp f i a = if i = 0 then f else mkApp (f, mkSubArg i a) - -let splay_app ise = - let rec loop c a = match kind_of_term c with - | App (f, a') -> loop f (Array.append a' a) - | Cast (c', _, _) -> loop c' a - | Evar ex -> - (try loop (existential_value ise ex) a with _ -> c, a) - | _ -> c, a in - fun c -> match kind_of_term c with - | App (f, a) -> loop f a - | Cast _ | Evar _ -> loop c [| |] - | _ -> c, [| |] - -let filter_upat i0 f n u fpats = - let na = Array.length u.up_a in - if n < na then fpats else - let np = match u.up_k with - | KpatConst when Term.eq_constr u.up_f f -> na - | KpatFixed when Term.eq_constr u.up_f f -> na - | KpatEvar k when isEvar_k k f -> na - | KpatLet when isLetIn f -> na - | KpatLam when isLambda f -> na - | KpatRigid when isRigid f -> na - | KpatFlex -> na - | KpatProj pc -> - let np = na + nb_cs_proj_args pc f u in if n < np then -1 else np - | _ -> -1 in - if np < na then fpats else - let () = if !i0 < np then i0 := n in (u, np) :: fpats - -let filter_upat_FO i0 f n u fpats = - let np = nb_args u.up_FO in - if n < np then fpats else - let ok = match u.up_k with - | KpatConst -> Term.eq_constr u.up_f f - | KpatFixed -> Term.eq_constr u.up_f f - | KpatEvar k -> isEvar_k k f - | KpatLet -> isLetIn f - | KpatLam -> isLambda f - | KpatRigid -> isRigid f - | KpatProj pc -> Term.eq_constr f (mkConst pc) - | KpatFlex -> i0 := n; true in - if ok then begin if !i0 < np then i0 := np; (u, np) :: fpats end else fpats - -exception FoundUnif of (evar_map * evar_universe_context * tpattern) -(* Note: we don't update env as we descend into the term, as the primitive *) -(* unification procedure always rejects subterms with bound variables. *) - -(* We are forced to duplicate code between the FO/HO matching because we *) -(* have to work around several kludges in unify.ml: *) -(* - w_unify drops into second-order unification when the pattern is an *) -(* application whose head is a meta. *) -(* - w_unify tries to unify types without subsumption when the pattern *) -(* head is an evar or meta (e.g., it fails on ?1 = nat when ?1 : Type). *) -(* - w_unify expands let-in (zeta conversion) eagerly, whereas we want to *) -(* match a head let rigidly. *) -let match_upats_FO upats env sigma0 ise = - let rec loop c = - let f, a = splay_app ise c in let i0 = ref (-1) in - let fpats = - List.fold_right (filter_upat_FO i0 f (Array.length a)) upats [] in - while !i0 >= 0 do - let i = !i0 in i0 := -1; - let c' = mkSubApp f i a in - let one_match (u, np) = - let skip = - if i <= np then i < np else - if u.up_k == KpatFlex then begin i0 := i - 1; false end else - begin if !i0 < np then i0 := np; true end in - if skip || not (closed0 c') then () else try - let _ = match u.up_k with - | KpatFlex -> - let kludge v = mkLambda (Anonymous, mkProp, v) in - unif_FO env ise (kludge u.up_FO) (kludge c') - | KpatLet -> - let kludge vla = - let vl, a = safeDestApp vla in - let x, v, t, b = destLetIn vl in - mkApp (mkLambda (x, t, b), Array.cons v a) in - unif_FO env ise (kludge u.up_FO) (kludge c') - | _ -> unif_FO env ise u.up_FO c' in - let ise' = (* Unify again using HO to assign evars *) - let p = mkApp (u.up_f, u.up_a) in - try unif_HO env ise p c' with _ -> raise NoMatch in - let lhs = mkSubApp f i a in - let pt' = unif_end env sigma0 ise' u.up_t (u.up_ok lhs) in - raise (FoundUnif (ungen_upat lhs pt' u)) - with FoundUnif _ as sigma_u -> raise sigma_u - | Not_found -> Errors.anomaly (str"incomplete ise in match_upats_FO") - | _ -> () in - List.iter one_match fpats - done; - iter_constr_LR loop f; Array.iter loop a in - fun c -> try loop c with Invalid_argument _ -> Errors.anomaly (str"IN FO") - -let prof_FO = mk_profiler "match_upats_FO";; -let match_upats_FO upats env sigma0 ise c = - prof_FO.profile (match_upats_FO upats env sigma0) ise c -;; - - -let match_upats_HO ~on_instance upats env sigma0 ise c = - let it_did_match = ref false in - let rec aux upats env sigma0 ise c = - let f, a = splay_app ise c in let i0 = ref (-1) in - let fpats = List.fold_right (filter_upat i0 f (Array.length a)) upats [] in - while !i0 >= 0 do - let i = !i0 in i0 := -1; - let one_match (u, np) = - let skip = - if i <= np then i < np else - if u.up_k == KpatFlex then begin i0 := i - 1; false end else - begin if !i0 < np then i0 := np; true end in - if skip then () else try - let ise' = match u.up_k with - | KpatFixed | KpatConst -> ise - | KpatEvar _ -> - let _, pka = destEvar u.up_f and _, ka = destEvar f in - unif_HO_args env ise pka 0 ka - | KpatLet -> - let x, v, t, b = destLetIn f in - let _, pv, _, pb = destLetIn u.up_f in - let ise' = unif_HO env ise pv v in - unif_HO (Environ.push_rel (x, None, t) env) ise' pb b - | KpatFlex | KpatProj _ -> - unif_HO env ise u.up_f (mkSubApp f (i - Array.length u.up_a) a) - | _ -> unif_HO env ise u.up_f f in - let ise'' = unif_HO_args env ise' u.up_a (i - Array.length u.up_a) a in - let lhs = mkSubApp f i a in - let pt' = unif_end env sigma0 ise'' u.up_t (u.up_ok lhs) in - on_instance (ungen_upat lhs pt' u) - with FoundUnif _ as sigma_u -> raise sigma_u - | NoProgress -> it_did_match := true - | _ -> () in - List.iter one_match fpats - done; - iter_constr_LR (aux upats env sigma0 ise) f; - Array.iter (aux upats env sigma0 ise) a - in - aux upats env sigma0 ise c; - if !it_did_match then raise NoProgress - -let prof_HO = mk_profiler "match_upats_HO";; -let match_upats_HO ~on_instance upats env sigma0 ise c = - prof_HO.profile (match_upats_HO ~on_instance upats env sigma0) ise c -;; - - -let fixed_upat = function -| {up_k = KpatFlex | KpatEvar _ | KpatProj _} -> false -| {up_t = t} -> not (occur_existential t) - -let do_once r f = match !r with Some _ -> () | None -> r := Some (f ()) - -let assert_done r = - match !r with Some x -> x | None -> Errors.anomaly (str"do_once never called") - -let assert_done_multires r = - match !r with - | None -> Errors.anomaly (str"do_once never called") - | Some (n, xs) -> - r := Some (n+1,xs); - try List.nth xs n with Failure _ -> raise NoMatch - -type subst = Environ.env -> Term.constr -> Term.constr -> int -> Term.constr -type find_P = - Environ.env -> Term.constr -> int -> - k:subst -> - Term.constr -type conclude = unit -> - Term.constr * ssrdir * (Evd.evar_map * Evd.evar_universe_context * Term.constr) - -(* upats_origin makes a better error message only *) -let mk_tpattern_matcher ?(all_instances=false) - ?(raise_NoMatch=false) ?upats_origin sigma0 occ (ise, upats) -= - let nocc = ref 0 and skip_occ = ref false in - let use_occ, occ_list = match occ with - | Some (true, ol) -> ol = [], ol - | Some (false, ol) -> ol <> [], ol - | None -> false, [] in - let max_occ = List.fold_right max occ_list 0 in - let subst_occ = - let occ_set = Array.make max_occ (not use_occ) in - let _ = List.iter (fun i -> occ_set.(i - 1) <- use_occ) occ_list in - let _ = if max_occ = 0 then skip_occ := use_occ in - fun () -> incr nocc; - if !nocc = max_occ then skip_occ := use_occ; - if !nocc <= max_occ then occ_set.(!nocc - 1) else not use_occ in - let upat_that_matched = ref None in - let match_EQ env sigma u = - match u.up_k with - | KpatLet -> - let x, pv, t, pb = destLetIn u.up_f in - let env' = Environ.push_rel (x, None, t) env in - let match_let f = match kind_of_term f with - | LetIn (_, v, _, b) -> unif_EQ env sigma pv v && unif_EQ env' sigma pb b - | _ -> false in match_let - | KpatFixed -> Term.eq_constr u.up_f - | KpatConst -> Term.eq_constr u.up_f - | KpatLam -> fun c -> - (match kind_of_term c with - | Lambda _ -> unif_EQ env sigma u.up_f c - | _ -> false) - | _ -> unif_EQ env sigma u.up_f in -let p2t p = mkApp(p.up_f,p.up_a) in -let source () = match upats_origin, upats with - | None, [p] -> - (if fixed_upat p then str"term " else str"partial term ") ++ - pr_constr_pat (p2t p) ++ spc() - | Some (dir,rule), [p] -> str"The " ++ pr_dir_side dir ++ str" of " ++ - pr_constr_pat rule ++ fnl() ++ ws 4 ++ pr_constr_pat (p2t p) ++ fnl() - | Some (dir,rule), _ -> str"The " ++ pr_dir_side dir ++ str" of " ++ - pr_constr_pat rule ++ spc() - | _, [] | None, _::_::_ -> - Errors.anomaly (str"mk_tpattern_matcher with no upats_origin") in -let on_instance, instances = - let instances = ref [] in - (fun x -> - if all_instances then instances := !instances @ [x] - else raise (FoundUnif x)), - (fun () -> !instances) in -let rec uniquize = function - | [] -> [] - | (sigma,_,{ up_f = f; up_a = a; up_t = t } as x) :: xs -> - let t = Reductionops.nf_evar sigma t in - let f = Reductionops.nf_evar sigma f in - let a = Array.map (Reductionops.nf_evar sigma) a in - let neq (sigma1,_,{ up_f = f1; up_a = a1; up_t = t1 }) = - let t1 = Reductionops.nf_evar sigma1 t1 in - let f1 = Reductionops.nf_evar sigma1 f1 in - let a1 = Array.map (Reductionops.nf_evar sigma1) a1 in - not (Term.eq_constr t t1 && - Term.eq_constr f f1 && CArray.for_all2 Term.eq_constr a a1) in - x :: uniquize (List.filter neq xs) in - -((fun env c h ~k -> - do_once upat_that_matched (fun () -> - try - if not all_instances then match_upats_FO upats env sigma0 ise c; - match_upats_HO ~on_instance upats env sigma0 ise c; - raise NoMatch - with FoundUnif sigma_u -> 0,[sigma_u] - | (NoMatch|NoProgress) when all_instances && instances () <> [] -> - 0, uniquize (instances ()) - | NoMatch when (not raise_NoMatch) -> - errorstrm (source () ++ str "does not match any subterm of the goal") - | NoProgress when (not raise_NoMatch) -> - let dir = match upats_origin with Some (d,_) -> d | _ -> - Errors.anomaly (str"mk_tpattern_matcher with no upats_origin") in - errorstrm (str"all matches of "++source()++ - str"are equal to the " ++ pr_dir_side (inv_dir dir)) - | NoProgress -> raise NoMatch); - let sigma, _, ({up_f = pf; up_a = pa} as u) = - if all_instances then assert_done_multires upat_that_matched - else List.hd (snd(assert_done upat_that_matched)) in - pp(lazy(str"sigma@tmatch=" ++ pr_evar_map None sigma)); - if !skip_occ then ((*ignore(k env u.up_t 0);*) c) else - let match_EQ = match_EQ env sigma u in - let pn = Array.length pa in - let rec subst_loop (env,h as acc) c' = - if !skip_occ then c' else - let f, a = splay_app sigma c' in - if Array.length a >= pn && match_EQ f && unif_EQ_args env sigma pa a then - let a1, a2 = Array.chop (Array.length pa) a in - let fa1 = mkApp (f, a1) in - let f' = if subst_occ () then k env u.up_t fa1 h else fa1 in - mkApp (f', Array.map_left (subst_loop acc) a2) - else - (* TASSI: clear letin values to avoid unfolding *) - let inc_h (n,_,ty) (env,h') = Environ.push_rel (n,None,ty) env, h' + 1 in - let f' = map_constr_with_binders_left_to_right inc_h subst_loop acc f in - mkApp (f', Array.map_left (subst_loop acc) a) in - subst_loop (env,h) c) : find_P), -((fun () -> - let sigma, uc, ({up_f = pf; up_a = pa} as u) = - match !upat_that_matched with - | Some (_,x) -> List.hd x | None when raise_NoMatch -> raise NoMatch - | None -> Errors.anomaly (str"companion function never called") in - let p' = mkApp (pf, pa) in - if max_occ <= !nocc then p', u.up_dir, (sigma, uc, u.up_t) - else errorstrm (str"Only " ++ int !nocc ++ str" < " ++ int max_occ ++ - str(String.plural !nocc " occurence") ++ match upats_origin with - | None -> str" of" ++ spc() ++ pr_constr_pat p' - | Some (dir,rule) -> str" of the " ++ pr_dir_side dir ++ fnl() ++ - ws 4 ++ pr_constr_pat p' ++ fnl () ++ - str"of " ++ pr_constr_pat rule)) : conclude) - -type ('ident, 'term) ssrpattern = - | T of 'term - | In_T of 'term - | X_In_T of 'ident * 'term - | In_X_In_T of 'ident * 'term - | E_In_X_In_T of 'term * 'ident * 'term - | E_As_X_In_T of 'term * 'ident * 'term - -let pr_pattern = function - | T t -> prl_term t - | In_T t -> str "in " ++ prl_term t - | X_In_T (x,t) -> prl_term x ++ str " in " ++ prl_term t - | In_X_In_T (x,t) -> str "in " ++ prl_term x ++ str " in " ++ prl_term t - | E_In_X_In_T (e,x,t) -> - prl_term e ++ str " in " ++ prl_term x ++ str " in " ++ prl_term t - | E_As_X_In_T (e,x,t) -> - prl_term e ++ str " as " ++ prl_term x ++ str " in " ++ prl_term t - -let pr_pattern_w_ids = function - | T t -> prl_term t - | In_T t -> str "in " ++ prl_term t - | X_In_T (x,t) -> pr_id x ++ str " in " ++ prl_term t - | In_X_In_T (x,t) -> str "in " ++ pr_id x ++ str " in " ++ prl_term t - | E_In_X_In_T (e,x,t) -> - prl_term e ++ str " in " ++ pr_id x ++ str " in " ++ prl_term t - | E_As_X_In_T (e,x,t) -> - prl_term e ++ str " as " ++ pr_id x ++ str " in " ++ prl_term t - -let pr_pattern_aux pr_constr = function - | T t -> pr_constr t - | In_T t -> str "in " ++ pr_constr t - | X_In_T (x,t) -> pr_constr x ++ str " in " ++ pr_constr t - | In_X_In_T (x,t) -> str "in " ++ pr_constr x ++ str " in " ++ pr_constr t - | E_In_X_In_T (e,x,t) -> - pr_constr e ++ str " in " ++ pr_constr x ++ str " in " ++ pr_constr t - | E_As_X_In_T (e,x,t) -> - pr_constr e ++ str " as " ++ pr_constr x ++ str " in " ++ pr_constr t -let pp_pattern (sigma, p) = - pr_pattern_aux (fun t -> pr_constr (pi3 (nf_open_term sigma sigma t))) p -let pr_cpattern = pr_term -let pr_rpattern _ _ _ = pr_pattern - -let pr_option f = function None -> mt() | Some x -> f x -let pr_ssrpattern _ _ _ = pr_option pr_pattern -let pr_pattern_squarep = pr_option (fun r -> str "[" ++ pr_pattern r ++ str "]") -let pr_ssrpattern_squarep _ _ _ = pr_pattern_squarep -let pr_pattern_roundp = pr_option (fun r -> str "(" ++ pr_pattern r ++ str ")") -let pr_ssrpattern_roundp _ _ _ = pr_pattern_roundp - -let wit_rpatternty = add_genarg "rpatternty" pr_pattern - -ARGUMENT EXTEND rpattern TYPED AS rpatternty PRINTED BY pr_rpattern - | [ lconstr(c) ] -> [ T (mk_lterm c) ] - | [ "in" lconstr(c) ] -> [ In_T (mk_lterm c) ] - | [ lconstr(x) "in" lconstr(c) ] -> - [ X_In_T (mk_lterm x, mk_lterm c) ] - | [ "in" lconstr(x) "in" lconstr(c) ] -> - [ In_X_In_T (mk_lterm x, mk_lterm c) ] - | [ lconstr(e) "in" lconstr(x) "in" lconstr(c) ] -> - [ E_In_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ] - | [ lconstr(e) "as" lconstr(x) "in" lconstr(c) ] -> - [ E_As_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ] -END - -type cpattern = char * glob_constr_and_expr -let tag_of_cpattern = fst -let loc_of_cpattern = loc_ofCG -let cpattern_of_term t = t -type occ = (bool * int list) option - -type rpattern = (cpattern, cpattern) ssrpattern -let pr_rpattern = pr_pattern - -type pattern = Evd.evar_map * (Term.constr, Term.constr) ssrpattern - - -let id_of_cpattern = function - | _,(_,Some (CRef (Ident (_, x), _))) -> Some x - | _,(_,Some (CAppExpl (_, (_, Ident (_, x), _), []))) -> Some x - | _,(GRef (_, VarRef x, _) ,None) -> Some x - | _ -> None -let id_of_Cterm t = match id_of_cpattern t with - | Some x -> x - | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here" - -let interp_wit wit ist gl x = - let globarg = in_gen (glbwit wit) x in - let sigma, arg = interp_genarg ist (pf_env gl) (project gl) (pf_concl gl) gl.Evd.it globarg in - sigma, out_gen (topwit wit) arg -let interp_constr = interp_wit wit_constr -let interp_open_constr ist gl gc = - interp_wit wit_open_constr ist gl ((), gc) -let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c -let interp_term ist gl (_, c) = snd (interp_open_constr ist gl c) -let glob_ssrterm gs = function - | k, (_, Some c) -> k, Tacintern.intern_constr gs c - | ct -> ct -let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c -let pr_ssrterm _ _ _ = pr_term -let input_ssrtermkind strm = match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "(" -> '(' - | Tok.KEYWORD "@" -> '@' - | _ -> ' ' -let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind - -(* This piece of code asserts the following notations are reserved *) -(* Reserved Notation "( a 'in' b )" (at level 0). *) -(* Reserved Notation "( a 'as' b )" (at level 0). *) -(* Reserved Notation "( a 'in' b 'in' c )" (at level 0). *) -(* Reserved Notation "( a 'as' b 'in' c )" (at level 0). *) -let glob_cpattern gs p = - pp(lazy(str"globbing pattern: " ++ pr_term p)); - let glob x = snd (glob_ssrterm gs (mk_lterm x)) in - let encode k s l = - let name = Name (id_of_string ("_ssrpat_" ^ s)) in - k, (mkRCast mkRHole (mkRLambda name mkRHole (mkRApp mkRHole l)), None) in - let bind_in t1 t2 = - let d = dummy_loc in let n = Name (destCVar t1) in - fst (glob (mkCCast d (mkCHole d) (mkCLambda d n (mkCHole d) t2))) in - let check_var t2 = if not (isCVar t2) then - loc_error (constr_loc t2) "Only identifiers are allowed here" in - match p with - | _, (_, None) as x -> x - | k, (v, Some t) as orig -> - if k = 'x' then glob_ssrterm gs ('(', (v, Some t)) else - match t with - | CNotation(_, "( _ in _ )", ([t1; t2], [], [])) -> - (try match glob t1, glob t2 with - | (r1, None), (r2, None) -> encode k "In" [r1;r2] - | (r1, Some _), (r2, Some _) when isCVar t1 -> - encode k "In" [r1; r2; bind_in t1 t2] - | (r1, Some _), (r2, Some _) -> encode k "In" [r1; r2] - | _ -> Errors.anomaly (str"where are we?") - with _ when isCVar t1 -> encode k "In" [bind_in t1 t2]) - | CNotation(_, "( _ in _ in _ )", ([t1; t2; t3], [], [])) -> - check_var t2; encode k "In" [fst (glob t1); bind_in t2 t3] - | CNotation(_, "( _ as _ )", ([t1; t2], [], [])) -> - encode k "As" [fst (glob t1); fst (glob t2)] - | CNotation(_, "( _ as _ in _ )", ([t1; t2; t3], [], [])) -> - check_var t2; encode k "As" [fst (glob t1); bind_in t2 t3] - | _ -> glob_ssrterm gs orig -;; - -let interp_ssrterm _ gl t = Tacmach.project gl, t - -ARGUMENT EXTEND cpattern - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "Qed" constr(c) ] -> [ mk_lterm c ] -END - -let (!@) = Compat.to_coqloc - -GEXTEND Gram - GLOBAL: cpattern; - cpattern: [[ k = ssrtermkind; c = constr -> - let pattern = mk_term k c in - if loc_ofCG pattern <> !@loc && k = '(' then mk_term 'x' c else pattern ]]; -END - -ARGUMENT EXTEND lcpattern - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "Qed" lconstr(c) ] -> [ mk_lterm c ] -END - -GEXTEND Gram - GLOBAL: lcpattern; - lcpattern: [[ k = ssrtermkind; c = lconstr -> - let pattern = mk_term k c in - if loc_ofCG pattern <> !@loc && k = '(' then mk_term 'x' c else pattern ]]; -END - -let interp_pattern ist gl red redty = - pp(lazy(str"interpreting: " ++ pr_pattern red)); - let xInT x y = X_In_T(x,y) and inXInT x y = In_X_In_T(x,y) in - let inT x = In_T x and eInXInT e x t = E_In_X_In_T(e,x,t) in - let eAsXInT e x t = E_As_X_In_T(e,x,t) in - let mkG ?(k=' ') x = k,(x,None) in - let decode t f g = - try match (pf_intern_term ist gl t) with - | GCast(_,GHole _,CastConv(GLambda(_,Name x,_,_,c))) -> f x (' ',(c,None)) - | it -> g t with _ -> g t in - let decodeG t f g = decode (mkG t) f g in - let bad_enc id _ = Errors.anomaly (str"bad encoding for pattern "++str id) in - let cleanup_XinE h x rp sigma = - let h_k = match kind_of_term h with Evar (k,_) -> k | _ -> assert false in - let to_clean, update = (* handle rename if x is already used *) - let ctx = pf_hyps gl in - let len = Context.named_context_length ctx in - let name = ref None in - try ignore(Context.lookup_named x ctx); (name, fun k -> - if !name = None then - let nctx = Evd.evar_context (Evd.find sigma k) in - let nlen = Context.named_context_length nctx in - if nlen > len then begin - name := Some (pi1 (List.nth nctx (nlen - len - 1))) - end) - with Not_found -> ref (Some x), fun _ -> () in - let sigma0 = project gl in - let new_evars = - let rec aux acc t = match kind_of_term t with - | Evar (k,_) -> - if k = h_k || List.mem k acc || Evd.mem sigma0 k then acc else - (update k; k::acc) - | _ -> fold_constr aux acc t in - aux [] (Evarutil.nf_evar sigma rp) in - let sigma = - List.fold_left (fun sigma e -> - if Evd.is_defined sigma e then sigma else (* clear may be recursiv *) - let name = Option.get !to_clean in - pp(lazy(pr_id name)); - try snd(Logic.prim_refiner (Proof_type.Thin [name]) sigma e) - with Evarutil.ClearDependencyError _ -> sigma) - sigma new_evars in - sigma in - let red = match red with - | T(k,(GCast (_,GHole _,(CastConv(GLambda (_,Name id,_,_,t)))),None)) - when let id = string_of_id id in let len = String.length id in - (len > 8 && String.sub id 0 8 = "_ssrpat_") -> - let id = string_of_id id in let len = String.length id in - (match String.sub id 8 (len - 8), t with - | "In", GApp(_, _, [t]) -> decodeG t xInT (fun x -> T x) - | "In", GApp(_, _, [e; t]) -> decodeG t (eInXInT (mkG e)) (bad_enc id) - | "In", GApp(_, _, [e; t; e_in_t]) -> - decodeG t (eInXInT (mkG e)) - (fun _ -> decodeG e_in_t xInT (fun _ -> assert false)) - | "As", GApp(_, _, [e; t]) -> decodeG t (eAsXInT (mkG e)) (bad_enc id) - | _ -> bad_enc id ()) - | T t -> decode t xInT (fun x -> T x) - | In_T t -> decode t inXInT inT - | X_In_T (e,t) -> decode t (eInXInT e) (fun x -> xInT (id_of_Cterm e) x) - | In_X_In_T (e,t) -> inXInT (id_of_Cterm e) t - | E_In_X_In_T (e,x,rp) -> eInXInT e (id_of_Cterm x) rp - | E_As_X_In_T (e,x,rp) -> eAsXInT e (id_of_Cterm x) rp in - pp(lazy(str"decoded as: " ++ pr_pattern_w_ids red)); - let red = match redty with None -> red | Some ty -> let ty = ' ', ty in - match red with - | T t -> T (combineCG t ty (mkCCast (loc_ofCG t)) mkRCast) - | X_In_T (x,t) -> - let ty = pf_intern_term ist gl ty in - E_As_X_In_T (mkG (mkRCast mkRHole ty), x, t) - | E_In_X_In_T (e,x,t) -> - let ty = mkG (pf_intern_term ist gl ty) in - E_In_X_In_T (combineCG e ty (mkCCast (loc_ofCG t)) mkRCast, x, t) - | E_As_X_In_T (e,x,t) -> - let ty = mkG (pf_intern_term ist gl ty) in - E_As_X_In_T (combineCG e ty (mkCCast (loc_ofCG t)) mkRCast, x, t) - | red -> red in - pp(lazy(str"typed as: " ++ pr_pattern_w_ids red)); - let mkXLetIn loc x (a,(g,c)) = match c with - | Some b -> a,(g,Some (mkCLetIn loc x (mkCHole loc) b)) - | None -> a,(GLetIn (loc,x,(GHole (loc, BinderType x, IntroAnonymous, None)), g), None) in - match red with - | T t -> let sigma, t = interp_term ist gl t in sigma, T t - | In_T t -> let sigma, t = interp_term ist gl t in sigma, In_T t - | X_In_T (x, rp) | In_X_In_T (x, rp) -> - let mk x p = match red with X_In_T _ -> X_In_T(x,p) | _ -> In_X_In_T(x,p) in - let rp = mkXLetIn dummy_loc (Name x) rp in - let sigma, rp = interp_term ist gl rp in - let _, h, _, rp = destLetIn rp in - let sigma = cleanup_XinE h x rp sigma in - let rp = subst1 h (Evarutil.nf_evar sigma rp) in - sigma, mk h rp - | E_In_X_In_T(e, x, rp) | E_As_X_In_T (e, x, rp) -> - let mk e x p = - match red with E_In_X_In_T _ ->E_In_X_In_T(e,x,p)|_->E_As_X_In_T(e,x,p) in - let rp = mkXLetIn dummy_loc (Name x) rp in - let sigma, rp = interp_term ist gl rp in - let _, h, _, rp = destLetIn rp in - let sigma = cleanup_XinE h x rp sigma in - let rp = subst1 h (Evarutil.nf_evar sigma rp) in - let sigma, e = interp_term ist (re_sig (sig_it gl) sigma) e in - sigma, mk e h rp -;; -let interp_cpattern ist gl red redty = interp_pattern ist gl (T red) redty;; -let interp_rpattern ist gl red = interp_pattern ist gl red None;; - -(* The full occurrence set *) -let noindex = Some(false,[]) - -(* calls do_subst on every sub-term identified by (pattern,occ) *) -let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst = - let fs sigma x = Reductionops.nf_evar sigma x in - let pop_evar sigma e p = - let { Evd.evar_body = e_body } as e_def = Evd.find sigma e in - let e_body = match e_body with Evar_defined c -> c - | _ -> errorstrm (str "Matching the pattern " ++ pr_constr p ++ - str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++ - str "Does the variable bound by the \"in\" construct occur "++ - str "in the pattern?") in - let sigma = - Evd.add (Evd.remove sigma e) e {e_def with Evd.evar_body = Evar_empty} in - sigma, e_body in - let ex_value hole = - match kind_of_term hole with Evar (e,_) -> e | _ -> assert false in - let mk_upat_for ?hack env sigma0 (sigma, t) ?(p=t) ok = - let sigma,pat= mk_tpattern ?hack env sigma0 (sigma,p) ok L2R (fs sigma t) in - sigma, [pat] in - match pattern with - | None -> do_subst env0 concl0 concl0 1 - | Some (sigma, (T rp | In_T rp)) -> - let rp = fs sigma rp in - let ise = create_evar_defs sigma in - let occ = match pattern with Some (_, T _) -> occ | _ -> noindex in - let rp = mk_upat_for env0 sigma0 (ise, rp) all_ok in - let find_T, end_T = mk_tpattern_matcher ?raise_NoMatch sigma0 occ rp in - let concl = find_T env0 concl0 1 do_subst in - let _ = end_T () in - concl - | Some (sigma, (X_In_T (hole, p) | In_X_In_T (hole, p))) -> - let p = fs sigma p in - let occ = match pattern with Some (_, X_In_T _) -> occ | _ -> noindex in - let ex = ex_value hole in - let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in - let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in - (* we start from sigma, so hole is considered a rigid head *) - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher ?raise_NoMatch sigma occ holep in - let concl = find_T env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h - (fun env _ -> do_subst env e_body))) in - let _ = end_X () in let _ = end_T () in - concl - | Some (sigma, E_In_X_In_T (e, hole, p)) -> - let p, e = fs sigma p, fs sigma e in - let ex = ex_value hole in - let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in - let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher sigma noindex holep in - let re = mk_upat_for env0 sigma0 (sigma, e) all_ok in - let find_E, end_E = mk_tpattern_matcher ?raise_NoMatch sigma0 occ re in - let concl = find_T env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h (fun env c _ h -> - find_E env e_body h do_subst))) in - let _ = end_E () in let _ = end_X () in let _ = end_T () in - concl - | Some (sigma, E_As_X_In_T (e, hole, p)) -> - let p, e = fs sigma p, fs sigma e in - let ex = ex_value hole in - let rp = - let e_sigma = unify_HO env0 sigma hole e in - e_sigma, fs e_sigma p in - let rp = mk_upat_for ~hack:true env0 sigma0 rp all_ok in - let find_TE, end_TE = mk_tpattern_matcher sigma0 noindex rp in - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher sigma occ holep in - let concl = find_TE env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h (fun env c _ h -> - let e_sigma = unify_HO env sigma e_body e in - let e_body = fs e_sigma e in - do_subst env e_body e_body h))) in - let _ = end_X () in let _ = end_TE () in - concl -;; - -let redex_of_pattern ?(resolve_typeclasses=false) env (sigma, p) = - let e = match p with - | In_T _ | In_X_In_T _ -> Errors.anomaly (str"pattern without redex") - | T e | X_In_T (e, _) | E_As_X_In_T (e, _, _) | E_In_X_In_T (e, _, _) -> e in - let sigma = - if not resolve_typeclasses then sigma - else Typeclasses.resolve_typeclasses ~fail:false env sigma in - Reductionops.nf_evar sigma e, Evd.evar_universe_context sigma - -let fill_occ_pattern ?raise_NoMatch env sigma cl pat occ h = - let find_R, conclude = let r = ref None in - (fun env c _ h' -> do_once r (fun () -> c, Evd.empty_evar_universe_context); - mkRel (h'+h-1)), - (fun _ -> if !r = None then redex_of_pattern env pat else assert_done r) in - let cl = eval_pattern ?raise_NoMatch env sigma cl (Some pat) occ find_R in - let e = conclude cl in - e, cl -;; - -(* clenup interface for external use *) -let mk_tpattern ?p_origin env sigma0 sigma_t f dir c = - mk_tpattern ?p_origin env sigma0 sigma_t f dir c -;; - -let pf_fill_occ env concl occ sigma0 p (sigma, t) ok h = - let ise = create_evar_defs sigma in - let ise, u = mk_tpattern env sigma0 (ise,t) ok L2R p in - let find_U, end_U = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in - let concl = find_U env concl h (fun _ _ _ -> mkRel) in - let rdx, _, (sigma, uc, p) = end_U () in - sigma, uc, p, concl, rdx - -let fill_occ_term env cl occ sigma0 (sigma, t) = - try - let sigma',uc,t',cl,_= pf_fill_occ env cl occ sigma0 t (sigma, t) all_ok 1 in - if sigma' != sigma0 then Errors.error "matching impacts evars" - else cl, (Evd.merge_universe_context sigma' uc, t') - with NoMatch -> try - let sigma', uc, t' = - unif_end env sigma0 (create_evar_defs sigma) t (fun _ -> true) in - if sigma' != sigma0 then raise NoMatch - else cl, (Evd.merge_universe_context sigma' uc, t') - with _ -> - errorstrm (str "partial term " ++ pr_constr_pat t - ++ str " does not match any subterm of the goal") - -let pf_fill_occ_term gl occ t = - let sigma0 = project gl and env = pf_env gl and concl = pf_concl gl in - let cl,(_,t) = fill_occ_term env concl occ sigma0 t in - cl, t - -let cpattern_of_id id = ' ', (GRef (dummy_loc, VarRef id, None), None) - -let is_wildcard = function - | _,(_,Some (CHole _)|GHole _,None) -> true - | _ -> false - -(* "ssrpattern" *) -let pr_ssrpatternarg _ _ _ cpat = pr_rpattern cpat - -ARGUMENT EXTEND ssrpatternarg - TYPED AS rpattern - PRINTED BY pr_ssrpatternarg -| [ "[" rpattern(pat) "]" ] -> [ pat ] -END - -let pf_merge_uc uc gl = - re_sig (sig_it gl) (Evd.merge_universe_context (project gl) uc) - -let ssrpatterntac ist arg gl = - let pat = interp_rpattern ist gl arg in - let sigma0 = project gl in - let concl0 = pf_concl gl in - let (t, uc), concl_x = - fill_occ_pattern (Global.env()) sigma0 concl0 pat noindex 1 in - let tty = pf_type_of gl t in - let concl = mkLetIn (Name (id_of_string "toto"), t, tty, concl_x) in - Proofview.V82.of_tactic (convert_concl concl DEFAULTcast) gl - -TACTIC EXTEND ssrat -| [ "ssrpattern" ssrpatternarg(arg) ] -> [ Proofview.V82.tactic (ssrpatterntac ist arg) ] -END - -let ssrinstancesof ist arg gl = - let ok rhs lhs ise = true in -(* not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs)) in *) - let env, sigma, concl = pf_env gl, project gl, pf_concl gl in - let sigma0, cpat = interp_cpattern ist gl arg None in - let pat = match cpat with T x -> x | _ -> errorstrm (str"Not supported") in - let etpat, tpat = mk_tpattern env sigma (sigma0,pat) (ok pat) L2R pat in - let find, conclude = - mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true - sigma None (etpat,[tpat]) in - let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in - ppnl (str"BEGIN INSTANCES"); - try - while true do - ignore(find env concl 1 ~k:print) - done; raise NoMatch - with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl - -TACTIC EXTEND ssrinstoftpat -| [ "ssrinstancesoftpat" cpattern(arg) ] -> [ Proofview.V82.tactic (ssrinstancesof ist arg) ] -END - -(* We wipe out all the keywords generated by the grammar rules we defined. *) -(* The user is supposed to Require Import ssreflect or Require ssreflect *) -(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *) -(* consequence the extended ssreflect grammar. *) -let () = Lexer.unfreeze frozen_lexer ;; - -(* vim: set filetype=ocaml foldmethod=marker: *) diff --git a/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.mli b/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.mli deleted file mode 100644 index e8b4d81..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta1/ssrmatching.mli +++ /dev/null @@ -1,239 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -open Genarg -open Tacexpr -open Environ -open Evd -open Proof_type -open Term - -(** ******** Small Scale Reflection pattern matching facilities ************* *) - -(** Pattern parsing *) - -(** The type of context patterns, the patterns of the [set] tactic and - [:] tactical. These are patterns that identify a precise subterm. *) -type cpattern -val pr_cpattern : cpattern -> Pp.std_ppcmds - -(** CS cpattern: (f _), (X in t), (t in X in t), (t as X in t) *) -val cpattern : cpattern Pcoq.Gram.entry -val wit_cpattern : cpattern uniform_genarg_type - -(** OS cpattern: f _, (X in t), (t in X in t), (t as X in t) *) -val lcpattern : cpattern Pcoq.Gram.entry -val wit_lcpattern : cpattern uniform_genarg_type - -(** The type of rewrite patterns, the patterns of the [rewrite] tactic. - These patterns also include patterns that identify all the subterms - of a context (i.e. "in" prefix) *) -type rpattern -val pr_rpattern : rpattern -> Pp.std_ppcmds - -(** OS rpattern: f _, in t, X in t, in X in t, t in X in t, t as X in t *) -val rpattern : rpattern Pcoq.Gram.entry -val wit_rpattern : rpattern uniform_genarg_type - -(** Pattern interpretation and matching *) - -exception NoMatch -exception NoProgress - -(** AST for [rpattern] (and consequently [cpattern]) *) -type ('ident, 'term) ssrpattern = - | T of 'term - | In_T of 'term - | X_In_T of 'ident * 'term - | In_X_In_T of 'ident * 'term - | E_In_X_In_T of 'term * 'ident * 'term - | E_As_X_In_T of 'term * 'ident * 'term - -type pattern = evar_map * (constr, constr) ssrpattern -val pp_pattern : pattern -> Pp.std_ppcmds - -(** Extracts the redex and applies to it the substitution part of the pattern. - @raise Anomaly if called on [In_T] or [In_X_In_T] *) -val redex_of_pattern : - ?resolve_typeclasses:bool -> env -> pattern -> - constr Evd.in_evar_universe_context - -(** [interp_rpattern ise gl rpat] "internalizes" and "interprets" [rpat] - in the current [Ltac] interpretation signature [ise] and tactic input [gl]*) -val interp_rpattern : - Tacinterp.interp_sign -> goal Tacmach.sigma -> - rpattern -> - pattern - -(** [interp_cpattern ise gl cpat ty] "internalizes" and "interprets" [cpat] - in the current [Ltac] interpretation signature [ise] and tactic input [gl]. - [ty] is an optional type for the redex of [cpat] *) -val interp_cpattern : - Tacinterp.interp_sign -> goal Tacmach.sigma -> - cpattern -> glob_constr_and_expr option -> - pattern - -(** The set of occurrences to be matched. The boolean is set to true - * to signal the complement of this set (i.e. {-1 3}) *) -type occ = (bool * int list) option - -(** [subst e p t i]. [i] is the number of binders - traversed so far, [p] the term from the pattern, [t] the matched one *) -type subst = env -> constr -> constr -> int -> constr - -(** [eval_pattern b env sigma t pat occ subst] maps [t] calling [subst] on every - [occ] occurrence of [pat]. The [int] argument is the number of - binders traversed. If [pat] is [None] then then subst is called on [t]. - [t] must live in [env] and [sigma], [pat] must have been interpreted in - (an extension of) [sigma]. - @raise NoMatch if [pat] has no occurrence and [b] is [true] (default [false]) - @return [t] where all [occ] occurrences of [pat] have been mapped using - [subst] *) -val eval_pattern : - ?raise_NoMatch:bool -> - env -> evar_map -> constr -> - pattern option -> occ -> subst -> - constr - -(** [fill_occ_pattern b env sigma t pat occ h] is a simplified version of - [eval_pattern]. - It replaces all [occ] occurrences of [pat] in [t] with Rel [h]. - [t] must live in [env] and [sigma], [pat] must have been interpreted in - (an extension of) [sigma]. - @raise NoMatch if [pat] has no occurrence and [b] is [true] (default [false]) - @return the instance of the redex of [pat] that was matched and [t] - transformed as described above. *) -val fill_occ_pattern : - ?raise_NoMatch:bool -> - env -> evar_map -> constr -> - pattern -> occ -> int -> - constr Evd.in_evar_universe_context * constr - -(** *************************** Low level APIs ****************************** *) - -(* The primitive matching facility. It matches of a term with holes, like - the T pattern above, and calls a continuation on its occurrences. *) - -type ssrdir = L2R | R2L -val pr_dir_side : ssrdir -> Pp.std_ppcmds - -(** a pattern for a term with wildcards *) -type tpattern - -(** [mk_tpattern env sigma0 sigma_p ok p_origin dir t] compiles a term [t] - living in [env] [sigma] (an extension of [sigma0]) intro a [tpattern]. - The [tpattern] can hold a (proof) term [p] and a diction [dir]. The [ok] - callback is used to filter occurrences. - @return the compiled [tpattern] and its [evar_map] - @raise UserEerror is the pattern is a wildcard *) -val mk_tpattern : - ?p_origin:ssrdir * constr -> - env -> evar_map -> - evar_map * constr -> - (constr -> evar_map -> bool) -> - ssrdir -> constr -> - evar_map * tpattern - -(** [findP env t i k] is a stateful function that finds the next occurrence - of a tpattern and calls the callback [k] to map the subterm matched. - The [int] argument passed to [k] is the number of binders traversed so far - plus the initial value [i]. - @return [t] where the subterms identified by the selected occurrences of - the patter have been mapped using [k] - @raise NoMatch if the raise_NoMatch flag given to [mk_tpattern_matcher] is - [true] and if the pattern did not match - @raise UserEerror if the raise_NoMatch flag given to [mk_tpattern_matcher] is - [false] and if the pattern did not match *) -type find_P = - env -> constr -> int -> k:subst -> constr - -(** [conclude ()] asserts that all mentioned ocurrences have been visited. - @return the instance of the pattern, the evarmap after the pattern - instantiation, the proof term and the ssrdit stored in the tpattern - @raise UserEerror if too many occurrences were specified *) -type conclude = - unit -> constr * ssrdir * (evar_map * Evd.evar_universe_context * constr) - -(** [mk_tpattern_matcher b o sigma0 occ sigma_tplist] creates a pair - a function [find_P] and [conclude] with the behaviour explained above. - The flag [b] (default [false]) changes the error reporting behaviour - of [find_P] if none of the [tpattern] matches. The argument [o] can - be passed to tune the [UserError] eventually raised (useful if the - pattern is coming from the LHS/RHS of an equation) *) -val mk_tpattern_matcher : - ?all_instances:bool -> - ?raise_NoMatch:bool -> - ?upats_origin:ssrdir * constr -> - evar_map -> occ -> evar_map * tpattern list -> - find_P * conclude - -(** Example of [mk_tpattern_matcher] to implement - [rewrite \{occ\}\[in t\]rules]. - It first matches "in t" (called [pat]), then in all matched subterms - it matches the LHS of the rules using [find_R]. - [concl0] is the initial goal, [concl] will be the goal where some terms - are replaced by a De Bruijn index. The [rw_progress] extra check - selects only occurrences that are not rewritten to themselves (e.g. - an occurrence "x + x" rewritten with the commutativity law of addition - is skipped) {[ - let find_R, conclude = match pat with - | Some (_, In_T _) -> - let aux (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env0 sigma0 (sigma, r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left aux (r_sigma, []) rules in - let find_R, end_R = mk_tpattern_matcher sigma0 occ rpats in - find_R ~k:(fun _ _ h -> mkRel h), - fun cl -> let rdx, d, r = end_R () in (d,r),rdx - | _ -> ... in - let concl = eval_pattern env0 sigma0 concl0 pat occ find_R in - let (d, r), rdx = conclude concl in ]} *) - -(* convenience shortcut: [pf_fill_occ_term gl occ (sigma,t)] returns - * the conclusion of [gl] where [occ] occurrences of [t] have been replaced - * by [Rel 1] and the instance of [t] *) -val pf_fill_occ_term : - goal Tacmach.sigma -> occ -> evar_map * constr -> constr * constr - -(* It may be handy to inject a simple term into the first form of cpattern *) -val cpattern_of_term : char * glob_constr_and_expr -> cpattern - -(** Helpers to make stateful closures. Example: a [find_P] function may be - called many times, but the pattern instantiation phase is performed only the - first time. The corresponding [conclude] has to return the instantiated - pattern redex. Since it is up to [find_P] to raise [NoMatch] if the pattern - has no instance, [conclude] considers it an anomaly if the pattern did - not match *) - -(** [do_once r f] calls [f] and updates the ref only once *) -val do_once : 'a option ref -> (unit -> 'a) -> unit -(** [assert_done r] return the content of r. @raise Anomaly is r is [None] *) -val assert_done : 'a option ref -> 'a - -(** Very low level APIs. - these are calls to evarconv's [the_conv_x] followed by - [consider_remaining_unif_problems] and [resolve_typeclasses]. - In case of failure they raise [NoMatch] *) - -val unify_HO : env -> evar_map -> constr -> constr -> evar_map -val pf_unify_HO : goal Tacmach.sigma -> constr -> constr -> goal Tacmach.sigma - -(** Some more low level functions needed to implement the full SSR language - on top of the former APIs *) -val tag_of_cpattern : cpattern -> char -val loc_of_cpattern : cpattern -> Loc.t -val id_of_cpattern : cpattern -> Names.variable option -val is_wildcard : cpattern -> bool -val cpattern_of_id : Names.variable -> cpattern -val cpattern_of_id : Names.variable -> cpattern -val pr_constr_pat : constr -> Pp.std_ppcmds -val pf_merge_uc : Evd.evar_universe_context -> goal Evd.sigma -> goal Evd.sigma - -(* One can also "Set SsrMatchingDebug" from a .v *) -val debug : bool -> unit - -(* One should delimit a snippet with "Set SsrMatchingProfiling" and - * "Unset SsrMatchingProfiling" to get timings *) -val profile : bool -> unit - -(* eof *) diff --git a/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.ml4 b/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.ml4 deleted file mode 100644 index f598c21..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.ml4 +++ /dev/null @@ -1,6164 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -(* This line is read by the Makefile's dist target: do not remove. *) -DECLARE PLUGIN "ssreflect" -let ssrversion = "1.5";; -let ssrAstVersion = 1;; -let () = Mltop.add_known_plugin (fun () -> - if Flags.is_verbose () && not !Flags.batch_mode then begin - Printf.printf "\nSmall Scale Reflection version %s loaded.\n" ssrversion; - Printf.printf "Copyright 2005-2014 Microsoft Corporation and INRIA.\n"; - Printf.printf "Distributed under the terms of the CeCILL-B license.\n\n" - end; - (* Disable any semantics associated with bullets *) - Goptions.set_string_option_value_gen - (Some false) ["Bullet";"Behavior"] "None") - "ssreflect" -;; - -(* Defining grammar rules with "xx" in it automatically declares keywords too, - * we thus save the lexer to restore it at the end of the file *) -let frozen_lexer = Lexer.freeze () ;; - -(*i camlp4use: "pa_extend.cmo" i*) -(*i camlp4deps: "grammar/grammar.cma" i*) - -open Names -open Pp -open Pcoq -open Genarg -open Stdarg -open Constrarg -open Term -open Vars -open Context -open Topconstr -open Libnames -open Tactics -open Tacticals -open Termops -open Namegen -open Recordops -open Tacmach -open Coqlib -open Glob_term -open Util -open Evd -open Extend -open Goptions -open Tacexpr -open Tacinterp -open Pretyping -open Constr -open Tactic -open Extraargs -open Ppconstr -open Printer - -open Globnames -open Misctypes -open Decl_kinds -open Evar_kinds -open Constrexpr -open Constrexpr_ops -open Notation_term -open Notation_ops -open Locus -open Locusops - -open Ssrmatching - - -(* Tentative patch from util.ml *) - -let array_fold_right_from n f v a = - let rec fold n = - if n >= Array.length v then a else f v.(n) (fold (succ n)) - in - fold n - -let array_app_tl v l = - if Array.length v = 0 then invalid_arg "array_app_tl"; - array_fold_right_from 1 (fun e l -> e::l) v l - -let array_list_of_tl v = - if Array.length v = 0 then invalid_arg "array_list_of_tl"; - array_fold_right_from 1 (fun e l -> e::l) v [] - -(* end patch *) - -module Intset = Evar.Set - -type loc = Loc.t -let dummy_loc = Loc.ghost -let errorstrm = Errors.errorlabstrm "ssreflect" -let loc_error loc msg = Errors.user_err_loc (loc, msg, str msg) -let anomaly s = Errors.anomaly (str s) - -(** look up a name in the ssreflect internals module *) -let ssrdirpath = make_dirpath [id_of_string "ssreflect"] -let ssrqid name = make_qualid ssrdirpath (id_of_string name) -let ssrtopqid name = make_short_qualid (id_of_string name) -let locate_reference qid = - Smartlocate.global_of_extended_global (Nametab.locate_extended qid) -let mkSsrRef name = - try locate_reference (ssrqid name) with Not_found -> - try locate_reference (ssrtopqid name) with Not_found -> - Errors.error "Small scale reflection library not loaded" -let mkSsrRRef name = GRef (dummy_loc, mkSsrRef name,None), None -let mkSsrConst name env sigma = - Evd.fresh_global env sigma (mkSsrRef name) -let pf_mkSsrConst name gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, t = mkSsrConst name env sigma in - t, re_sig it sigma -let pf_fresh_global name gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma,t = Evd.fresh_global env sigma name in - t, re_sig it sigma - -(** Ssreflect load check. *) - -(* To allow ssrcoq to be fully compatible with the "plain" Coq, we only *) -(* turn on its incompatible features (the new rewrite syntax, and the *) -(* reserved identifiers) when the theory library (ssreflect.v) has *) -(* has actually been required, or is being defined. Because this check *) -(* needs to be done often (for each identifier lookup), we implement *) -(* some caching, repeating the test only when the environment changes. *) -(* We check for protect_term because it is the first constant loaded; *) -(* ssr_have would ultimately be a better choice. *) -let ssr_loaded = Summary.ref ~name:"SSR:loaded" false -let is_ssr_loaded () = - !ssr_loaded || - (if Lexer.is_keyword "SsrSyntax_is_Imported" then ssr_loaded:=true; - !ssr_loaded) - -(* 0 cost pp function. Active only if env variable SSRDEBUG is set *) -(* or if SsrDebug is Set *) -let pp_ref = ref (fun _ -> ()) -let ssr_pp s = pperrnl (str"SSR: "++Lazy.force s) -let _ = try ignore(Sys.getenv "SSRDEBUG"); pp_ref := ssr_pp with Not_found -> () -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect debugging"; - Goptions.optkey = ["SsrDebug"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !pp_ref == ssr_pp); - Goptions.optwrite = (fun b -> - Ssrmatching.debug b; - if b then pp_ref := ssr_pp else pp_ref := fun _ -> ()) } -let pp s = !pp_ref s - -(** Utils {{{ *****************************************************************) -let env_size env = List.length (Environ.named_context env) -let safeDestApp c = - match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |] -let get_index = function ArgArg i -> i | _ -> - anomaly "Uninterpreted index" -(* Toplevel constr must be globalized twice ! *) -let glob_constr ist genv = function - | _, Some ce -> - let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in - let ltacvars = { - Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in - Constrintern.intern_gen WithoutTypeConstraint ~ltacvars genv ce - | rc, None -> rc - -(* Term printing utilities functions for deciding bracketing. *) -let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")") -(* String lexing utilities *) -let skip_wschars s = - let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop -let skip_numchars s = - let rec loop i = match s.[i] with '0'..'9' -> loop (i + 1) | _ -> i in loop -(* We also guard characters that might interfere with the ssreflect *) -(* tactic syntax. *) -let guard_term ch1 s i = match s.[i] with - | '(' -> false - | '{' | '/' | '=' -> true - | _ -> ch1 = '(' -(* The call 'guard s i' should return true if the contents of s *) -(* starting at i need bracketing to avoid ambiguities. *) -let pr_guarded guard prc c = - msg_with Format.str_formatter (prc c); - let s = Format.flush_str_formatter () ^ "$" in - if guard s (skip_wschars s 0) then pr_paren prc c else prc c -(* More sensible names for constr printers *) -let prl_constr = pr_lconstr -let pr_constr = pr_constr -let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c -let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c -let prl_constr_expr = pr_lconstr_expr -let pr_constr_expr = pr_constr_expr -let prl_glob_constr_and_expr = function - | _, Some c -> prl_constr_expr c - | c, None -> prl_glob_constr c -let pr_glob_constr_and_expr = function - | _, Some c -> pr_constr_expr c - | c, None -> pr_glob_constr c -let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c -let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c - -(** Adding a new uninterpreted generic argument type *) -let add_genarg tag pr = - let wit = Genarg.make0 None tag in - let glob ist x = (ist, x) in - let subst _ x = x in - let interp ist gl x = (gl.Evd.sigma, x) in - let gen_pr _ _ _ = pr in - let () = Genintern.register_intern0 wit glob in - let () = Genintern.register_subst0 wit subst in - let () = Geninterp.register_interp0 wit interp in - Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr; - wit - -(** Constructors for cast type *) -let dC t = CastConv t - -(** Constructors for constr_expr *) -let mkCProp loc = CSort (loc, GProp) -let mkCType loc = CSort (loc, GType []) -let mkCVar loc id = CRef (Ident (loc, id),None) -let isCVar = function CRef (Ident _,_) -> true | _ -> false -let destCVar = function CRef (Ident (_, id),_) -> id | _ -> - anomaly "not a CRef" -let rec mkCHoles loc n = - if n <= 0 then [] else CHole (loc, None, IntroAnonymous, None) :: mkCHoles loc (n - 1) -let mkCHole loc = CHole (loc, None, IntroAnonymous, None) -let rec isCHoles = function CHole _ :: cl -> isCHoles cl | cl -> cl = [] -let mkCExplVar loc id n = - CAppExpl (loc, (None, Ident (loc, id), None), mkCHoles loc n) -let mkCLambda loc name ty t = - CLambdaN (loc, [[loc, name], Default Explicit, ty], t) -let mkCLetIn loc name bo t = - CLetIn (loc, (loc, name), bo, t) -let mkCArrow loc ty t = - CProdN (loc, [[dummy_loc,Anonymous], Default Explicit, ty], t) -let mkCCast loc t ty = CCast (loc,t, dC ty) -(** Constructors for rawconstr *) -let mkRHole = GHole (dummy_loc, InternalHole, IntroAnonymous, None) -let rec mkRHoles n = if n > 0 then mkRHole :: mkRHoles (n - 1) else [] -let rec isRHoles = function GHole _ :: cl -> isRHoles cl | cl -> cl = [] -let mkRApp f args = if args = [] then f else GApp (dummy_loc, f, args) -let mkRVar id = GRef (dummy_loc, VarRef id,None) -let mkRltacVar id = GVar (dummy_loc, id) -let mkRCast rc rt = GCast (dummy_loc, rc, dC rt) -let mkRType = GSort (dummy_loc, GType []) -let mkRProp = GSort (dummy_loc, GProp) -let mkRArrow rt1 rt2 = GProd (dummy_loc, Anonymous, Explicit, rt1, rt2) -let mkRConstruct c = GRef (dummy_loc, ConstructRef c,None) -let mkRInd mind = GRef (dummy_loc, IndRef mind,None) -let mkRLambda n s t = GLambda (dummy_loc, n, Explicit, s, t) - -(** Constructors for constr *) -let pf_e_type_of gl t = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, ty = Typing.e_type_of env sigma t in - re_sig it sigma, ty - -let mkAppRed f c = match kind_of_term f with -| Lambda (_, _, b) -> subst1 c b -| _ -> mkApp (f, [|c|]) - -let mkProt t c gl = - let prot, gl = pf_mkSsrConst "protect_term" gl in - mkApp (prot, [|t; c|]), gl - -let mkRefl t c gl = - let refl, gl = pf_fresh_global (build_coq_eq_data()).refl gl in - mkApp (refl, [|t; c|]), gl - - -(* Application to a sequence of n rels (for building eta-expansions). *) -(* The rel indices decrease down to imin (inclusive), unless n < 0, *) -(* in which case they're incresing (from imin). *) -let mkEtaApp c n imin = - if n = 0 then c else - let nargs, mkarg = - if n < 0 then -n, (fun i -> mkRel (imin + i)) else - let imax = imin + n - 1 in n, (fun i -> mkRel (imax - i)) in - mkApp (c, Array.init nargs mkarg) -(* Same, but optimizing head beta redexes *) -let rec whdEtaApp c n = - if n = 0 then c else match kind_of_term c with - | Lambda (_, _, c') -> whdEtaApp c' (n - 1) - | _ -> mkEtaApp (lift n c) n 1 -let mkType () = Universes.new_Type (Lib.cwd ()) - -(* ssrterm conbinators *) -let combineCG t1 t2 f g = match t1, t2 with - | (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None) - | (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2)) - | _, (_, (_, None)) -> anomaly "have: mixed C-G constr" - | _ -> anomaly "have: mixed G-C constr" -let loc_ofCG = function - | (_, (s, None)) -> Glob_ops.loc_of_glob_constr s - | (_, (_, Some s)) -> Constrexpr_ops.constr_loc s - -let mk_term k c = k, (mkRHole, Some c) -let mk_lterm c = mk_term ' ' c - -let map_fold_constr g f ctx acc cstr = - let array_f ctx acc x = let x, acc = f ctx acc x in acc, x in - match kind_of_term cstr with - | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _) -> - cstr, acc - | Proj (x,c) -> - let c', acc = f ctx acc c in - (if c == c' then cstr else mkProj (x,c')), acc - | Cast (c,k, t) -> - let c', acc = f ctx acc c in - let t', acc = f ctx acc t in - (if c==c' && t==t' then cstr else mkCast (c', k, t')), acc - | Prod (na,t,c) -> - let t', acc = f ctx acc t in - let c', acc = f (g (na,None,t) ctx) acc c in - (if t==t' && c==c' then cstr else mkProd (na, t', c')), acc - | Lambda (na,t,c) -> - let t', acc = f ctx acc t in - let c', acc = f (g (na,None,t) ctx) acc c in - (if t==t' && c==c' then cstr else mkLambda (na, t', c')), acc - | LetIn (na,b,t,c) -> - let b', acc = f ctx acc b in - let t', acc = f ctx acc t in - let c', acc = f (g (na,Some b,t) ctx) acc c in - (if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')), acc - | App (c,al) -> - let c', acc = f ctx acc c in - let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in - (if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')), - acc - | Evar (e,al) -> - let acc, al' = CArray.smartfoldmap (array_f ctx) acc al in - (if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')), acc - | Case (ci,p,c,bl) -> - let p', acc = f ctx acc p in - let c', acc = f ctx acc c in - let acc, bl' = CArray.smartfoldmap (array_f ctx) acc bl in - (if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else - mkCase (ci, p', c', bl')), - acc - | Fix (ln,(lna,tl,bl)) -> - let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in - let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in - let acc, bl' = CArray.smartfoldmap (array_f ctx') acc bl in - (if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' - then cstr - else mkFix (ln,(lna,tl',bl'))), acc - | CoFix(ln,(lna,tl,bl)) -> - let acc, tl' = CArray.smartfoldmap (array_f ctx) acc tl in - let ctx' = Array.fold_left2 (fun l na t -> g (na,None,t) l) ctx lna tl in - let acc,bl' = CArray.smartfoldmap (array_f ctx') acc bl in - (if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' - then cstr - else mkCoFix (ln,(lna,tl',bl'))), acc - -let pf_merge_uc_of sigma gl = - let ucst = Evd.evar_universe_context sigma in - pf_merge_uc ucst gl - -(* }}} *) - -(** Profiling {{{ *************************************************************) -type profiler = { - profile : 'a 'b. ('a -> 'b) -> 'a -> 'b; - reset : unit -> unit; - print : unit -> unit } -let profile_now = ref false -let something_profiled = ref false -let profilers = ref [] -let add_profiler f = profilers := f :: !profilers;; -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect profiling"; - Goptions.optkey = ["SsrProfiling"]; - Goptions.optread = (fun _ -> !profile_now); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> - Ssrmatching.profile b; - profile_now := b; - if b then List.iter (fun f -> f.reset ()) !profilers; - if not b then List.iter (fun f -> f.print ()) !profilers) } -let () = - let prof_total = - let init = ref 0.0 in { - profile = (fun f x -> assert false); - reset = (fun () -> init := Unix.gettimeofday ()); - print = (fun () -> if !something_profiled then - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - "total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in - let prof_legenda = { - profile = (fun f x -> assert false); - reset = (fun () -> ()); - print = (fun () -> if !something_profiled then begin - prerr_endline - (Printf.sprintf "!! %39s ---------- --------- --------- ---------" - (String.make 39 '-')); - prerr_endline - (Printf.sprintf "!! %-39s %10s %9s %9s %9s" - "function" "#calls" "total" "max" "average") end) } in - add_profiler prof_legenda; - add_profiler prof_total -;; - -let mk_profiler s = - let total, calls, max = ref 0.0, ref 0, ref 0.0 in - let reset () = total := 0.0; calls := 0; max := 0.0 in - let profile f x = - if not !profile_now then f x else - let before = Unix.gettimeofday () in - try - incr calls; - let res = f x in - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - res - with exc -> - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - raise exc in - let print () = - if !calls <> 0 then begin - something_profiled := true; - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - s !calls !total !max (!total /. (float_of_int !calls))) end in - let prof = { profile = profile; reset = reset; print = print } in - add_profiler prof; - prof -;; -(* }}} *) - -let inVersion = Libobject.declare_object { - (Libobject.default_object "SSRASTVERSION") with - Libobject.load_function = (fun _ (_,v) -> - if v <> ssrAstVersion then Errors.error "Please recompile your .vo files"); - Libobject.classify_function = (fun v -> Libobject.Keep v); -} - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect version"; - Goptions.optkey = ["SsrAstVersion"]; - Goptions.optread = (fun _ -> true); - Goptions.optdepr = false; - Goptions.optwrite = (fun _ -> - Lib.add_anonymous_leaf (inVersion ssrAstVersion)) } - -let tactic_expr = Tactic.tactic_expr -let gallina_ext = Vernac_.gallina_ext -let sprintf = Printf.sprintf -let tactic_mode = G_vernac.tactic_mode - -(** 1. Utilities *) - - -let ssroldreworder = Summary.ref ~name:"SSR:oldreworder" true -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssreflect 1.3 compatibility flag"; - Goptions.optkey = ["SsrOldRewriteGoalsOrder"]; - Goptions.optread = (fun _ -> !ssroldreworder); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssroldreworder := b) } - -let ssrhaveNOtcresolution = ref false - -let inHaveTCResolution = Libobject.declare_object { - (Libobject.default_object "SSRHAVETCRESOLUTION") with - Libobject.cache_function = (fun (_,v) -> ssrhaveNOtcresolution := v); - Libobject.load_function = (fun _ (_,v) -> ssrhaveNOtcresolution := v); - Libobject.classify_function = (fun v -> Libobject.Keep v); -} - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "have type classes"; - Goptions.optkey = ["SsrHave";"NoTCResolution"]; - Goptions.optread = (fun _ -> !ssrhaveNOtcresolution); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> - Lib.add_anonymous_leaf (inHaveTCResolution b)) } - - -(** Primitive parsing to avoid syntax conflicts with basic tactics. *) - -let accept_before_syms syms strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | _ -> raise Stream.Failure - -let accept_before_syms_or_any_id syms strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | Tok.IDENT _ -> () - | _ -> raise Stream.Failure - -let accept_before_syms_or_ids syms ids strm = - match Compat.get_tok (stream_nth 1 strm) with - | Tok.KEYWORD sym when List.mem sym syms -> () - | Tok.IDENT id when List.mem id ids -> () - | _ -> raise Stream.Failure - -(** Pretty-printing utilities *) - -let pr_id = Ppconstr.pr_id -let pr_name = function Name id -> pr_id id | Anonymous -> str "_" -let pr_spc () = str " " -let pr_bar () = Pp.cut() ++ str "|" -let pr_list = prlist_with_sep - -let tacltop = (5,Ppextend.E) - -(** Tactic-level diagnosis *) - -let pf_pr_constr gl = pr_constr_env (pf_env gl) - -let pf_pr_glob_constr gl = pr_glob_constr_env (pf_env gl) - -(* debug *) - -let pf_msg gl = - let ppgl = pr_lconstr_env (pf_env gl) (project gl) (pf_concl gl) in - msgnl (str "goal is " ++ ppgl) - -let msgtac gl = pf_msg gl; tclIDTAC gl - -(** Tactic utilities *) - -let last_goal gls = let sigma, gll = Refiner.unpackage gls in - Refiner.repackage sigma (List.nth gll (List.length gll - 1)) - -let pf_type_id gl t = id_of_string (hdchar (pf_env gl) t) - -let not_section_id id = not (is_section_variable id) - -let is_pf_var c = isVar c && not_section_id (destVar c) - -let pf_ids_of_proof_hyps gl = - let add_hyp (id, _, _) ids = if not_section_id id then id :: ids else ids in - Context.fold_named_context add_hyp (pf_hyps gl) ~init:[] - -let pf_nf_evar gl e = Reductionops.nf_evar (project gl) e - -let pf_partial_solution gl t evl = - let sigma, g = project gl, sig_it gl in - let sigma = Goal.V82.partial_solution sigma g t in - re_sig (List.map (fun x -> (fst (destEvar x))) evl) sigma - -let pf_new_evar gl ty = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, extra = Evarutil.new_evar env sigma ty in - re_sig it sigma, extra - -(* Basic tactics *) - -let convert_concl_no_check t = convert_concl_no_check t DEFAULTcast -let convert_concl t = convert_concl t DEFAULTcast -let reduct_in_concl t = reduct_in_concl (t, DEFAULTcast) -let havetac id c = Proofview.V82.of_tactic (pose_proof (Name id) c) -let settac id c = letin_tac None (Name id) c None -let posetac id cl = Proofview.V82.of_tactic (settac id cl nowhere) -let basecuttac name c gl = - let hd, gl = pf_mkSsrConst name gl in - let t = mkApp (hd, [|c|]) in - let gl, _ = pf_e_type_of gl t in - Proofview.V82.of_tactic (apply t) gl - -(* we reduce head beta redexes *) -let betared env = - Closure.create_clos_infos - (Closure.RedFlags.mkflags [Closure.RedFlags.fBETA]) - env -;; -let introid name = tclTHEN (fun gl -> - let g, env = pf_concl gl, pf_env gl in - match kind_of_term g with - | App (hd, _) when isLambda hd -> - let g = Closure.whd_val (betared env) (Closure.inject g) in - Proofview.V82.of_tactic (convert_concl_no_check g) gl - | _ -> tclIDTAC gl) - (Proofview.V82.of_tactic (intro_mustbe_force name)) -;; - - -(** Name generation {{{ *******************************************************) - -(* Since Coq now does repeated internal checks of its external lexical *) -(* rules, we now need to carve ssreflect reserved identifiers out of *) -(* out of the user namespace. We use identifiers of the form _id_ for *) -(* this purpose, e.g., we "anonymize" an identifier id as _id_, adding *) -(* an extra leading _ if this might clash with an internal identifier. *) -(* We check for ssreflect identifiers in the ident grammar rule; *) -(* when the ssreflect Module is present this is normally an error, *) -(* but we provide a compatibility flag to reduce this to a warning. *) - -let ssr_reserved_ids = Summary.ref ~name:"SSR:idents" true - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "ssreflect identifiers"; - Goptions.optkey = ["SsrIdents"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !ssr_reserved_ids); - Goptions.optwrite = (fun b -> ssr_reserved_ids := b) - } - -let is_ssr_reserved s = - let n = String.length s in n > 2 && s.[0] = '_' && s.[n - 1] = '_' - -let internal_names = ref [] -let add_internal_name pt = internal_names := pt :: !internal_names -let is_internal_name s = List.exists (fun p -> p s) !internal_names - -let ssr_id_of_string loc s = - if is_ssr_reserved s && is_ssr_loaded () then begin - if !ssr_reserved_ids then - loc_error loc ("The identifier " ^ s ^ " is reserved.") - else if is_internal_name s then - msg_warning (str ("Conflict between " ^ s ^ " and ssreflect internal names.")) - else msg_warning (str ( - "The name " ^ s ^ " fits the _xxx_ format used for anonymous variables.\n" - ^ "Scripts with explicit references to anonymous variables are fragile.")) - end; id_of_string s - -let ssr_null_entry = Gram.Entry.of_parser "ssr_null" (fun _ -> ()) - -let (!@) = Compat.to_coqloc - -GEXTEND Gram - GLOBAL: Prim.ident; - Prim.ident: [[ s = IDENT; ssr_null_entry -> ssr_id_of_string !@loc s ]]; -END - -let mk_internal_id s = - let s' = sprintf "_%s_" s in - for i = 1 to String.length s do if s'.[i] = ' ' then s'.[i] <- '_' done; - add_internal_name ((=) s'); id_of_string s' - -let same_prefix s t n = - let rec loop i = i = n || s.[i] = t.[i] && loop (i + 1) in loop 0 - -let skip_digits s = - let n = String.length s in - let rec loop i = if i < n && is_digit s.[i] then loop (i + 1) else i in loop - -let mk_tagged_id t i = id_of_string (sprintf "%s%d_" t i) -let is_tagged t s = - let n = String.length s - 1 and m = String.length t in - m < n && s.[n] = '_' && same_prefix s t m && skip_digits s m = n - -let perm_tag = "_perm_Hyp_" -let _ = add_internal_name (is_tagged perm_tag) -let mk_perm_id = - let salt = ref 1 in - fun () -> salt := !salt mod 10000 + 1; mk_tagged_id perm_tag !salt - -let evar_tag = "_evar_" -let _ = add_internal_name (is_tagged evar_tag) -let mk_evar_name n = Name (mk_tagged_id evar_tag n) -let nb_evar_deps = function - | Name id -> - let s = string_of_id id in - if not (is_tagged evar_tag s) then 0 else - let m = String.length evar_tag in - (try int_of_string (String.sub s m (String.length s - 1 - m)) with _ -> 0) - | _ -> 0 - -let discharged_tag = "_discharged_" -let mk_discharged_id id = - id_of_string (sprintf "%s%s_" discharged_tag (string_of_id id)) -let has_discharged_tag s = - let m = String.length discharged_tag and n = String.length s - 1 in - m < n && s.[n] = '_' && same_prefix s discharged_tag m -let _ = add_internal_name has_discharged_tag -let is_discharged_id id = has_discharged_tag (string_of_id id) - -let wildcard_tag = "_the_" -let wildcard_post = "_wildcard_" -let mk_wildcard_id i = - id_of_string (sprintf "%s%s%s" wildcard_tag (String.ordinal i) wildcard_post) -let has_wildcard_tag s = - let n = String.length s in let m = String.length wildcard_tag in - let m' = String.length wildcard_post in - n < m + m' + 2 && same_prefix s wildcard_tag m && - String.sub s (n - m') m' = wildcard_post && - skip_digits s m = n - m' - 2 -let _ = add_internal_name has_wildcard_tag - -let max_suffix m (t, j0 as tj0) id = - let s = string_of_id id in let n = String.length s - 1 in - let dn = String.length t - 1 - n in let i0 = j0 - dn in - if not (i0 >= m && s.[n] = '_' && same_prefix s t m) then tj0 else - let rec loop i = - if i < i0 && s.[i] = '0' then loop (i + 1) else - if (if i < i0 then skip_digits s i = n else le_s_t i) then s, i else tj0 - and le_s_t i = - let ds = s.[i] and dt = t.[i + dn] in - if ds = dt then i = n || le_s_t (i + 1) else - dt < ds && skip_digits s i = n in - loop m - -let mk_anon_id t gl = - let m, si0, id0 = - let s = ref (sprintf "_%s_" t) in - if is_internal_name !s then s := "_" ^ !s; - let n = String.length !s - 1 in - let rec loop i j = - let d = !s.[i] in if not (is_digit d) then i + 1, j else - loop (i - 1) (if d = '0' then j else i) in - let m, j = loop (n - 1) n in m, (!s, j), id_of_string !s in - let gl_ids = pf_ids_of_hyps gl in - if not (List.mem id0 gl_ids) then id0 else - let s, i = List.fold_left (max_suffix m) si0 gl_ids in - let n = String.length s - 1 in - let rec loop i = - if s.[i] = '9' then (s.[i] <- '0'; loop (i - 1)) else - if i < m then (s.[n] <- '0'; s.[m] <- '1'; s ^ "_") else - (s.[i] <- Char.chr (Char.code s.[i] + 1); s) in - id_of_string (loop (n - 1)) - -(* We must not anonymize context names discharged by the "in" tactical. *) - -let ssr_anon_hyp = "Hyp" - -let anontac (x, _, _) gl = - let id = match x with - | Name id -> - if is_discharged_id id then id else mk_anon_id (string_of_id id) gl - | _ -> mk_anon_id ssr_anon_hyp gl in - introid id gl - -let rec constr_name c = match kind_of_term c with - | Var id -> Name id - | Cast (c', _, _) -> constr_name c' - | Const (cn,_) -> Name (id_of_label (con_label cn)) - | App (c', _) -> constr_name c' - | _ -> Anonymous - -(* }}} *) - -(** Open term to lambda-term coercion {{{ ************************************) - -(* This operation takes a goal gl and an open term (sigma, t), and *) -(* returns a term t' where all the new evars in sigma are abstracted *) -(* with the mkAbs argument, i.e., for mkAbs = mkLambda then there is *) -(* some duplicate-free array args of evars of sigma such that the *) -(* term mkApp (t', args) is convertible to t. *) -(* This makes a useful shorthand for local definitions in proofs, *) -(* i.e., pose succ := _ + 1 means pose succ := fun n : nat => n + 1, *) -(* and, in context of the the 4CT library, pose mid := maps id means *) -(* pose mid := fun d : detaSet => @maps d d (@id (datum d)) *) -(* Note that this facility does not extend to set, which tries *) -(* instead to fill holes by matching a goal subterm. *) -(* The argument to "have" et al. uses product abstraction, e.g. *) -(* have Hmid: forall s, (maps id s) = s. *) -(* stands for *) -(* have Hmid: forall (d : dataSet) (s : seq d), (maps id s) = s. *) -(* We also use this feature for rewrite rules, so that, e.g., *) -(* rewrite: (plus_assoc _ 3). *) -(* will execute as *) -(* rewrite (fun n => plus_assoc n 3) *) -(* i.e., it will rewrite some subterm .. + (3 + ..) to .. + 3 + ... *) -(* The convention is also used for the argument of the congr tactic, *) -(* e.g., congr (x + _ * 1). *) - -(* Replace new evars with lambda variables, retaining local dependencies *) -(* but stripping global ones. We use the variable names to encode the *) -(* the number of dependencies, so that the transformation is reversible. *) - -let pf_abs_evars gl (sigma, c0) = - let sigma0, ucst = project gl, Evd.evar_universe_context sigma in - let nenv = env_size (pf_env gl) in - let abs_evar n k = - let evi = Evd.find sigma k in - let dc = List.firstn n (evar_filtered_context evi) in - let abs_dc c = function - | x, Some b, t -> mkNamedLetIn x b t (mkArrow t c) - | x, None, t -> mkNamedProd x t c in - let t = Context.fold_named_context_reverse abs_dc ~init:evi.evar_concl dc in - Evarutil.nf_evar sigma t in - let rec put evlist c = match kind_of_term c with - | Evar (k, a) -> - if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else - let n = max 0 (Array.length a - nenv) in - let t = abs_evar n k in (k, (n, t)) :: put evlist t - | _ -> fold_constr put evlist c in - let evlist = put [] c0 in - if evlist = [] then 0, c0,[], ucst else - let rec lookup k i = function - | [] -> 0, 0 - | (k', (n, _)) :: evl -> if k = k' then i, n else lookup k (i + 1) evl in - let rec get i c = match kind_of_term c with - | Evar (ev, a) -> - let j, n = lookup ev i evlist in - if j = 0 then map_constr (get i) c else if n = 0 then mkRel j else - mkApp (mkRel j, Array.init n (fun k -> get i a.(n - 1 - k))) - | _ -> map_constr_with_binders ((+) 1) get i c in - let rec loop c i = function - | (_, (n, t)) :: evl -> - loop (mkLambda (mk_evar_name n, get (i - 1) t, c)) (i - 1) evl - | [] -> c in - List.length evlist, loop (get 1 c0) 1 evlist, List.map fst evlist, ucst - - - -(* As before but if (?i : T(?j)) and (?j : P : Prop), then the lambda for i - * looks like (fun evar_i : (forall pi : P. T(pi))) thanks to "loopP" and all - * occurrences of evar_i are replaced by (evar_i evar_j) thanks to "app". - * - * If P can be solved by ssrautoprop (that defaults to trivial), then - * the corresponding lambda looks like (fun evar_i : T(c)) where c is - * the solution found by ssrautoprop. - *) -let ssrautoprop_tac = ref (fun gl -> assert false) - -(* Thanks to Arnaud Spiwack for this snippet *) -let call_on_evar tac e s = - let { it = gs ; sigma = s } = - tac { it = e ; sigma = s; } in - gs, s - -let pf_abs_evars_pirrel gl (sigma, c0) = - pp(lazy(str"==PF_ABS_EVARS_PIRREL==")); - pp(lazy(str"c0= " ++ pr_constr c0)); - let sigma0 = project gl in - let c0 = Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma c0) in - let nenv = env_size (pf_env gl) in - let abs_evar n k = - let evi = Evd.find sigma k in - let dc = List.firstn n (evar_filtered_context evi) in - let abs_dc c = function - | x, Some b, t -> mkNamedLetIn x b t (mkArrow t c) - | x, None, t -> mkNamedProd x t c in - let t = Context.fold_named_context_reverse abs_dc ~init:evi.evar_concl dc in - Evarutil.nf_evar sigma0 (Evarutil.nf_evar sigma t) in - let rec put evlist c = match kind_of_term c with - | Evar (k, a) -> - if List.mem_assoc k evlist || Evd.mem sigma0 k then evlist else - let n = max 0 (Array.length a - nenv) in - let k_ty = - Retyping.get_sort_family_of - (pf_env gl) sigma (Evd.evar_concl (Evd.find sigma k)) in - let is_prop = k_ty = InProp in - let t = abs_evar n k in (k, (n, t, is_prop)) :: put evlist t - | _ -> fold_constr put evlist c in - let evlist = put [] c0 in - if evlist = [] then 0, c0 else - let pr_constr t = pr_constr (Reductionops.nf_beta (project gl) t) in - pp(lazy(str"evlist=" ++ pr_list (fun () -> str";") - (fun (k,_) -> str(Evd.string_of_existential k)) evlist)); - let evplist = - let depev = List.fold_left (fun evs (_,(_,t,_)) -> - Intset.union evs (Evarutil.undefined_evars_of_term sigma t)) Intset.empty evlist in - List.filter (fun i,(_,_,b) -> b && Intset.mem i depev) evlist in - let evlist, evplist, sigma = - if evplist = [] then evlist, [], sigma else - List.fold_left (fun (ev, evp, sigma) (i, (_,t,_) as p) -> - try - let ng, sigma = call_on_evar !ssrautoprop_tac i sigma in - if (ng <> []) then errorstrm (str "Should we tell the user?"); - List.filter (fun (j,_) -> j <> i) ev, evp, sigma - with _ -> ev, p::evp, sigma) (evlist, [], sigma) (List.rev evplist) in - let c0 = Evarutil.nf_evar sigma c0 in - let evlist = - List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evlist in - let evplist = - List.map (fun (x,(y,t,z)) -> x,(y,Evarutil.nf_evar sigma t,z)) evplist in - pp(lazy(str"c0= " ++ pr_constr c0)); - let rec lookup k i = function - | [] -> 0, 0 - | (k', (n,_,_)) :: evl -> if k = k' then i,n else lookup k (i + 1) evl in - let rec get evlist i c = match kind_of_term c with - | Evar (ev, a) -> - let j, n = lookup ev i evlist in - if j = 0 then map_constr (get evlist i) c else if n = 0 then mkRel j else - mkApp (mkRel j, Array.init n (fun k -> get evlist i a.(n - 1 - k))) - | _ -> map_constr_with_binders ((+) 1) (get evlist) i c in - let rec app extra_args i c = match decompose_app c with - | hd, args when isRel hd && destRel hd = i -> - let j = destRel hd in - mkApp (mkRel j, Array.of_list (List.map (lift (i-1)) extra_args @ args)) - | _ -> map_constr_with_binders ((+) 1) (app extra_args) i c in - let rec loopP evlist c i = function - | (_, (n, t, _)) :: evl -> - let t = get evlist (i - 1) t in - let n = Name (id_of_string (ssr_anon_hyp ^ string_of_int n)) in - loopP evlist (mkProd (n, t, c)) (i - 1) evl - | [] -> c in - let rec loop c i = function - | (_, (n, t, _)) :: evl -> - let evs = Evarutil.undefined_evars_of_term sigma t in - let t_evplist = List.filter (fun (k,_) -> Intset.mem k evs) evplist in - let t = loopP t_evplist (get t_evplist 1 t) 1 t_evplist in - let t = get evlist (i - 1) t in - let extra_args = - List.map (fun (k,_) -> mkRel (fst (lookup k i evlist))) - (List.rev t_evplist) in - let c = if extra_args = [] then c else app extra_args 1 c in - loop (mkLambda (mk_evar_name n, t, c)) (i - 1) evl - | [] -> c in - let res = loop (get evlist 1 c0) 1 evlist in - pp(lazy(str"res= " ++ pr_constr res)); - List.length evlist, res - -(* Strip all non-essential dependencies from an abstracted term, generating *) -(* standard names for the abstracted holes. *) - -let pf_abs_cterm gl n c0 = - if n <= 0 then c0 else - let noargs = [|0|] in - let eva = Array.make n noargs in - let rec strip i c = match kind_of_term c with - | App (f, a) when isRel f -> - let j = i - destRel f in - if j >= n || eva.(j) = noargs then mkApp (f, Array.map (strip i) a) else - let dp = eva.(j) in - let nd = Array.length dp - 1 in - let mkarg k = strip i a.(if k < nd then dp.(k + 1) - j else k + dp.(0)) in - mkApp (f, Array.init (Array.length a - dp.(0)) mkarg) - | _ -> map_constr_with_binders ((+) 1) strip i c in - let rec strip_ndeps j i c = match kind_of_term c with - | Prod (x, t, c1) when i < j -> - let dl, c2 = strip_ndeps j (i + 1) c1 in - if noccurn 1 c2 then dl, lift (-1) c2 else - i :: dl, mkProd (x, strip i t, c2) - | LetIn (x, b, t, c1) when i < j -> - let _, _, c1' = destProd c1 in - let dl, c2 = strip_ndeps j (i + 1) c1' in - if noccurn 1 c2 then dl, lift (-1) c2 else - i :: dl, mkLetIn (x, strip i b, strip i t, c2) - | _ -> [], strip i c in - let rec strip_evars i c = match kind_of_term c with - | Lambda (x, t1, c1) when i < n -> - let na = nb_evar_deps x in - let dl, t2 = strip_ndeps (i + na) i t1 in - let na' = List.length dl in - eva.(i) <- Array.of_list (na - na' :: dl); - let x' = - if na' = 0 then Name (pf_type_id gl t2) else mk_evar_name na' in - mkLambda (x', t2, strip_evars (i + 1) c1) -(* if noccurn 1 c2 then lift (-1) c2 else - mkLambda (Name (pf_type_id gl t2), t2, c2) *) - | _ -> strip i c in - strip_evars 0 c0 - -(* Undo the evar abstractions. Also works for non-evar variables. *) - -let pf_unabs_evars gl ise n c0 = - if n = 0 then c0 else - let evv = Array.make n mkProp in - let nev = ref 0 in - let env0 = pf_env gl in - let nenv0 = env_size env0 in - let rec unabs i c = match kind_of_term c with - | Rel j when i - j < !nev -> evv.(i - j) - | App (f, a0) when isRel f -> - let a = Array.map (unabs i) a0 in - let j = i - destRel f in - if j >= !nev then mkApp (f, a) else - let ev, eva = destEvar evv.(j) in - let nd = Array.length eva - nenv0 in - if nd = 0 then mkApp (evv.(j), a) else - let evarg k = if k < nd then a.(nd - 1 - k) else eva.(k) in - let c' = mkEvar (ev, Array.init (nd + nenv0) evarg) in - let na = Array.length a - nd in - if na = 0 then c' else mkApp (c', Array.sub a nd na) - | _ -> map_constr_with_binders ((+) 1) unabs i c in - let push_rel = Environ.push_rel in - let rec mk_evar j env i c = match kind_of_term c with - | Prod (x, t, c1) when i < j -> - mk_evar j (push_rel (x, None, unabs i t) env) (i + 1) c1 - | LetIn (x, b, t, c1) when i < j -> - let _, _, c2 = destProd c1 in - mk_evar j (push_rel (x, Some (unabs i b), unabs i t) env) (i + 1) c2 - | _ -> Evarutil.e_new_evar env ise (unabs i c) in - let rec unabs_evars c = - if !nev = n then unabs n c else match kind_of_term c with - | Lambda (x, t, c1) when !nev < n -> - let i = !nev in - evv.(i) <- mk_evar (i + nb_evar_deps x) env0 i t; - incr nev; unabs_evars c1 - | _ -> unabs !nev c in - unabs_evars c0 - -(* }}} *) - -(** Tactical extensions. {{{ **************************************************) - -(* The TACTIC EXTEND facility can't be used for defining new user *) -(* tacticals, because: *) -(* - the concrete syntax must start with a fixed string *) -(* We use the following workaround: *) -(* - We use the (unparsable) "YouShouldNotTypeThis" token for tacticals that *) -(* don't start with a token, then redefine the grammar and *) -(* printer using GEXTEND and set_pr_ssrtac, respectively. *) - -type ssrargfmt = ArgSsr of string | ArgCoq of argument_type | ArgSep of string - -let ssrtac_name name = { - mltac_plugin = "ssreflect"; - mltac_tactic = "ssr" ^ name; -} - -let set_pr_ssrtac name prec afmt = - let fmt = List.map (function ArgSep s -> Some s | _ -> None) afmt in - let rec mk_akey = function - | ArgSsr s :: afmt' -> ExtraArgType ("ssr" ^ s) :: mk_akey afmt' - | ArgCoq a :: afmt' -> a :: mk_akey afmt' - | ArgSep _ :: afmt' -> mk_akey afmt' - | [] -> [] in - let tacname = ssrtac_name name in - Pptactic.declare_ml_tactic_pprule tacname - { Pptactic.pptac_args = mk_akey afmt; - Pptactic.pptac_prods = (prec, fmt) } - -let ssrtac_atom loc name args = TacML (loc, ssrtac_name name, args) -let ssrtac_expr = ssrtac_atom - - -let ssrevaltac ist gtac = - let debug = match TacStore.get ist.extra f_debug with - | None -> Tactic_debug.DebugOff | Some level -> level - in - Proofview.V82.of_tactic (interp_tac_gen ist.lfun [] debug (globTacticIn (fun _ -> gtac))) - -(* fun gl -> let lfun = [tacarg_id, val_interp ist gl gtac] in - interp_tac_gen lfun [] ist.debug tacarg_expr gl *) - -(** Generic argument-based globbing/typing utilities *) - - -let interp_wit wit ist gl x = - let globarg = in_gen (glbwit wit) x in - let sigma, arg = interp_genarg ist (pf_env gl) (project gl) (pf_concl gl) gl.Evd.it globarg in - sigma, out_gen (topwit wit) arg - -let interp_intro_pattern = interp_wit wit_intro_pattern - -let interp_constr = interp_wit wit_constr - -let interp_open_constr ist gl gc = - interp_wit wit_open_constr ist gl ((), gc) - -let interp_refine ist gl rc = - let constrvars = extract_ltac_constr_values ist (pf_env gl) in - let vars = { Pretyping.empty_lvar with - Pretyping.ltac_constrs = constrvars; ltac_genargs = ist.lfun - } in - let kind = OfType (pf_concl gl) in - let flags = { - use_typeclasses = true; - use_unif_heuristics = true; - use_hook = None; - fail_evar = false; - expand_evars = true } - in - let sigma, c = understand_ltac flags (pf_env gl) (project gl) vars kind rc in -(* pp(lazy(str"sigma@interp_refine=" ++ pr_evar_map None sigma)); *) - pp(lazy(str"c@interp_refine=" ++ pr_constr c)); - (sigma, (sigma, c)) - -let pf_match = pf_apply (fun e s c t -> understand_tcc e s ~expected_type:t c) - -(* Estimate a bound on the number of arguments of a raw constr. *) -(* This is not perfect, because the unifier may fail to *) -(* typecheck the partial application, so we use a minimum of 5. *) -(* Also, we don't handle delayed or iterated coercions to *) -(* FUNCLASS, which is probably just as well since these can *) -(* lead to infinite arities. *) - -let splay_open_constr gl (sigma, c) = - let env = pf_env gl in let t = Retyping.get_type_of env sigma c in - Reductionops.splay_prod env sigma t - -let nbargs_open_constr gl oc = - let pl, _ = splay_open_constr gl oc in List.length pl - -let interp_nbargs ist gl rc = - try - let rc6 = mkRApp rc (mkRHoles 6) in - let sigma, t = interp_open_constr ist gl (rc6, None) in - let si = sig_it gl in - let gl = re_sig si sigma in - 6 + nbargs_open_constr gl t - with _ -> 5 - -let pf_nbargs gl c = nbargs_open_constr gl (project gl, c) - -let isAppInd gl c = - try ignore (pf_reduce_to_atomic_ind gl c); true with _ -> false - -let interp_view_nbimps ist gl rc = - try - let sigma, t = interp_open_constr ist gl (rc, None) in - let si = sig_it gl in - let gl = re_sig si sigma in - let pl, c = splay_open_constr gl t in - if isAppInd gl c then List.length pl else ~-(List.length pl) - with _ -> 0 - -(* }}} *) - -(** Vernacular commands: Prenex Implicits and Search {{{ **********************) - -(* This should really be implemented as an extension to the implicit *) -(* arguments feature, but unfortuately that API is sealed. The current *) -(* workaround uses a combination of notations that works reasonably, *) -(* with the following caveats: *) -(* - The pretty-printing always elides prenex implicits, even when *) -(* they are obviously needed. *) -(* - Prenex Implicits are NEVER exported from a module, because this *) -(* would lead to faulty pretty-printing and scoping errors. *) -(* - The command "Import Prenex Implicits" can be used to reassert *) -(* Prenex Implicits for all the visible constants that had been *) -(* declared as Prenex Implicits. *) - -let declare_one_prenex_implicit locality f = - let fref = - try Smartlocate.global_with_alias f - with _ -> errorstrm (pr_reference f ++ str " is not declared") in - let rec loop = function - | a :: args' when Impargs.is_status_implicit a -> - (ExplByName (Impargs.name_of_implicit a), (true, true, true)) :: loop args' - | args' when List.exists Impargs.is_status_implicit args' -> - errorstrm (str "Expected prenex implicits for " ++ pr_reference f) - | _ -> [] in - let impls = - match Impargs.implicits_of_global fref with - | [cond,impls] -> impls - | [] -> errorstrm (str "Expected some implicits for " ++ pr_reference f) - | _ -> errorstrm (str "Multiple implicits not supported") in - match loop impls with - | [] -> - errorstrm (str "Expected some implicits for " ++ pr_reference f) - | impls -> - Impargs.declare_manual_implicits locality fref ~enriching:false [impls] - -VERNAC COMMAND EXTEND Ssrpreneximplicits CLASSIFIED AS SIDEFF - | [ "Prenex" "Implicits" ne_global_list(fl) ] - -> [ let locality = - Locality.make_section_locality (Locality.LocalityFixme.consume ()) in - List.iter (declare_one_prenex_implicit locality) fl ] -END - -(* Vernac grammar visibility patch *) - -GEXTEND Gram - GLOBAL: gallina_ext; - gallina_ext: - [ [ IDENT "Import"; IDENT "Prenex"; IDENT "Implicits" -> - Vernacexpr.VernacUnsetOption (["Printing"; "Implicit"; "Defensive"]) - ] ] - ; -END - -(** Extend Search to subsume SearchAbout, also adding hidden Type coercions. *) - -(* Main prefilter *) - -type raw_glob_search_about_item = - | RGlobSearchSubPattern of constr_expr - | RGlobSearchString of Loc.t * string * string option - -let pr_search_item = function - | RGlobSearchString (_,s,_) -> str s - | RGlobSearchSubPattern p -> pr_constr_expr p - -let wit_ssr_searchitem = add_genarg "ssr_searchitem" pr_search_item - -let interp_search_notation loc s opt_scope = - try - let interp = Notation.interp_notation_as_global_reference loc in - let ref = interp (fun _ -> true) s opt_scope in - Search.GlobSearchSubPattern (Pattern.PRef ref) - with _ -> - let diagnosis = - try - let ntns = Notation.locate_notation pr_glob_constr s opt_scope in - let ambig = "This string refers to a complex or ambiguous notation." in - str ambig ++ str "\nTry searching with one of\n" ++ ntns - with _ -> str "This string is not part of an identifier or notation." in - Errors.user_err_loc (loc, "interp_search_notation", diagnosis) - -let pr_ssr_search_item _ _ _ = pr_search_item - -(* Workaround the notation API that can only print notations *) - -let is_ident s = try Lexer.check_ident s; true with _ -> false - -let is_ident_part s = is_ident ("H" ^ s) - -let interp_search_notation loc tag okey = - let err msg = Errors.user_err_loc (loc, "interp_search_notation", msg) in - let mk_pntn s for_key = - let n = String.length s in - let s' = String.make (n + 2) ' ' in - let rec loop i i' = - if i >= n then s', i' - 2 else if s.[i] = ' ' then loop (i + 1) i' else - let j = try String.index_from s (i + 1) ' ' with _ -> n in - let m = j - i in - if s.[i] = '\'' && i < j - 2 && s.[j - 1] = '\'' then - (String.blit s (i + 1) s' i' (m - 2); loop (j + 1) (i' + m - 1)) - else if for_key && is_ident (String.sub s i m) then - (s'.[i'] <- '_'; loop (j + 1) (i' + 2)) - else (String.blit s i s' i' m; loop (j + 1) (i' + m + 1)) in - loop 0 1 in - let trim_ntn (pntn, m) = String.sub pntn 1 (max 0 m) in - let pr_ntn ntn = str "(" ++ str ntn ++ str ")" in - let pr_and_list pr = function - | [x] -> pr x - | x :: lx -> pr_list pr_comma pr lx ++ pr_comma () ++ str "and " ++ pr x - | [] -> mt () in - let pr_sc sc = str (if sc = "" then "independently" else sc) in - let pr_scs = function - | [""] -> pr_sc "" - | scs -> str "in " ++ pr_and_list pr_sc scs in - let generator, pr_tag_sc = - let ign _ = mt () in match okey with - | Some key -> - let sc = Notation.find_delimiters_scope loc key in - let pr_sc s_in = str s_in ++ spc() ++ str sc ++ pr_comma() in - Notation.pr_scope ign sc, pr_sc - | None -> Notation.pr_scopes ign, ign in - let qtag s_in = pr_tag_sc s_in ++ qstring tag ++ spc()in - let ptag, ttag = - let ptag, m = mk_pntn tag false in - if m <= 0 then err (str "empty notation fragment"); - ptag, trim_ntn (ptag, m) in - let last = ref "" and last_sc = ref "" in - let scs = ref [] and ntns = ref [] in - let push_sc sc = match !scs with - | "" :: scs' -> scs := "" :: sc :: scs' - | scs' -> scs := sc :: scs' in - let get s _ _ = match !last with - | "Scope " -> last_sc := s; last := "" - | "Lonely notation" -> last_sc := ""; last := "" - | "\"" -> - let pntn, m = mk_pntn s true in - if String.string_contains pntn ptag then begin - let ntn = trim_ntn (pntn, m) in - match !ntns with - | [] -> ntns := [ntn]; scs := [!last_sc] - | ntn' :: _ when ntn' = ntn -> push_sc !last_sc - | _ when ntn = ttag -> ntns := ntn :: !ntns; scs := [!last_sc] - | _ :: ntns' when List.mem ntn ntns' -> () - | ntn' :: ntns' -> ntns := ntn' :: ntn :: ntns' - end; - last := "" - | _ -> last := s in - pp_with (Format.make_formatter get (fun _ -> ())) generator; - let ntn = match !ntns with - | [] -> - err (hov 0 (qtag "in" ++ str "does not occur in any notation")) - | ntn :: ntns' when ntn = ttag -> - if ntns' <> [] then begin - let pr_ntns' = pr_and_list pr_ntn ntns' in - msg_warning (hov 4 (qtag "In" ++ str "also occurs in " ++ pr_ntns')) - end; ntn - | [ntn] -> - msgnl (hov 4 (qtag "In" ++ str "is part of notation " ++ pr_ntn ntn)); ntn - | ntns' -> - let e = str "occurs in" ++ spc() ++ pr_and_list pr_ntn ntns' in - err (hov 4 (str "ambiguous: " ++ qtag "in" ++ e)) in - let (nvars, body), ((_, pat), osc) = match !scs with - | [sc] -> Notation.interp_notation loc ntn (None, [sc]) - | scs' -> - try Notation.interp_notation loc ntn (None, []) with _ -> - let e = pr_ntn ntn ++ spc() ++ str "is defined " ++ pr_scs scs' in - err (hov 4 (str "ambiguous: " ++ pr_tag_sc "in" ++ e)) in - let sc = Option.default "" osc in - let _ = - let m_sc = - if osc <> None then str "In " ++ str sc ++ pr_comma() else mt() in - let ntn_pat = trim_ntn (mk_pntn pat false) in - let rbody = glob_constr_of_notation_constr loc body in - let m_body = hov 0 (Constrextern.without_symbols prl_glob_constr rbody) in - let m = m_sc ++ pr_ntn ntn_pat ++ spc () ++ str "denotes " ++ m_body in - msgnl (hov 0 m) in - if List.length !scs > 1 then - let scs' = List.remove (=) sc !scs in - let w = pr_ntn ntn ++ str " is also defined " ++ pr_scs scs' in - msg_warning (hov 4 w) - else if String.string_contains ntn " .. " then - err (pr_ntn ntn ++ str " is an n-ary notation"); - let nvars = List.filter (fun (_,(_,typ)) -> typ = NtnTypeConstr) nvars in - let rec sub () = function - | NVar x when List.mem_assoc x nvars -> GPatVar (loc, (false, x)) - | c -> - glob_constr_of_notation_constr_with_binders loc (fun _ x -> (), x) sub () c in - let _, npat = Patternops.pattern_of_glob_constr (sub () body) in - Search.GlobSearchSubPattern npat - -ARGUMENT EXTEND ssr_search_item TYPED AS ssr_searchitem - PRINTED BY pr_ssr_search_item - | [ string(s) ] -> [ RGlobSearchString (loc,s,None) ] - | [ string(s) "%" preident(key) ] -> [ RGlobSearchString (loc,s,Some key) ] - | [ constr_pattern(p) ] -> [ RGlobSearchSubPattern p ] -END - -let pr_ssr_search_arg _ _ _ = - let pr_item (b, p) = str (if b then "-" else "") ++ pr_search_item p in - pr_list spc pr_item - -ARGUMENT EXTEND ssr_search_arg TYPED AS (bool * ssr_searchitem) list - PRINTED BY pr_ssr_search_arg - | [ "-" ssr_search_item(p) ssr_search_arg(a) ] -> [ (false, p) :: a ] - | [ ssr_search_item(p) ssr_search_arg(a) ] -> [ (true, p) :: a ] - | [ ] -> [ [] ] -END - -(* Main type conclusion pattern filter *) - -let rec splay_search_pattern na = function - | Pattern.PApp (fp, args) -> splay_search_pattern (na + Array.length args) fp - | Pattern.PLetIn (_, _, bp) -> splay_search_pattern na bp - | Pattern.PRef hr -> hr, na - | _ -> Errors.error "no head constant in head search pattern" - -let coerce_search_pattern_to_sort hpat = - let env = Global.env () and sigma = Evd.empty in - let mkPApp fp n_imps args = - let args' = Array.append (Array.make n_imps (Pattern.PMeta None)) args in - Pattern.PApp (fp, args') in - let hr, na = splay_search_pattern 0 hpat in - let dc, ht = - Reductionops.splay_prod env sigma (Universes.unsafe_type_of_global hr) in - let np = List.length dc in - if np < na then Errors.error "too many arguments in head search pattern" else - let hpat' = if np = na then hpat else mkPApp hpat (np - na) [||] in - let warn () = - msg_warning (str "Listing only lemmas with conclusion matching " ++ - pr_constr_pattern hpat') in - if isSort ht then begin warn (); true, hpat' end else - let filter_head, coe_path = - try - let _, cp = - Classops.lookup_path_to_sort_from (push_rels_assum dc env) sigma ht in - warn (); - true, cp - with _ -> false, [] in - let coerce hp coe_index = - let coe = Classops.get_coercion_value coe_index in - try - let coe_ref = reference_of_constr coe in - let n_imps = Option.get (Classops.hide_coercion coe_ref) in - mkPApp (Pattern.PRef coe_ref) n_imps [|hp|] - with _ -> - errorstrm (str "need explicit coercion " ++ pr_constr coe ++ spc () - ++ str "to interpret head search pattern as type") in - filter_head, List.fold_left coerce hpat' coe_path - -let rec interp_head_pat hpat = - let filter_head, p = coerce_search_pattern_to_sort hpat in - let rec loop c = match kind_of_term c with - | Cast (c', _, _) -> loop c' - | Prod (_, _, c') -> loop c' - | LetIn (_, _, _, c') -> loop c' - | _ -> Constr_matching.is_matching (Global.env()) Evd.empty p c in - filter_head, loop - -let all_true _ = true - -let rec interp_search_about args accu = match args with -| [] -> accu -| (flag, arg) :: rem -> - fun gr env typ -> - let ans = Search.search_about_filter arg gr env typ in - (if flag then ans else not ans) && interp_search_about rem accu gr env typ - -let interp_search_arg arg = - let arg = List.map (fun (x,arg) -> x, match arg with - | RGlobSearchString (loc,s,key) -> - if is_ident_part s then Search.GlobSearchString s else - interp_search_notation loc s key - | RGlobSearchSubPattern p -> - try - let intern = Constrintern.intern_constr_pattern in - Search.GlobSearchSubPattern (snd (intern (Global.env()) p)) - with e -> let e = Errors.push e in iraise (Cerrors.process_vernac_interp_error e)) arg in - let hpat, a1 = match arg with - | (_, Search.GlobSearchSubPattern (Pattern.PMeta _)) :: a' -> all_true, a' - | (true, Search.GlobSearchSubPattern p) :: a' -> - let filter_head, p = interp_head_pat p in - if filter_head then p, a' else all_true, arg - | _ -> all_true, arg in - let is_string = - function (_, Search.GlobSearchString _) -> true | _ -> false in - let a2, a3 = List.partition is_string a1 in - interp_search_about (a2 @ a3) (fun gr env typ -> hpat typ) - -(* Module path postfilter *) - -let pr_modloc (b, m) = if b then str "-" ++ pr_reference m else pr_reference m - -let wit_ssrmodloc = add_genarg "ssrmodloc" pr_modloc - -let pr_ssr_modlocs _ _ _ ml = - if ml = [] then str "" else spc () ++ str "in " ++ pr_list spc pr_modloc ml - -ARGUMENT EXTEND ssr_modlocs TYPED AS ssrmodloc list PRINTED BY pr_ssr_modlocs - | [ ] -> [ [] ] -END - -GEXTEND Gram - GLOBAL: ssr_modlocs; - modloc: [[ "-"; m = global -> true, m | m = global -> false, m]]; - ssr_modlocs: [[ "in"; ml = LIST1 modloc -> ml ]]; -END - -let interp_modloc mr = - let interp_mod (_, mr) = - let (loc, qid) = qualid_of_reference mr in - try Nametab.full_name_module qid with Not_found -> - Errors.user_err_loc (loc, "interp_modloc", str "No Module " ++ pr_qualid qid) in - let mr_out, mr_in = List.partition fst mr in - let interp_bmod b = function - | [] -> fun _ _ _ -> true - | rmods -> Search.module_filter (List.map interp_mod rmods, b) in - let is_in = interp_bmod false mr_in and is_out = interp_bmod true mr_out in - fun gr env typ -> is_in gr env typ && is_out gr env typ - -(* The unified, extended vernacular "Search" command *) - -let ssrdisplaysearch gr env t = - let pr_res = pr_global gr ++ spc () ++ str " " ++ pr_lconstr_env env Evd.empty t in - msg (hov 2 pr_res ++ fnl ()) - -VERNAC COMMAND EXTEND SsrSearchPattern CLASSIFIED AS QUERY -| [ "Search" ssr_search_arg(a) ssr_modlocs(mr) ] -> - [ let hpat = interp_search_arg a in - let in_mod = interp_modloc mr in - let post_filter gr env typ = in_mod gr env typ && hpat gr env typ in - let display gr env typ = - if post_filter gr env typ then ssrdisplaysearch gr env typ - in - Search.generic_search None display ] -END - -(* }}} *) - -(** Alternative notations for "match" and anonymous arguments. {{{ ************) - -(* Syntax: *) -(* if <term> is <pattern> then ... else ... *) -(* if <term> is <pattern> [in ..] return ... then ... else ... *) -(* let: <pattern> := <term> in ... *) -(* let: <pattern> [in ...] := <term> return ... in ... *) -(* The scope of a top-level 'as' in the pattern extends over the *) -(* 'return' type (dependent if/let). *) -(* Note that the optional "in ..." appears next to the <pattern> *) -(* rather than the <term> in then "let:" syntax. The alternative *) -(* would lead to ambiguities in, e.g., *) -(* let: p1 := (*v---INNER LET:---v *) *) -(* let: p2 := let: p3 := e3 in k return t in k2 in k1 return t' *) -(* in b (*^--ALTERNATIVE INNER LET--------^ *) *) - -(* Caveat : There is no pretty-printing support, since this would *) -(* require a modification to the Coq kernel (adding a new match *) -(* display style -- why aren't these strings?); also, the v8.1 *) -(* pretty-printer only allows extension hooks for printing *) -(* integer or string literals. *) -(* Also note that in the v8 grammar "is" needs to be a keyword; *) -(* as this can't be done from an ML extension file, the new *) -(* syntax will only work when ssreflect.v is imported. *) - -let no_ct = None, None and no_rt = None in -let aliasvar = function - | [_, [CPatAlias (loc, _, id)]] -> Some (loc,Name id) - | _ -> None in -let mk_cnotype mp = aliasvar mp, None in -let mk_ctype mp t = aliasvar mp, Some t in -let mk_rtype t = Some t in -let mk_dthen loc (mp, ct, rt) c = (loc, mp, c), ct, rt in -let mk_let loc rt ct mp c1 = - CCases (loc, LetPatternStyle, rt, ct, [loc, mp, c1]) in -GEXTEND Gram - GLOBAL: binder_constr; - ssr_rtype: [[ "return"; t = operconstr LEVEL "100" -> mk_rtype t ]]; - ssr_mpat: [[ p = pattern -> [!@loc, [p]] ]]; - ssr_dpat: [ - [ mp = ssr_mpat; "in"; t = pattern; rt = ssr_rtype -> mp, mk_ctype mp t, rt - | mp = ssr_mpat; rt = ssr_rtype -> mp, mk_cnotype mp, rt - | mp = ssr_mpat -> mp, no_ct, no_rt - ] ]; - ssr_dthen: [[ dp = ssr_dpat; "then"; c = lconstr -> mk_dthen !@loc dp c ]]; - ssr_elsepat: [[ "else" -> [!@loc, [CPatAtom (!@loc, None)]] ]]; - ssr_else: [[ mp = ssr_elsepat; c = lconstr -> !@loc, mp, c ]]; - binder_constr: [ - [ "if"; c = operconstr LEVEL "200"; "is"; db1 = ssr_dthen; b2 = ssr_else -> - let b1, ct, rt = db1 in CCases (!@loc, MatchStyle, rt, [c, ct], [b1; b2]) - | "if"; c = operconstr LEVEL "200";"isn't";db1 = ssr_dthen; b2 = ssr_else -> - let b1, ct, rt = db1 in - let b1, b2 = - let (l1, p1, r1), (l2, p2, r2) = b1, b2 in (l1, p1, r2), (l2, p2, r1) in - CCases (!@loc, MatchStyle, rt, [c, ct], [b1; b2]) - | "let"; ":"; mp = ssr_mpat; ":="; c = lconstr; "in"; c1 = lconstr -> - mk_let (!@loc) no_rt [c, no_ct] mp c1 - | "let"; ":"; mp = ssr_mpat; ":="; c = lconstr; - rt = ssr_rtype; "in"; c1 = lconstr -> - mk_let (!@loc) rt [c, mk_cnotype mp] mp c1 - | "let"; ":"; mp = ssr_mpat; "in"; t = pattern; ":="; c = lconstr; - rt = ssr_rtype; "in"; c1 = lconstr -> - mk_let (!@loc) rt [c, mk_ctype mp t] mp c1 - ] ]; -END - -GEXTEND Gram - GLOBAL: closed_binder; - closed_binder: [ - [ ["of" | "&"]; c = operconstr LEVEL "99" -> - [LocalRawAssum ([!@loc, Anonymous], Default Explicit, c)] - ] ]; -END -(* }}} *) - -(** Tacticals (+, -, *, done, by, do, =>, first, and last). {{{ ***************) - -(** Bracketing tactical *) - -(* The tactic pretty-printer doesn't know that some extended tactics *) -(* are actually tacticals. To prevent it from improperly removing *) -(* parentheses we override the parsing rule for bracketed tactic *) -(* expressions so that the pretty-print always reflects the input. *) -(* (Removing user-specified parentheses is dubious anyway). *) - -GEXTEND Gram - GLOBAL: tactic_expr; - ssrparentacarg: [[ "("; tac = tactic_expr; ")" -> !@loc, Tacexp tac ]]; - tactic_expr: LEVEL "0" [[ arg = ssrparentacarg -> TacArg arg ]]; -END - -(** The internal "done" and "ssrautoprop" tactics. *) - -(* For additional flexibility, "done" and "ssrautoprop" are *) -(* defined in Ltac. *) -(* Although we provide a default definition in ssreflect, *) -(* we look up the definition dynamically at each call point, *) -(* to allow for user extensions. "ssrautoprop" defaults to *) -(* trivial. *) - -let donetac gl = - let tacname = - try Nametab.locate_tactic (qualid_of_ident (id_of_string "done")) - with Not_found -> try Nametab.locate_tactic (ssrqid "done") - with Not_found -> Errors.error "The ssreflect library was not loaded" in - let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in - Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl - -let prof_donetac = mk_profiler "donetac";; -let donetac gl = prof_donetac.profile donetac gl;; - -let ssrautoprop gl = - try - let tacname = - try Nametab.locate_tactic (qualid_of_ident (id_of_string "ssrautoprop")) - with Not_found -> Nametab.locate_tactic (ssrqid "ssrautoprop") in - let tacexpr = dummy_loc, Tacexpr.Reference (ArgArg (dummy_loc, tacname)) in - Proofview.V82.of_tactic (eval_tactic (Tacexpr.TacArg tacexpr)) gl - with Not_found -> Proofview.V82.of_tactic (Auto.full_trivial []) gl - -let () = ssrautoprop_tac := ssrautoprop - -let tclBY tac = tclTHEN tac donetac - -(** Tactical arguments. *) - -(* We have four kinds: simple tactics, [|]-bracketed lists, hints, and swaps *) -(* The latter two are used in forward-chaining tactics (have, suffice, wlog) *) -(* and subgoal reordering tacticals (; first & ; last), respectively. *) - -(* Force use of the tactic_expr parsing entry, to rule out tick marks. *) -let pr_ssrtacarg _ _ prt = prt tacltop -ARGUMENT EXTEND ssrtacarg TYPED AS tactic PRINTED BY pr_ssrtacarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END -GEXTEND Gram - GLOBAL: ssrtacarg; - ssrtacarg: [[ tac = tactic_expr LEVEL "5" -> tac ]]; -END - -(* Lexically closed tactic for tacticals. *) -let pr_ssrtclarg _ _ prt tac = prt tacltop tac -ARGUMENT EXTEND ssrtclarg TYPED AS ssrtacarg - PRINTED BY pr_ssrtclarg -| [ ssrtacarg(tac) ] -> [ tac ] -END -let eval_tclarg ist tac = ssrevaltac ist tac - -let pr_ortacs prt = - let rec pr_rec = function - | [None] -> spc() ++ str "|" ++ spc() - | None :: tacs -> spc() ++ str "|" ++ pr_rec tacs - | Some tac :: tacs -> spc() ++ str "| " ++ prt tacltop tac ++ pr_rec tacs - | [] -> mt() in - function - | [None] -> spc() - | None :: tacs -> pr_rec tacs - | Some tac :: tacs -> prt tacltop tac ++ pr_rec tacs - | [] -> mt() -let pr_ssrortacs _ _ = pr_ortacs - -ARGUMENT EXTEND ssrortacs TYPED AS tactic option list PRINTED BY pr_ssrortacs -| [ ssrtacarg(tac) "|" ssrortacs(tacs) ] -> [ Some tac :: tacs ] -| [ ssrtacarg(tac) "|" ] -> [ [Some tac; None] ] -| [ ssrtacarg(tac) ] -> [ [Some tac] ] -| [ "|" ssrortacs(tacs) ] -> [ None :: tacs ] -| [ "|" ] -> [ [None; None] ] -END - -let pr_hintarg prt = function - | true, tacs -> hv 0 (str "[ " ++ pr_ortacs prt tacs ++ str " ]") - | false, [Some tac] -> prt tacltop tac - | _, _ -> mt() - -let pr_ssrhintarg _ _ = pr_hintarg - -let mk_hint tac = false, [Some tac] -let mk_orhint tacs = true, tacs -let nullhint = true, [] -let nohint = false, [] - -ARGUMENT EXTEND ssrhintarg TYPED AS bool * ssrortacs PRINTED BY pr_ssrhintarg -| [ "[" "]" ] -> [ nullhint ] -| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ] -| [ ssrtacarg(arg) ] -> [ mk_hint arg ] -END - -ARGUMENT EXTEND ssrortacarg TYPED AS ssrhintarg PRINTED BY pr_ssrhintarg -| [ "[" ssrortacs(tacs) "]" ] -> [ mk_orhint tacs ] -END - -let hinttac ist is_by (is_or, atacs) = - let dtac = if is_by then donetac else tclIDTAC in - let mktac = function - | Some atac -> tclTHEN (ssrevaltac ist atac) dtac - | _ -> dtac in - match List.map mktac atacs with - | [] -> if is_or then dtac else tclIDTAC - | [tac] -> tac - | tacs -> tclFIRST tacs - -(** The "-"/"+"/"*" tacticals. *) - -(* These are just visual cues to flag the beginning of the script for *) -(* new subgoals, when indentation is not appropriate (typically after *) -(* tactics that generate more than two subgoals). *) - -TACTIC EXTEND ssrtclplus -| [ "YouShouldNotTypeThis" "+" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclplus" 5 [ArgSep "+ "; ArgSsr "tclarg"] - -TACTIC EXTEND ssrtclminus -| [ "YouShouldNotTypeThis" "-" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclminus" 5 [ArgSep "- "; ArgSsr "tclarg"] - -TACTIC EXTEND ssrtclstar -| [ "YouShouldNotTypeThis" "*" ssrtclarg(arg) ] -> [ Proofview.V82.tactic (eval_tclarg ist arg) ] -END -set_pr_ssrtac "tclstar" 5 [ArgSep "- "; ArgSsr "tclarg"] - -let gen_tclarg = in_gen (rawwit wit_ssrtclarg) - -GEXTEND Gram - GLOBAL: tactic tactic_mode; - tactic: [ - [ "+"; tac = ssrtclarg -> ssrtac_expr !@loc "tclplus" [gen_tclarg tac] - | "-"; tac = ssrtclarg -> ssrtac_expr !@loc "tclminus" [gen_tclarg tac] - | "*"; tac = ssrtclarg -> ssrtac_expr !@loc "tclstar" [gen_tclarg tac] - ] ]; - tactic_mode: [ - [ "+"; tac = G_vernac.subgoal_command -> tac None - | "-"; tac = G_vernac.subgoal_command -> tac None - | "*"; tac = G_vernac.subgoal_command -> tac None - ] ]; -END - -(** The "by" tactical. *) - -let pr_hint prt arg = - if arg = nohint then mt() else str "by " ++ pr_hintarg prt arg -let pr_ssrhint _ _ = pr_hint - -ARGUMENT EXTEND ssrhint TYPED AS ssrhintarg PRINTED BY pr_ssrhint -| [ ] -> [ nohint ] -END - -TACTIC EXTEND ssrtclby -| [ "YouShouldNotTypeThis" ssrhint(tac) ] -> [ Proofview.V82.tactic (hinttac ist true tac) ] -END -set_pr_ssrtac "tclby" 0 [ArgSsr "hint"] - -(* We can't parse "by" in ARGUMENT EXTEND because it will only be made *) -(* into a keyword in ssreflect.v; so we anticipate this in GEXTEND. *) - -GEXTEND Gram - GLOBAL: ssrhint simple_tactic; - ssrhint: [[ "by"; arg = ssrhintarg -> arg ]]; - simple_tactic: [ - [ "by"; arg = ssrhintarg -> - let garg = in_gen (rawwit wit_ssrhint) arg in - ssrtac_atom !@loc "tclby" [garg] - ] ]; -END -(* }}} *) - -(** Bound assumption argument *) - -(* The Ltac API does have a type for assumptions but it is level-dependent *) -(* and therefore impratical to use for complex arguments, so we substitute *) -(* our own to have a uniform representation. Also, we refuse to intern *) -(* idents that match global/section constants, since this would lead to *) -(* fragile Ltac scripts. *) - -type ssrhyp = SsrHyp of loc * identifier - -let hyp_id (SsrHyp (_, id)) = id -let pr_hyp (SsrHyp (_, id)) = pr_id id -let pr_ssrhyp _ _ _ = pr_hyp - -let wit_ssrhyprep = add_genarg "ssrhyprep" pr_hyp - -let hyp_err loc msg id = - Errors.user_err_loc (loc, "ssrhyp", str msg ++ pr_id id) - -let intern_hyp ist (SsrHyp (loc, id) as hyp) = - let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_var) (loc, id)) in - if not_section_id id then hyp else - hyp_err loc "Can't clear section hypothesis " id - -let interp_hyp ist gl (SsrHyp (loc, id)) = - let s, id' = interp_wit wit_var ist gl (loc, id) in - if not_section_id id' then s, SsrHyp (loc, id') else - hyp_err loc "Can't clear section hypothesis " id' - -ARGUMENT EXTEND ssrhyp TYPED AS ssrhyprep PRINTED BY pr_ssrhyp - INTERPRETED BY interp_hyp - GLOBALIZED BY intern_hyp - | [ ident(id) ] -> [ SsrHyp (loc, id) ] -END - -type ssrhyp_or_id = Hyp of ssrhyp | Id of ssrhyp - -let hoik f = function Hyp x -> f x | Id x -> f x -let hoi_id = hoik hyp_id -let pr_hoi = hoik pr_hyp -let pr_ssrhoi _ _ _ = pr_hoi - -let wit_ssrhoirep = add_genarg "ssrhoirep" pr_hoi - -let intern_ssrhoi ist = function - | Hyp h -> Hyp (intern_hyp ist h) - | Id (SsrHyp (_, id)) as hyp -> - let _ = Tacintern.intern_genarg ist (in_gen (rawwit wit_ident) id) in - hyp - -let interp_ssrhoi ist gl = function - | Hyp h -> let s, h' = interp_hyp ist gl h in s, Hyp h' - | Id (SsrHyp (loc, id)) -> - let s, id' = interp_wit wit_ident ist gl id in - s, Id (SsrHyp (loc, id')) - -ARGUMENT EXTEND ssrhoi_hyp TYPED AS ssrhoirep PRINTED BY pr_ssrhoi - INTERPRETED BY interp_ssrhoi - GLOBALIZED BY intern_ssrhoi - | [ ident(id) ] -> [ Hyp (SsrHyp(loc, id)) ] -END -ARGUMENT EXTEND ssrhoi_id TYPED AS ssrhoirep PRINTED BY pr_ssrhoi - INTERPRETED BY interp_ssrhoi - GLOBALIZED BY intern_ssrhoi - | [ ident(id) ] -> [ Id (SsrHyp(loc, id)) ] -END - -type ssrhyps = ssrhyp list - -let pr_hyps = pr_list pr_spc pr_hyp -let pr_ssrhyps _ _ _ = pr_hyps -let hyps_ids = List.map hyp_id - -let rec check_hyps_uniq ids = function - | SsrHyp (loc, id) :: _ when List.mem id ids -> - hyp_err loc "Duplicate assumption " id - | SsrHyp (_, id) :: hyps -> check_hyps_uniq (id :: ids) hyps - | [] -> () - -let check_hyp_exists hyps (SsrHyp(_, id)) = - try ignore(Context.lookup_named id hyps) - with Not_found -> errorstrm (str"No assumption is named " ++ pr_id id) - -let interp_hyps ist gl ghyps = - let hyps = List.map snd (List.map (interp_hyp ist gl) ghyps) in - check_hyps_uniq [] hyps; Tacmach.project gl, hyps - -ARGUMENT EXTEND ssrhyps TYPED AS ssrhyp list PRINTED BY pr_ssrhyps - INTERPRETED BY interp_hyps - | [ ssrhyp_list(hyps) ] -> [ check_hyps_uniq [] hyps; hyps ] -END - -(** Terms parsing. {{{ ********************************************************) - -(* Because we allow wildcards in term references, we need to stage the *) -(* interpretation of terms so that it occurs at the right time during *) -(* the execution of the tactic (e.g., so that we don't report an error *) -(* for a term that isn't actually used in the execution). *) -(* The term representation tracks whether the concrete initial term *) -(* started with an opening paren, which might avoid a conflict between *) -(* the ssrreflect term syntax and Gallina notation. *) - -(* kinds of terms *) - -type ssrtermkind = char (* print flag *) - -let input_ssrtermkind strm = match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "(" -> '(' - | Tok.KEYWORD "@" -> '@' - | _ -> ' ' - -let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind - -let id_of_Cterm t = match id_of_cpattern t with - | Some x -> x - | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here" -let ssrhyp_of_ssrterm = function - | k, (_, Some c) as o -> - SsrHyp (constr_loc c, id_of_Cterm (cpattern_of_term o)), String.make 1 k - | _, (_, None) -> assert false - -(* terms *) -let pr_ssrterm _ _ _ = pr_term -let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c -let intern_term ist sigma env (_, c) = glob_constr ist env c -let interp_term ist gl (_, c) = snd (interp_open_constr ist gl c) -let force_term ist gl (_, c) = interp_constr ist gl c -let glob_ssrterm gs = function - | k, (_, Some c) -> k, Tacintern.intern_constr gs c - | ct -> ct -let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c -let interp_ssrterm _ gl t = Tacmach.project gl, t - -ARGUMENT EXTEND ssrterm - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_ssrterm SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "YouShouldNotTypeThis" constr(c) ] -> [ mk_lterm c ] -END - -GEXTEND Gram - GLOBAL: ssrterm; - ssrterm: [[ k = ssrtermkind; c = constr -> mk_term k c ]]; -END -(* }}} *) - -(** The "in" pseudo-tactical {{{ **********************************************) - -(* We can't make "in" into a general tactical because this would create a *) -(* crippling conflict with the ltac let .. in construct. Hence, we add *) -(* explicitly an "in" suffix to all the extended tactics for which it is *) -(* relevant (including move, case, elim) and to the extended do tactical *) -(* below, which yields a general-purpose "in" of the form do [...] in ... *) - -(* This tactical needs to come before the intro tactics because the latter *) -(* must take precautions in order not to interfere with the discharged *) -(* assumptions. This is especially difficult for discharged "let"s, which *) -(* the default simpl and unfold tactics would erase blindly. *) - -(** Clear switch *) - -type ssrclear = ssrhyps - -let pr_clear_ne clr = str "{" ++ pr_hyps clr ++ str "}" -let pr_clear sep clr = if clr = [] then mt () else sep () ++ pr_clear_ne clr - -let pr_ssrclear _ _ _ = pr_clear mt - -ARGUMENT EXTEND ssrclear_ne TYPED AS ssrhyps PRINTED BY pr_ssrclear -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ check_hyps_uniq [] clr; clr ] -END - -ARGUMENT EXTEND ssrclear TYPED AS ssrclear_ne PRINTED BY pr_ssrclear -| [ ssrclear_ne(clr) ] -> [ clr ] -| [ ] -> [ [] ] -END - -let cleartac clr = check_hyps_uniq [] clr; clear (hyps_ids clr) - -(* type ssrwgen = ssrclear * ssrhyp * string *) - -let pr_wgen = function - | (clr, Some((id,k),None)) -> spc() ++ pr_clear mt clr ++ str k ++ pr_hoi id - | (clr, Some((id,k),Some p)) -> - spc() ++ pr_clear mt clr ++ str"(" ++ str k ++ pr_hoi id ++ str ":=" ++ - pr_cpattern p ++ str ")" - | (clr, None) -> spc () ++ pr_clear mt clr -let pr_ssrwgen _ _ _ = pr_wgen - -(* no globwith for char *) -ARGUMENT EXTEND ssrwgen - TYPED AS ssrclear * ((ssrhoi_hyp * string) * cpattern option) option - PRINTED BY pr_ssrwgen -| [ ssrclear_ne(clr) ] -> [ clr, None ] -| [ ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, " "), None) ] -| [ "@" ssrhoi_hyp(hyp) ] -> [ [], Some((hyp, "@"), None) ] -| [ "(" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id," "),Some p) ] -| [ "(" ssrhoi_id(id) ")" ] -> [ [], Some ((id,"("), None) ] -| [ "(@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id,"@"),Some p) ] -| [ "(" "@" ssrhoi_id(id) ":=" lcpattern(p) ")" ] -> - [ [], Some ((id,"@"),Some p) ] -END - -type ssrclseq = InGoal | InHyps - | InHypsGoal | InHypsSeqGoal | InSeqGoal | InHypsSeq | InAll | InAllHyps - -let pr_clseq = function - | InGoal | InHyps -> mt () - | InSeqGoal -> str "|- *" - | InHypsSeqGoal -> str " |- *" - | InHypsGoal -> str " *" - | InAll -> str "*" - | InHypsSeq -> str " |-" - | InAllHyps -> str "* |-" - -let wit_ssrclseq = add_genarg "ssrclseq" pr_clseq -let pr_clausehyps = pr_list pr_spc pr_wgen -let pr_ssrclausehyps _ _ _ = pr_clausehyps - -ARGUMENT EXTEND ssrclausehyps -TYPED AS ssrwgen list PRINTED BY pr_ssrclausehyps -| [ ssrwgen(hyp) "," ssrclausehyps(hyps) ] -> [ hyp :: hyps ] -| [ ssrwgen(hyp) ssrclausehyps(hyps) ] -> [ hyp :: hyps ] -| [ ssrwgen(hyp) ] -> [ [hyp] ] -END - -(* type ssrclauses = ssrahyps * ssrclseq *) - -let pr_clauses (hyps, clseq) = - if clseq = InGoal then mt () - else str "in " ++ pr_clausehyps hyps ++ pr_clseq clseq -let pr_ssrclauses _ _ _ = pr_clauses - -ARGUMENT EXTEND ssrclauses TYPED AS ssrwgen list * ssrclseq - PRINTED BY pr_ssrclauses - | [ "in" ssrclausehyps(hyps) "|-" "*" ] -> [ hyps, InHypsSeqGoal ] - | [ "in" ssrclausehyps(hyps) "|-" ] -> [ hyps, InHypsSeq ] - | [ "in" ssrclausehyps(hyps) "*" ] -> [ hyps, InHypsGoal ] - | [ "in" ssrclausehyps(hyps) ] -> [ hyps, InHyps ] - | [ "in" "|-" "*" ] -> [ [], InSeqGoal ] - | [ "in" "*" ] -> [ [], InAll ] - | [ "in" "*" "|-" ] -> [ [], InAllHyps ] - | [ ] -> [ [], InGoal ] -END - -let nohide = mkRel 0 -let hidden_goal_tag = "the_hidden_goal" - -(* Reduction that preserves the Prod/Let spine of the "in" tactical. *) - -let inc_safe n = if n = 0 then n else n + 1 -let rec safe_depth c = match kind_of_term c with -| LetIn (Name x, _, _, c') when is_discharged_id x -> safe_depth c' + 1 -| LetIn (_, _, _, c') | Prod (_, _, c') -> inc_safe (safe_depth c') -| _ -> 0 - -let red_safe r e s c0 = - let rec red_to e c n = match kind_of_term c with - | Prod (x, t, c') when n > 0 -> - let t' = r e s t in let e' = Environ.push_rel (x, None, t') e in - mkProd (x, t', red_to e' c' (n - 1)) - | LetIn (x, b, t, c') when n > 0 -> - let t' = r e s t in let e' = Environ.push_rel (x, None, t') e in - mkLetIn (x, r e s b, t', red_to e' c' (n - 1)) - | _ -> r e s c in - red_to e c0 (safe_depth c0) - -let check_wgen_uniq gens = - let clears = List.flatten (List.map fst gens) in - check_hyps_uniq [] clears; - let ids = CList.map_filter - (function (_,Some ((id,_),_)) -> Some (hoi_id id) | _ -> None) gens in - let rec check ids = function - | id :: _ when List.mem id ids -> - errorstrm (str"Duplicate generalization " ++ pr_id id) - | id :: hyps -> check (id :: ids) hyps - | [] -> () in - check [] ids - -let pf_clauseids gl gens clseq = - let keep_clears = List.map (fun x, _ -> x, None) in - if gens <> [] then (check_wgen_uniq gens; gens) else - if clseq <> InAll && clseq <> InAllHyps then keep_clears gens else - Errors.error "assumptions should be named explicitly" - -let hidden_clseq = function InHyps | InHypsSeq | InAllHyps -> true | _ -> false - -let hidetacs clseq idhide cl0 = - if not (hidden_clseq clseq) then [] else - [posetac idhide cl0; - Proofview.V82.of_tactic (convert_concl_no_check (mkVar idhide))] - -let discharge_hyp (id', (id, mode)) gl = - let cl' = subst_var id (pf_concl gl) in - match pf_get_hyp gl id, mode with - | (_, None, t), _ | (_, Some _, t), "(" -> - apply_type (mkProd (Name id', t, cl')) [mkVar id] gl - | (_, Some v, t), _ -> - Proofview.V82.of_tactic (convert_concl (mkLetIn (Name id', v, t, cl'))) gl - -let endclausestac id_map clseq gl_id cl0 gl = - let not_hyp' id = not (List.mem_assoc id id_map) in - let orig_id id = try List.assoc id id_map with _ -> id in - let dc, c = Term.decompose_prod_assum (pf_concl gl) in - let hide_goal = hidden_clseq clseq in - let c_hidden = hide_goal && c = mkVar gl_id in - let rec fits forced = function - | (id, _) :: ids, (Name id', _, _) :: dc' when id' = id -> - fits true (ids, dc') - | ids, dc' -> - forced && ids = [] && (not hide_goal || dc' = [] && c_hidden) in - let rec unmark c = match kind_of_term c with - | Var id when hidden_clseq clseq && id = gl_id -> cl0 - | Prod (Name id, t, c') when List.mem_assoc id id_map -> - mkProd (Name (orig_id id), unmark t, unmark c') - | LetIn (Name id, v, t, c') when List.mem_assoc id id_map -> - mkLetIn (Name (orig_id id), unmark v, unmark t, unmark c') - | _ -> map_constr unmark c in - let utac hyp = - Proofview.V82.of_tactic - (convert_hyp_no_check (map_named_declaration unmark hyp)) in - let utacs = List.map utac (pf_hyps gl) in - let ugtac gl' = - Proofview.V82.of_tactic - (convert_concl_no_check (unmark (pf_concl gl'))) gl' in - let ctacs = if hide_goal then [clear [gl_id]] else [] in - let mktac itacs = tclTHENLIST (itacs @ utacs @ ugtac :: ctacs) in - let itac (_, id) = Proofview.V82.of_tactic (introduction id) in - if fits false (id_map, List.rev dc) then mktac (List.map itac id_map) gl else - let all_ids = ids_of_rel_context dc @ pf_ids_of_hyps gl in - if List.for_all not_hyp' all_ids && not c_hidden then mktac [] gl else - Errors.error "tampering with discharged assumptions of \"in\" tactical" - -let is_id_constr c = match kind_of_term c with - | Lambda(_,_,c) when isRel c -> 1 = destRel c - | _ -> false - -let red_product_skip_id env sigma c = match kind_of_term c with - | App(hd,args) when Array.length args = 1 && is_id_constr hd -> args.(0) - | _ -> try Tacred.red_product env sigma c with _ -> c - -let abs_wgen keep_let ist f gen (gl,args,c) = - let sigma, env = project gl, pf_env gl in - let evar_closed t p = - if occur_existential t then - Errors.user_err_loc (loc_of_cpattern p,"ssreflect", - pr_constr_pat t ++ - str" contains holes and matches no subterm of the goal") in - match gen with - | _, Some ((x, mode), None) when mode = "@" || (mode = " " && keep_let) -> - let x = hoi_id x in - let _, bo, ty = pf_get_hyp gl x in - gl, - (if bo <> None then args else mkVar x :: args), - mkProd_or_LetIn (Name (f x),bo,ty) (subst_var x c) - | _, Some ((x, _), None) -> - let x = hoi_id x in - gl, mkVar x :: args, mkProd (Name (f x), pf_get_hyp_typ gl x, subst_var x c) - | _, Some ((x, "@"), Some p) -> - let x = hoi_id x in - let cp = interp_cpattern ist gl p None in - let (t, ucst), c = - try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1 - with NoMatch -> redex_of_pattern env cp, c in - evar_closed t p; - let ut = red_product_skip_id env sigma t in - pf_merge_uc ucst gl, args, mkLetIn(Name (f x), ut, pf_type_of gl t, c) - | _, Some ((x, _), Some p) -> - let x = hoi_id x in - let cp = interp_cpattern ist gl p None in - let (t, ucst), c = - try fill_occ_pattern ~raise_NoMatch:true env sigma c cp None 1 - with NoMatch -> redex_of_pattern env cp, c in - evar_closed t p; - pf_merge_uc ucst gl, t :: args, mkProd(Name (f x), pf_type_of gl t, c) - | _ -> gl, args, c - -let clr_of_wgen gen clrs = match gen with - | clr, Some ((x, _), None) -> - let x = hoi_id x in - cleartac clr :: cleartac [SsrHyp(Loc.ghost,x)] :: clrs - | clr, _ -> cleartac clr :: clrs - -let tclCLAUSES ist tac (gens, clseq) gl = - if clseq = InGoal || clseq = InSeqGoal then tac gl else - let clr_gens = pf_clauseids gl gens clseq in - let clear = tclTHENLIST (List.rev(List.fold_right clr_of_wgen clr_gens [])) in - let gl_id = mk_anon_id hidden_goal_tag gl in - let cl0 = pf_concl gl in - let dtac gl = - let c = pf_concl gl in - let gl, args, c = - List.fold_right (abs_wgen true ist mk_discharged_id) gens (gl,[], c) in - apply_type c args gl in - let endtac = - let id_map = CList.map_filter (function - | _, Some ((x,_),_) -> let id = hoi_id x in Some (mk_discharged_id id, id) - | _, None -> None) gens in - endclausestac id_map clseq gl_id cl0 in - tclTHENLIST (hidetacs clseq gl_id cl0 @ [dtac; clear; tac; endtac]) gl -(* }}} *) - -(** Simpl switch *) - -type ssrsimpl = Simpl | Cut | SimplCut | Nop - -let pr_simpl = function - | Simpl -> str "/=" - | Cut -> str "//" - | SimplCut -> str "//=" - | Nop -> mt () - -let pr_ssrsimpl _ _ _ = pr_simpl - -let wit_ssrsimplrep = add_genarg "ssrsimplrep" pr_simpl - -ARGUMENT EXTEND ssrsimpl_ne TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl -| [ "/=" ] -> [ Simpl ] -| [ "//" ] -> [ Cut ] -| [ "//=" ] -> [ SimplCut ] -END - -ARGUMENT EXTEND ssrsimpl TYPED AS ssrsimplrep PRINTED BY pr_ssrsimpl -| [ ssrsimpl_ne(sim) ] -> [ sim ] -| [ ] -> [ Nop ] -END - -(* We must avoid zeta-converting any "let"s created by the "in" tactical. *) - -let safe_simpltac gl = - let cl' = red_safe Tacred.simpl (pf_env gl) (project gl) (pf_concl gl) in - Proofview.V82.of_tactic (convert_concl_no_check cl') gl - -let simpltac = function - | Simpl -> safe_simpltac - | Cut -> tclTRY donetac - | SimplCut -> tclTHEN safe_simpltac (tclTRY donetac) - | Nop -> tclIDTAC - -(** Rewriting direction *) - -let pr_dir = function L2R -> str "->" | R2L -> str "<-" -let pr_rwdir = function L2R -> mt() | R2L -> str "-" - -let rewritetac dir c = - (* Due to the new optional arg ?tac, application shouldn't be too partial *) - Proofview.V82.of_tactic begin - Equality.general_rewrite (dir = L2R) AllOccurrences true false c - end - -let wit_ssrdir = add_genarg "ssrdir" pr_dir - -let dir_org = function L2R -> 1 | R2L -> 2 - -(** Indexes *) - -(* Since SSR indexes are always positive numbers, we use the 0 value *) -(* to encode an omitted index. We reuse the in or_var type, but we *) -(* supply our own interpretation function, which checks for non *) -(* positive values, and allows the use of constr numerals, so that *) -(* e.g., "let n := eval compute in (1 + 3) in (do n!clear)" works. *) - -type ssrindex = int or_var - -let pr_index = function - | ArgVar (_, id) -> pr_id id - | ArgArg n when n > 0 -> int n - | _ -> mt () -let pr_ssrindex _ _ _ = pr_index - -let noindex = ArgArg 0 -let allocc = Some(false,[]) - -let check_index loc i = - if i > 0 then i else loc_error loc "Index not positive" -let mk_index loc = function ArgArg i -> ArgArg (check_index loc i) | iv -> iv - -let interp_index ist gl idx = - Tacmach.project gl, - match idx with - | ArgArg _ -> idx - | ArgVar (loc, id) -> - let i = - try - let v = Id.Map.find id ist.lfun in - begin match Value.to_int v with - | Some i -> i - | None -> - begin match Value.to_constr v with - | Some c -> - let rc = Detyping.detype false [] (pf_env gl) (project gl) c in - begin match Notation.uninterp_prim_token rc with - | _, Numeral bigi -> int_of_string (Bigint.to_string bigi) - | _ -> raise Not_found - end - | None -> raise Not_found - end end - with _ -> loc_error loc "Index not a number" in - ArgArg (check_index loc i) - -ARGUMENT EXTEND ssrindex TYPED AS int_or_var PRINTED BY pr_ssrindex - INTERPRETED BY interp_index -| [ int_or_var(i) ] -> [ mk_index loc i ] -END - -(** Occurrence switch *) - -(* The standard syntax of complemented occurrence lists involves a single *) -(* initial "-", e.g., {-1 3 5}. An initial *) -(* "+" may be used to indicate positive occurrences (the default). The *) -(* "+" is optional, except if the list of occurrences starts with a *) -(* variable or is empty (to avoid confusion with a clear switch). The *) -(* empty positive switch "{+}" selects no occurrences, while the empty *) -(* negative switch "{-}" selects all occurrences explicitly; this is the *) -(* default, but "{-}" prevents the implicit clear, and can be used to *) -(* force dependent elimination -- see ndefectelimtac below. *) - -type ssrocc = occ - -let pr_occ = function - | Some (true, occ) -> str "{-" ++ pr_list pr_spc int occ ++ str "}" - | Some (false, occ) -> str "{+" ++ pr_list pr_spc int occ ++ str "}" - | None -> str "{}" - -let pr_ssrocc _ _ _ = pr_occ - -ARGUMENT EXTEND ssrocc TYPED AS (bool * int list) option PRINTED BY pr_ssrocc -| [ natural(n) natural_list(occ) ] -> [ - Some (false, List.map (check_index loc) (n::occ)) ] -| [ "-" natural_list(occ) ] -> [ Some (true, occ) ] -| [ "+" natural_list(occ) ] -> [ Some (false, occ) ] -END - -let pf_mkprod gl c ?(name=constr_name c) cl = - let t = pf_type_of gl c in - if name <> Anonymous || noccurn 1 cl then mkProd (name, t, cl) else - mkProd (Name (pf_type_id gl t), t, cl) - -let pf_abs_prod name gl c cl = pf_mkprod gl c ~name (subst_term c cl) - -(** Discharge occ switch (combined occurrence / clear switch *) - -type ssrdocc = ssrclear option * ssrocc option - -let mkocc occ = None, occ -let noclr = mkocc None -let mkclr clr = Some clr, None -let nodocc = mkclr [] - -let pr_docc = function - | None, occ -> pr_occ occ - | Some clr, _ -> pr_clear mt clr - -let pr_ssrdocc _ _ _ = pr_docc - -ARGUMENT EXTEND ssrdocc TYPED AS ssrclear option * ssrocc PRINTED BY pr_ssrdocc -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ mkclr clr ] -| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ] -END - -(** View hint database and View application. {{{ ******************************) - -(* There are three databases of lemmas used to mediate the application *) -(* of reflection lemmas: one for forward chaining, one for backward *) -(* chaining, and one for secondary backward chaining. *) - -(* View hints *) - -let rec isCxHoles = function (CHole _, None) :: ch -> isCxHoles ch | _ -> false - -let pr_raw_ssrhintref prc _ _ = function - | CAppExpl (_, (None, r,x), args) when isCHoles args -> - prc (CRef (r,x)) ++ str "|" ++ int (List.length args) - | CApp (_, (_, CRef _), _) as c -> prc c - | CApp (_, (_, c), args) when isCxHoles args -> - prc c ++ str "|" ++ int (List.length args) - | c -> prc c - -let pr_rawhintref = function - | GApp (_, f, args) when isRHoles args -> - pr_glob_constr f ++ str "|" ++ int (List.length args) - | c -> pr_glob_constr c - -let pr_glob_ssrhintref _ _ _ (c, _) = pr_rawhintref c - -let pr_ssrhintref prc _ _ = prc - -let mkhintref loc c n = match c with - | CRef (r,x) -> CAppExpl (loc, (None, r, x), mkCHoles loc n) - | _ -> mkAppC (c, mkCHoles loc n) - -ARGUMENT EXTEND ssrhintref - PRINTED BY pr_ssrhintref - RAW_TYPED AS constr RAW_PRINTED BY pr_raw_ssrhintref - GLOB_TYPED AS constr GLOB_PRINTED BY pr_glob_ssrhintref - | [ constr(c) ] -> [ c ] - | [ constr(c) "|" natural(n) ] -> [ mkhintref loc c n ] -END - -(* View purpose *) - -let pr_viewpos = function - | 0 -> str " for move/" - | 1 -> str " for apply/" - | 2 -> str " for apply//" - | _ -> mt () - -let pr_ssrviewpos _ _ _ = pr_viewpos - -ARGUMENT EXTEND ssrviewpos TYPED AS int PRINTED BY pr_ssrviewpos - | [ "for" "move" "/" ] -> [ 0 ] - | [ "for" "apply" "/" ] -> [ 1 ] - | [ "for" "apply" "/" "/" ] -> [ 2 ] - | [ "for" "apply" "//" ] -> [ 2 ] - | [ ] -> [ 3 ] -END - -let pr_ssrviewposspc _ _ _ i = pr_viewpos i ++ spc () - -ARGUMENT EXTEND ssrviewposspc TYPED AS ssrviewpos PRINTED BY pr_ssrviewposspc - | [ ssrviewpos(i) ] -> [ i ] -END - -(* The table and its display command *) - -let viewtab : glob_constr list array = Array.make 3 [] - -let _ = - let init () = Array.fill viewtab 0 3 [] in - let freeze _ = Array.copy viewtab in - let unfreeze vt = Array.blit vt 0 viewtab 0 3 in - Summary.declare_summary "ssrview" - { Summary.freeze_function = freeze; - Summary.unfreeze_function = unfreeze; - Summary.init_function = init } - -let mapviewpos f n k = if n < 3 then f n else for i = 0 to k - 1 do f i done - -let print_view_hints i = - let pp_viewname = str "Hint View" ++ pr_viewpos i ++ str " " in - let pp_hints = pr_list spc pr_rawhintref viewtab.(i) in - ppnl (pp_viewname ++ hov 0 pp_hints ++ Pp.cut ()) - -VERNAC COMMAND EXTEND PrintView CLASSIFIED AS QUERY -| [ "Print" "Hint" "View" ssrviewpos(i) ] -> [ mapviewpos print_view_hints i 3 ] -END - -(* Populating the table *) - -let cache_viewhint (_, (i, lvh)) = - let mem_raw h = List.exists (Notation_ops.eq_glob_constr h) in - let add_hint h hdb = if mem_raw h hdb then hdb else h :: hdb in - viewtab.(i) <- List.fold_right add_hint lvh viewtab.(i) - -let subst_viewhint ( subst, (i, lvh as ilvh)) = - let lvh' = List.smartmap (Detyping.subst_glob_constr subst) lvh in - if lvh' == lvh then ilvh else i, lvh' - -let classify_viewhint x = Libobject.Substitute x - -let in_viewhint = - Libobject.declare_object {(Libobject.default_object "VIEW_HINTS") with - Libobject.open_function = (fun i o -> if i = 1 then cache_viewhint o); - Libobject.cache_function = cache_viewhint; - Libobject.subst_function = subst_viewhint; - Libobject.classify_function = classify_viewhint } - -let glob_view_hints lvh = - List.map (Constrintern.intern_constr (Global.env ())) lvh - -let add_view_hints lvh i = Lib.add_anonymous_leaf (in_viewhint (i, lvh)) - -VERNAC COMMAND EXTEND HintView CLASSIFIED AS QUERY - | [ "Hint" "View" ssrviewposspc(n) ne_ssrhintref_list(lvh) ] -> - [ mapviewpos (add_view_hints (glob_view_hints lvh)) n 2 ] -END - -(** Views *) - -(* Views for the "move" and "case" commands are actually open *) -(* terms, but this is handled by interp_view, which is called *) -(* by interp_casearg. We use lists, to support the *) -(* "double-view" feature of the apply command. *) - -(* type ssrview = ssrterm list *) - -let pr_view = pr_list mt (fun c -> str "/" ++ pr_term c) - -let pr_ssrview _ _ _ = pr_view - -ARGUMENT EXTEND ssrview TYPED AS ssrterm list - PRINTED BY pr_ssrview -| [ "/" constr(c) ] -> [ [mk_term ' ' c] ] -| [ "/" constr(c) ssrview(w) ] -> [ (mk_term ' ' c) :: w ] -END - -(* There are two ways of "applying" a view to term: *) -(* 1- using a view hint if the view is an instance of some *) -(* (reflection) inductive predicate. *) -(* 2- applying the view if it coerces to a function, adding *) -(* implicit arguments. *) -(* They require guessing the view hints and the number of *) -(* implicits, respectively, which we do by brute force. *) - -let view_error s gv = - errorstrm (str ("Cannot " ^ s ^ " view ") ++ pr_term gv) - -let interp_view ist si env sigma gv rid = - match intern_term ist sigma env gv with - | GApp (loc, GHole _, rargs) -> - let rv = GApp (loc, rid, rargs) in - snd (interp_open_constr ist (re_sig si sigma) (rv, None)) - | rv -> - let interp rc rargs = - interp_open_constr ist (re_sig si sigma) (mkRApp rc rargs, None) in - let rec simple_view rargs n = - if n < 0 then view_error "use" gv else - try interp rv rargs with _ -> simple_view (mkRHole :: rargs) (n - 1) in - let view_nbimps = interp_view_nbimps ist (re_sig si sigma) rv in - let view_args = [mkRApp rv (mkRHoles view_nbimps); rid] in - let rec view_with = function - | [] -> simple_view [rid] (interp_nbargs ist (re_sig si sigma) rv) - | hint :: hints -> try interp hint view_args with _ -> view_with hints in - snd (view_with (if view_nbimps < 0 then [] else viewtab.(0))) - -let top_id = mk_internal_id "top assumption" - -let with_view ist si env gl0 c name cl prune = - let c2r ist x = { ist with lfun = - Id.Map.add top_id (Value.of_constr x) ist.lfun } in - let rec loop (sigma, c') = function - | f :: view -> - let rid, ist = match kind_of_term c' with - | Var id -> mkRVar id, ist - | _ -> mkRltacVar top_id, c2r ist c' in - loop (interp_view ist si env sigma f rid) view - | [] -> - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - let c' = Reductionops.nf_evar sigma c' in - let n, c', _, ucst = pf_abs_evars gl0 (sigma, c') in - let c' = if not prune then c' else pf_abs_cterm gl0 n c' in - let gl0 = pf_merge_uc ucst gl0 in - pf_abs_prod name gl0 c' (prod_applist cl [c]), c', pf_merge_uc_of sigma gl0 - in loop - -let pf_with_view ist gl (prune, view) cl c = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - with_view ist si env gl c (constr_name c) cl prune (sigma, c) view -(* }}} *) - -(** Extended intro patterns {{{ ***********************************************) - -type ssrtermrep = char * glob_constr_and_expr -type ssripat = - | IpatSimpl of ssrclear * ssrsimpl - | IpatId of identifier - | IpatWild - | IpatCase of ssripats list - | IpatRw of ssrocc * ssrdir - | IpatAll - | IpatAnon - | IpatView of ssrtermrep list - | IpatNoop - | IpatNewHidden of identifier list -and ssripats = ssripat list - -let remove_loc = snd - -let rec ipat_of_intro_pattern = function - | IntroNaming (IntroIdentifier id) -> IpatId id - | IntroAction IntroWildcard -> IpatWild - | IntroAction (IntroOrAndPattern iorpat) -> - IpatCase - (List.map (List.map ipat_of_intro_pattern) - (List.map (List.map remove_loc) iorpat)) - | IntroNaming IntroAnonymous -> IpatAnon - | IntroAction (IntroRewrite b) -> IpatRw (allocc, if b then L2R else R2L) - | IntroNaming (IntroFresh id) -> IpatAnon - | IntroAction (IntroApplyOn _) -> (* to do *) Errors.error "TO DO" - | IntroAction (IntroInjection ips) -> - IpatCase [List.map ipat_of_intro_pattern (List.map remove_loc ips)] - | IntroForthcoming _ -> (* Unable to determine which kind of ipat interp_introid could return [HH] *) - assert false - -let rec pr_ipat = function - | IpatId id -> pr_id id - | IpatSimpl (clr, sim) -> pr_clear mt clr ++ pr_simpl sim - | IpatCase iorpat -> hov 1 (str "[" ++ pr_iorpat iorpat ++ str "]") - | IpatRw (occ, dir) -> pr_occ occ ++ pr_dir dir - | IpatAll -> str "*" - | IpatWild -> str "_" - | IpatAnon -> str "?" - | IpatView v -> pr_view v - | IpatNoop -> str "-" - | IpatNewHidden l -> str "[:" ++ pr_list spc pr_id l ++ str "]" -and pr_iorpat iorpat = pr_list pr_bar pr_ipats iorpat -and pr_ipats ipats = pr_list spc pr_ipat ipats - -let wit_ssripatrep = add_genarg "ssripatrep" pr_ipat - -let pr_ssripat _ _ _ = pr_ipat -let pr_ssripats _ _ _ = pr_ipats -let pr_ssriorpat _ _ _ = pr_iorpat - -let intern_ipat ist ipat = - let rec check_pat = function - | IpatSimpl (clr, _) -> ignore (List.map (intern_hyp ist) clr) - | IpatCase iorpat -> List.iter (List.iter check_pat) iorpat - | _ -> () in - check_pat ipat; ipat - -let intern_ipats ist = List.map (intern_ipat ist) - -let interp_introid ist gl id = - try IntroNaming (IntroIdentifier (hyp_id (snd (interp_hyp ist gl (SsrHyp (dummy_loc, id)))))) - with _ -> snd(snd (interp_intro_pattern ist gl (dummy_loc,IntroNaming (IntroIdentifier id)))) - -let rec add_intro_pattern_hyps (loc, ipat) hyps = match ipat with - | IntroNaming (IntroIdentifier id) -> - if not_section_id id then SsrHyp (loc, id) :: hyps else - hyp_err loc "Can't delete section hypothesis " id - | IntroAction IntroWildcard -> hyps - | IntroAction (IntroOrAndPattern iorpat) -> - List.fold_right (List.fold_right add_intro_pattern_hyps) iorpat hyps - | IntroNaming IntroAnonymous -> [] - | IntroNaming (IntroFresh _) -> [] - | IntroAction (IntroRewrite _) -> hyps - | IntroAction (IntroInjection ips) -> List.fold_right add_intro_pattern_hyps ips hyps - | IntroAction (IntroApplyOn (c,pat)) -> add_intro_pattern_hyps pat hyps - | IntroForthcoming _ -> - (* As in ipat_of_intro_pattern, was unable to determine which kind - of ipat interp_introid could return [HH] *) assert false - -let rec interp_ipat ist gl = - let ltacvar id = Id.Map.mem id ist.lfun in - let rec interp = function - | IpatId id when ltacvar id -> - ipat_of_intro_pattern (interp_introid ist gl id) - | IpatSimpl (clr, sim) -> - let add_hyps (SsrHyp (loc, id) as hyp) hyps = - if not (ltacvar id) then hyp :: hyps else - add_intro_pattern_hyps (loc, (interp_introid ist gl id)) hyps in - let clr' = List.fold_right add_hyps clr [] in - check_hyps_uniq [] clr'; IpatSimpl (clr', sim) - | IpatCase iorpat -> IpatCase (List.map (List.map interp) iorpat) - | IpatNewHidden l -> - IpatNewHidden - (List.map (function - | IntroNaming (IntroIdentifier id) -> id - | _ -> assert false) - (List.map (interp_introid ist gl) l)) - | ipat -> ipat in - interp - -let interp_ipats ist gl l = project gl, List.map (interp_ipat ist gl) l - -let pushIpatRw = function - | pats :: orpat -> (IpatRw (allocc, L2R) :: pats) :: orpat - | [] -> [] - -let pushIpatNoop = function - | pats :: orpat -> (IpatNoop :: pats) :: orpat - | [] -> [] - -ARGUMENT EXTEND ssripat TYPED AS ssripatrep list PRINTED BY pr_ssripats - INTERPRETED BY interp_ipats - GLOBALIZED BY intern_ipats - | [ "_" ] -> [ [IpatWild] ] - | [ "*" ] -> [ [IpatAll] ] - | [ ident(id) ] -> [ [IpatId id] ] - | [ "?" ] -> [ [IpatAnon] ] - | [ ssrsimpl_ne(sim) ] -> [ [IpatSimpl ([], sim)] ] - | [ ssrdocc(occ) "->" ] -> [ match occ with - | None, occ -> [IpatRw (occ, L2R)] - | Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, L2R)]] - | [ ssrdocc(occ) "<-" ] -> [ match occ with - | None, occ -> [IpatRw (occ, R2L)] - | Some clr, _ -> [IpatSimpl (clr, Nop); IpatRw (allocc, R2L)]] - | [ ssrdocc(occ) ] -> [ match occ with - | Some cl, _ -> check_hyps_uniq [] cl; [IpatSimpl (cl, Nop)] - | _ -> loc_error loc "Only identifiers are allowed here"] - | [ "->" ] -> [ [IpatRw (allocc, L2R)] ] - | [ "<-" ] -> [ [IpatRw (allocc, R2L)] ] - | [ "-" ] -> [ [IpatNoop] ] - | [ "-/" "=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ] - | [ "-/=" ] -> [ [IpatNoop;IpatSimpl([],Simpl)] ] - | [ "-/" "/" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ] - | [ "-//" ] -> [ [IpatNoop;IpatSimpl([],Cut)] ] - | [ "-/" "/=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ "-//" "=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ "-//=" ] -> [ [IpatNoop;IpatSimpl([],SimplCut)] ] - | [ ssrview(v) ] -> [ [IpatView v] ] - | [ "[" ":" ident_list(idl) "]" ] -> [ [IpatNewHidden idl] ] -END - -ARGUMENT EXTEND ssripats TYPED AS ssripat PRINTED BY pr_ssripats - | [ ssripat(i) ssripats(tl) ] -> [ i @ tl ] - | [ ] -> [ [] ] -END - -ARGUMENT EXTEND ssriorpat TYPED AS ssripat list PRINTED BY pr_ssriorpat -| [ ssripats(pats) "|" ssriorpat(orpat) ] -> [ pats :: orpat ] -| [ ssripats(pats) "|-" ">" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ] -| [ ssripats(pats) "|-" ssriorpat(orpat) ] -> [ pats :: pushIpatNoop orpat ] -| [ ssripats(pats) "|->" ssriorpat(orpat) ] -> [ pats :: pushIpatRw orpat ] -| [ ssripats(pats) "||" ssriorpat(orpat) ] -> [ pats :: [] :: orpat ] -| [ ssripats(pats) "|||" ssriorpat(orpat) ] -> [ pats :: [] :: [] :: orpat ] -| [ ssripats(pats) "||||" ssriorpat(orpat) ] -> [ [pats; []; []; []] @ orpat ] -| [ ssripats(pats) ] -> [ [pats] ] -END - -let reject_ssrhid strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "[" -> - (match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD ":" -> raise Stream.Failure - | _ -> ()) - | _ -> () - -let test_nohidden = Gram.Entry.of_parser "test_ssrhid" reject_ssrhid - -ARGUMENT EXTEND ssrcpat TYPED AS ssripatrep PRINTED BY pr_ssripat - | [ "YouShouldNotTypeThis" ssriorpat(x) ] -> [ IpatCase x ] -END - -GEXTEND Gram - GLOBAL: ssrcpat; - ssrcpat: [[ test_nohidden; "["; iorpat = ssriorpat; "]" -> IpatCase iorpat ]]; -END - -GEXTEND Gram - GLOBAL: ssripat; - ssripat: [[ pat = ssrcpat -> [pat] ]]; -END - -ARGUMENT EXTEND ssripats_ne TYPED AS ssripat PRINTED BY pr_ssripats - | [ ssripat(i) ssripats(tl) ] -> [ i @ tl ] -END - -(* subsets of patterns *) -let check_ssrhpats loc w_binders ipats = - let err_loc s = Errors.user_err_loc (loc, "ssreflect", s) in - let clr, ipats = - let rec aux clr = function - | IpatSimpl (cl, Nop) :: tl -> aux (clr @ cl) tl - | IpatSimpl (cl, sim) :: tl -> clr @ cl, IpatSimpl ([], sim) :: tl - | tl -> clr, tl - in aux [] ipats in - let simpl, ipats = - match List.rev ipats with - | IpatSimpl ([],_) as s :: tl -> [s], List.rev tl - | _ -> [], ipats in - if simpl <> [] && not w_binders then - err_loc (str "No s-item allowed here: " ++ pr_ipats simpl); - let ipat, binders = - let rec loop ipat = function - | [] -> ipat, [] - | ( IpatId _| IpatAnon| IpatCase _| IpatRw _ as i) :: tl -> - if w_binders then - if simpl <> [] && tl <> [] then - err_loc(str"binders XOR s-item allowed here: "++pr_ipats(tl@simpl)) - else if not (List.for_all (function IpatId _ -> true | _ -> false) tl) - then err_loc (str "Only binders allowed here: " ++ pr_ipats tl) - else ipat @ [i], tl - else - if tl = [] then ipat @ [i], [] - else err_loc (str "No binder or s-item allowed here: " ++ pr_ipats tl) - | hd :: tl -> loop (ipat @ [hd]) tl - in loop [] ipats in - ((clr, ipat), binders), simpl - -let single loc = - function [x] -> x | _ -> loc_error loc "Only one intro pattern is allowed" - -let pr_hpats (((clr, ipat), binders), simpl) = - pr_clear mt clr ++ pr_ipats ipat ++ pr_ipats binders ++ pr_ipats simpl -let pr_ssrhpats _ _ _ = pr_hpats -let pr_ssrhpats_wtransp _ _ _ (_, x) = pr_hpats x - -ARGUMENT EXTEND ssrhpats TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat -PRINTED BY pr_ssrhpats - | [ ssripats(i) ] -> [ check_ssrhpats loc true i ] -END - -ARGUMENT EXTEND ssrhpats_wtransp - TYPED AS bool * (((ssrclear * ssripat) * ssripat) * ssripat) - PRINTED BY pr_ssrhpats_wtransp - | [ ssripats(i) ] -> [ false,check_ssrhpats loc true i ] - | [ ssripats(i) "@" ssripats(j) ] -> [ true,check_ssrhpats loc true (i @ j) ] -END - -ARGUMENT EXTEND ssrhpats_nobs -TYPED AS ((ssrclear * ssripat) * ssripat) * ssripat PRINTED BY pr_ssrhpats - | [ ssripats(i) ] -> [ check_ssrhpats loc false i ] -END - -ARGUMENT EXTEND ssrrpat TYPED AS ssripatrep PRINTED BY pr_ssripat - | [ "->" ] -> [ IpatRw (allocc, L2R) ] - | [ "<-" ] -> [ IpatRw (allocc, R2L) ] -END - -type ssrintros = ssripats - -let pr_intros sep intrs = - if intrs = [] then mt() else sep () ++ str "=> " ++ pr_ipats intrs -let pr_ssrintros _ _ _ = pr_intros mt - -ARGUMENT EXTEND ssrintros_ne TYPED AS ssripat - PRINTED BY pr_ssrintros - | [ "=>" ssripats_ne(pats) ] -> [ pats ] -END - -ARGUMENT EXTEND ssrintros TYPED AS ssrintros_ne PRINTED BY pr_ssrintros - | [ ssrintros_ne(intrs) ] -> [ intrs ] - | [ ] -> [ [] ] -END - -let injecteq_id = mk_internal_id "injection equation" - -let pf_nb_prod gl = nb_prod (pf_concl gl) - -let rev_id = mk_internal_id "rev concl" - -let revtoptac n0 gl = - let n = pf_nb_prod gl - n0 in - let dc, cl = decompose_prod_n n (pf_concl gl) in - let dc' = dc @ [Name rev_id, compose_prod (List.rev dc) cl] in - let f = compose_lam dc' (mkEtaApp (mkRel (n + 1)) (-n) 1) in - refine (mkApp (f, [|Evarutil.mk_new_meta ()|])) gl - -let equality_inj l b id c gl = - let msg = ref "" in - try Proofview.V82.of_tactic (Equality.inj l b None c) gl - with - | Compat.Exc_located(_,Errors.UserError (_,s)) - | Errors.UserError (_,s) - when msg := Pp.string_of_ppcmds s; - !msg = "Not a projectable equality but a discriminable one." || - !msg = "Nothing to inject." -> - msg_warning (str !msg); - discharge_hyp (id, (id, "")) gl - -let injectidl2rtac id c gl = - tclTHEN (equality_inj None true id c) (revtoptac (pf_nb_prod gl)) gl - -let injectl2rtac c = match kind_of_term c with -| Var id -> injectidl2rtac id (mkVar id, NoBindings) -| _ -> - let id = injecteq_id in - tclTHENLIST [havetac id c; injectidl2rtac id (mkVar id, NoBindings); clear [id]] - -let is_injection_case c gl = - let (mind,_), _ = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in - eq_gr (IndRef mind) (build_coq_eq ()) - -let perform_injection c gl = - let mind, t = pf_reduce_to_quantified_ind gl (pf_type_of gl c) in - let dc, eqt = decompose_prod t in - if dc = [] then injectl2rtac c gl else - if not (closed0 eqt) then - Errors.error "can't decompose a quantified equality" else - let cl = pf_concl gl in let n = List.length dc in - let c_eq = mkEtaApp c n 2 in - let cl1 = mkLambda (Anonymous, mkArrow eqt cl, mkApp (mkRel 1, [|c_eq|])) in - let id = injecteq_id in - let id_with_ebind = (mkVar id, NoBindings) in - let injtac = tclTHEN (introid id) (injectidl2rtac id id_with_ebind) in - tclTHENLAST (Proofview.V82.of_tactic (apply (compose_lam dc cl1))) injtac gl - -let simplest_newcase_ref = ref (fun t gl -> assert false) -let simplest_newcase x gl = !simplest_newcase_ref x gl - -let ssrscasetac c gl = - if is_injection_case c gl then perform_injection c gl - else simplest_newcase c gl - -let intro_all gl = - let dc, _ = Term.decompose_prod_assum (pf_concl gl) in - tclTHENLIST (List.map anontac (List.rev dc)) gl - -let rec intro_anon gl = - try anontac (List.hd (fst (Term.decompose_prod_n_assum 1 (pf_concl gl)))) gl - with err0 -> try tclTHEN red_in_concl intro_anon gl with _ -> raise err0 - (* with _ -> Errors.error "No product even after reduction" *) - -let with_top tac = - tclTHENLIST [introid top_id; tac (mkVar top_id); clear [top_id]] - -let rec mapLR f = function [] -> [] | x :: s -> let y = f x in y :: mapLR f s - -let wild_ids = ref [] - -let new_wild_id () = - let i = 1 + List.length !wild_ids in - let id = mk_wildcard_id i in - wild_ids := id :: !wild_ids; - id - -let clear_wilds wilds gl = - clear (List.filter (fun id -> List.mem id wilds) (pf_ids_of_hyps gl)) gl - -let clear_with_wilds wilds clr0 gl = - let extend_clr clr (id, _, _ as nd) = - if List.mem id clr || not (List.mem id wilds) then clr else - let vars = global_vars_set_of_decl (pf_env gl) nd in - let occurs id' = Idset.mem id' vars in - if List.exists occurs clr then id :: clr else clr in - clear (Context.fold_named_context_reverse extend_clr ~init:clr0 (pf_hyps gl)) gl - -let tclTHENS_nonstrict tac tacl taclname gl = - let tacres = tac gl in - let n_gls = List.length (sig_it tacres) in - let n_tac = List.length tacl in - if n_gls = n_tac then tclTHENS (fun _ -> tacres) tacl gl else - if n_gls = 0 then tacres else - let pr_only n1 n2 = if n1 < n2 then str "only " else mt () in - let pr_nb n1 n2 name = - pr_only n1 n2 ++ int n1 ++ str (" " ^ String.plural n1 name) in - errorstrm (pr_nb n_tac n_gls taclname ++ spc () - ++ str "for " ++ pr_nb n_gls n_tac "subgoal") - -(* Forward reference to extended rewrite *) -let ipat_rewritetac = ref (fun _ -> rewritetac) - -let rec is_name_in_ipats name = function - | IpatSimpl(clr,_) :: tl -> - List.exists (function SsrHyp(_,id) -> id = name) clr - || is_name_in_ipats name tl - | IpatId id :: tl -> id = name || is_name_in_ipats name tl - | IpatCase l :: tl -> is_name_in_ipats name (List.flatten l @ tl) - | _ :: tl -> is_name_in_ipats name tl - | [] -> false - -let move_top_with_view = ref (fun _ -> assert false) - -let rec nat_of_n n = - if n = 0 then mkConstruct path_of_O - else mkApp (mkConstruct path_of_S, [|nat_of_n (n-1)|]) - -let ssr_abstract_id = Summary.ref "~name:SSR:abstractid" 0 - -let mk_abstract_id () = incr ssr_abstract_id; nat_of_n !ssr_abstract_id - -let ssrmkabs id gl = - let env, concl = pf_env gl, pf_concl gl in - let step sigma = - let sigma, abstract_proof, abstract_ty = - let sigma, (ty, _) = - Evarutil.new_type_evar env sigma Evd.univ_flexible_alg in - let sigma, ablock = mkSsrConst "abstract_lock" env sigma in - let sigma, lock = Evarutil.new_evar env sigma ablock in - let sigma, abstract = mkSsrConst "abstract" env sigma in - let abstract_ty = mkApp(abstract, [|ty;mk_abstract_id ();lock|]) in - let sigma, m = Evarutil.new_evar env sigma abstract_ty in - sigma, m, abstract_ty in - let sigma, kont = - let rd = Name id, None, abstract_ty in - Evarutil.new_evar (Environ.push_rel rd env) sigma concl in - pp(lazy(pr_constr concl)); - let term = mkApp (mkLambda(Name id,abstract_ty,kont) ,[|abstract_proof|]) in - let sigma, _ = Typing.e_type_of env sigma term in - sigma, term in - Proofview.V82.of_tactic - (Proofview.tclTHEN - (Tactics.New.refine step) - (Proofview.tclFOCUS 1 3 Proofview.shelve)) gl - -let ssrmkabstac ids = - List.fold_right (fun id tac -> tclTHENFIRST (ssrmkabs id) tac) ids tclIDTAC - -(* introstac: for "move" and "clear", tclEQINTROS: for "case" and "elim" *) -(* This block hides the spaghetti-code needed to implement the only two *) -(* tactics that should be used to process intro patters. *) -(* The difficulty is that we don't want to always rename, but we can *) -(* compute needeed renamings only at runtime, so we theread a tree like *) -(* imperativestructure so that outer renamigs are inherited by inner *) -(* ipts and that the cler performed at the end of ipatstac clears hyps *) -(* eventually renamed at runtime. *) -(* TODO: hide wild_ids in this block too *) -let introstac, tclEQINTROS = - let rec map_acc_k f k = function - | [] -> (* tricky: we save wilds now, we get to_cler (aka k) later *) - let clear_ww = clear_with_wilds !wild_ids in - [fun gl -> clear_ww (hyps_ids (List.flatten (List.map (!) k))) gl] - | x :: xs -> let k, x = f k xs x in x :: map_acc_k f k xs in - let rename force to_clr rest clr gl = - let hyps = pf_hyps gl in - pp(lazy(str"rename " ++ pr_clear spc clr)); - let () = if not force then List.iter (check_hyp_exists hyps) clr in - if List.exists (fun x -> force || is_name_in_ipats (hyp_id x) rest) clr then - let ren_clr, ren = - List.split (List.map (fun x -> let x = hyp_id x in - let x' = mk_anon_id (string_of_id x) gl in - SsrHyp (dummy_loc, x'), (x, x')) clr) in - let () = to_clr := ren_clr in - Proofview.V82.of_tactic (rename_hyp ren) gl - else - let () = to_clr := clr in - tclIDTAC gl in - let rec ipattac ?ist k rest = function - | IpatWild -> k, introid (new_wild_id ()) - | IpatCase iorpat -> k, tclIORPAT ?ist k (with_top ssrscasetac) iorpat - | IpatRw (occ, dir) -> k, with_top (!ipat_rewritetac occ dir) - | IpatId id -> k, introid id - | IpatNewHidden idl -> k, ssrmkabstac idl - | IpatSimpl (clr, sim) -> - let to_clr = ref [] in - to_clr :: k, tclTHEN (rename false to_clr rest clr) (simpltac sim) - | IpatAll -> k, intro_all - | IpatAnon -> k, intro_anon - | IpatNoop -> k, tclIDTAC - | IpatView v -> match ist with - | None -> anomaly "ipattac with no ist but view" - | Some ist -> match rest with - | (IpatCase _ | IpatRw _)::_ -> - let to_clr = ref [] in let top_id = ref top_id in - to_clr :: k, - tclTHEN - (!move_top_with_view false top_id (false,v) ist) - (fun gl -> - rename true to_clr rest [SsrHyp (dummy_loc, !top_id)]gl) - | _ -> k, !move_top_with_view true (ref top_id) (true,v) ist - and tclIORPAT ?ist k tac = function - | [[]] -> tac - | orp -> - tclTHENS_nonstrict tac (mapLR (ipatstac ?ist k) orp) "intro pattern" - and ipatstac ?ist k ipats = - tclTHENLIST (map_acc_k (ipattac ?ist) k ipats) in - let introstac ?ist ipats = - wild_ids := []; - let tac = ipatstac ?ist [] ipats in - tclTHENLIST [tac; clear_wilds !wild_ids] in - let tclEQINTROS ?ist tac eqtac ipats = - wild_ids := []; - let rec split_itacs to_clr tac' = function - | (IpatSimpl _ as spat) :: ipats' -> - let to_clr, tac = ipattac ?ist to_clr ipats' spat in - split_itacs to_clr (tclTHEN tac' tac) ipats' - | IpatCase iorpat :: ipats' -> - to_clr, tclIORPAT ?ist to_clr tac' iorpat, ipats' - | ipats' -> to_clr, tac', ipats' in - let to_clr, tac1, ipats' = split_itacs [] tac ipats in - let tac2 = ipatstac ?ist to_clr ipats' in - tclTHENLIST [tac1; eqtac; tac2; clear_wilds !wild_ids] in - introstac, tclEQINTROS -;; - -let rec eqmoveipats eqpat = function - | (IpatSimpl _ as ipat) :: ipats -> ipat :: eqmoveipats eqpat ipats - | (IpatAll :: _ | []) as ipats -> IpatAnon :: eqpat :: ipats - | ipat :: ipats -> ipat :: eqpat :: ipats - -(* General case *) -let tclINTROS ist tac ipats = - tclEQINTROS ~ist (tac ist) tclIDTAC ipats - -(** The "=>" tactical *) - -let ssrintros_sep = - let atom_sep = function - | TacSplit (_, [NoBindings]) -> mt - (* | TacExtend (_, "ssrapply", []) -> mt *) - | _ -> spc in - function - | TacId [] -> mt - | TacArg (_, Tacexp _) -> mt - | TacArg (_, Reference _) -> mt - | TacAtom (_, atom) -> atom_sep atom - | _ -> spc - -let pr_ssrintrosarg _ _ prt (tac, ipats) = - prt tacltop tac ++ pr_intros (ssrintros_sep tac) ipats - -ARGUMENT EXTEND ssrintrosarg TYPED AS tactic * ssrintros - PRINTED BY pr_ssrintrosarg -| [ "YouShouldNotTypeThis" ssrtacarg(arg) ssrintros_ne(ipats) ] -> [ arg, ipats ] -END - -TACTIC EXTEND ssrtclintros -| [ "YouShouldNotTypeThis" ssrintrosarg(arg) ] -> - [ let tac, intros = arg in - Proofview.V82.tactic (tclINTROS ist (fun ist -> ssrevaltac ist tac) intros) ] -END -set_pr_ssrtac "tclintros" 0 [ArgSsr "introsarg"] - -let tclintros_expr loc tac ipats = - let args = [in_gen (rawwit wit_ssrintrosarg) (tac, ipats)] in - ssrtac_expr loc "tclintros" args - -GEXTEND Gram - GLOBAL: tactic_expr; - tactic_expr: LEVEL "1" [ RIGHTA - [ tac = tactic_expr; intros = ssrintros_ne -> tclintros_expr !@loc tac intros - ] ]; -END -(* }}} *) - -(** Multipliers {{{ ***********************************************************) - -(* modality *) - -type ssrmmod = May | Must | Once - -let pr_mmod = function May -> str "?" | Must -> str "!" | Once -> mt () - -let wit_ssrmmod = add_genarg "ssrmmod" pr_mmod -let ssrmmod = Pcoq.create_generic_entry "ssrmmod" (Genarg.rawwit wit_ssrmmod) -GEXTEND Gram - GLOBAL: ssrmmod; - ssrmmod: [[ "!" -> Must | LEFTQMARK -> May | "?" -> May]]; -END - -(* tactical *) - -let tclID tac = tac - -let tclDOTRY n tac = - if n <= 0 then tclIDTAC else - let rec loop i gl = - if i = n then tclTRY tac gl else - tclTRY (tclTHEN tac (loop (i + 1))) gl in - loop 1 - -let tclDO n tac = - let prefix i = str"At iteration " ++ int i ++ str": " in - let tac_err_at i gl = - try tac gl - with - | Errors.UserError (l, s) as e -> - let _, info = Errors.push e in - let e' = Errors.UserError (l, prefix i ++ s) in - Util.iraise (e', info) - | Compat.Exc_located(loc, Errors.UserError (l, s)) -> - raise (Compat.Exc_located(loc, Errors.UserError (l, prefix i ++ s))) in - let rec loop i gl = - if i = n then tac_err_at i gl else - (tclTHEN (tac_err_at i) (loop (i + 1))) gl in - loop 1 - -let tclMULT = function - | 0, May -> tclREPEAT - | 1, May -> tclTRY - | n, May -> tclDOTRY n - | 0, Must -> tclAT_LEAST_ONCE - | n, Must when n > 1 -> tclDO n - | _ -> tclID - -(** The "do" tactical. ********************************************************) - -(* -type ssrdoarg = ((ssrindex * ssrmmod) * ssrhint) * ssrclauses -*) - -let pr_ssrdoarg prc _ prt (((n, m), tac), clauses) = - pr_index n ++ pr_mmod m ++ pr_hintarg prt tac ++ pr_clauses clauses - -ARGUMENT EXTEND ssrdoarg - TYPED AS ((ssrindex * ssrmmod) * ssrhintarg) * ssrclauses - PRINTED BY pr_ssrdoarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let ssrdotac ist (((n, m), tac), clauses) = - let mul = get_index n, m in - tclCLAUSES ist (tclMULT mul (hinttac ist false tac)) clauses - -TACTIC EXTEND ssrtcldo -| [ "YouShouldNotTypeThis" "do" ssrdoarg(arg) ] -> [ Proofview.V82.tactic (ssrdotac ist arg) ] -END -set_pr_ssrtac "tcldo" 3 [ArgSep "do "; ArgSsr "doarg"] - -let ssrdotac_expr loc n m tac clauses = - let arg = ((n, m), tac), clauses in - ssrtac_expr loc "tcldo" [in_gen (rawwit wit_ssrdoarg) arg] - -GEXTEND Gram - GLOBAL: tactic_expr; - ssrdotac: [ - [ tac = tactic_expr LEVEL "3" -> mk_hint tac - | tacs = ssrortacarg -> tacs - ] ]; - tactic_expr: LEVEL "3" [ RIGHTA - [ IDENT "do"; m = ssrmmod; tac = ssrdotac; clauses = ssrclauses -> - ssrdotac_expr !@loc noindex m tac clauses - | IDENT "do"; tac = ssrortacarg; clauses = ssrclauses -> - ssrdotac_expr !@loc noindex Once tac clauses - | IDENT "do"; n = int_or_var; m = ssrmmod; - tac = ssrdotac; clauses = ssrclauses -> - ssrdotac_expr !@loc (mk_index !@loc n) m tac clauses - ] ]; -END -(* }}} *) - -(** The "first" and "last" tacticals. {{{ *************************************) - -(* type ssrseqarg = ssrindex * (ssrtacarg * ssrtac option) *) - -let pr_seqtacarg prt = function - | (is_first, []), _ -> str (if is_first then "first" else "last") - | tac, Some dtac -> - hv 0 (pr_hintarg prt tac ++ spc() ++ str "|| " ++ prt tacltop dtac) - | tac, _ -> pr_hintarg prt tac - -let pr_ssrseqarg _ _ prt = function - | ArgArg 0, tac -> pr_seqtacarg prt tac - | i, tac -> pr_index i ++ str " " ++ pr_seqtacarg prt tac - -(* We must parse the index separately to resolve the conflict with *) -(* an unindexed tactic. *) -ARGUMENT EXTEND ssrseqarg TYPED AS ssrindex * (ssrhintarg * tactic option) - PRINTED BY pr_ssrseqarg -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let sq_brace_tacnames = - ["first"; "solve"; "do"; "rewrite"; "have"; "suffices"; "wlog"] - (* "by" is a keyword *) -let accept_ssrseqvar strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT id when not (List.mem id sq_brace_tacnames) -> - accept_before_syms_or_ids ["["] ["first";"last"] strm - | _ -> raise Stream.Failure - -let test_ssrseqvar = Gram.Entry.of_parser "test_ssrseqvar" accept_ssrseqvar - -let swaptacarg (loc, b) = (b, []), Some (TacId []) - -let check_seqtacarg dir arg = match snd arg, dir with - | ((true, []), Some (TacAtom (loc, _))), L2R -> - loc_error loc "expected \"last\"" - | ((false, []), Some (TacAtom (loc, _))), R2L -> - loc_error loc "expected \"first\"" - | _, _ -> arg - -let ssrorelse = Gram.Entry.create "ssrorelse" -GEXTEND Gram - GLOBAL: ssrorelse ssrseqarg; - ssrseqidx: [ - [ test_ssrseqvar; id = Prim.ident -> ArgVar (!@loc, id) - | n = Prim.natural -> ArgArg (check_index !@loc n) - ] ]; - ssrswap: [[ IDENT "first" -> !@loc, true | IDENT "last" -> !@loc, false ]]; - ssrorelse: [[ "||"; tac = tactic_expr LEVEL "2" -> tac ]]; - ssrseqarg: [ - [ arg = ssrswap -> noindex, swaptacarg arg - | i = ssrseqidx; tac = ssrortacarg; def = OPT ssrorelse -> i, (tac, def) - | i = ssrseqidx; arg = ssrswap -> i, swaptacarg arg - | tac = tactic_expr LEVEL "3" -> noindex, (mk_hint tac, None) - ] ]; -END - -let tclPERM perm tac gls = - let subgls = tac gls in - let sigma, subgll = Refiner.unpackage subgls in - let subgll' = perm subgll in - Refiner.repackage sigma subgll' -(* -let tclPERM perm tac gls = - let mkpft n g r = - {Proof_type.open_subgoals = n; Proof_type.goal = g; Proof_type.ref = r} in - let mkleaf g = mkpft 0 g None in - let mkprpft n g pr a = mkpft n g (Some (Proof_type.Prim pr, a)) in - let mkrpft n g c = mkprpft n g (Proof_type.Refine c) in - let mkipft n g = - let mki pft (id, _, _ as d) = - let g' = {g with evar_concl = mkNamedProd_or_LetIn d g.evar_concl} in - mkprpft n g' (Proof_type.Intro id) [pft] in - List.fold_left mki in - let gl = Refiner.sig_it gls in - let mkhyp subgl = - let rec chop_section = function - | (x, _, _ as d) :: e when not_section_id x -> d :: chop_section e - | _ -> [] in - let lhyps = Environ.named_context_of_val subgl.evar_hyps in - mk_perm_id (), subgl, chop_section lhyps in - let mkpfvar (hyp, subgl, lhyps) = - let mkarg args (lhyp, body, _) = - if body = None then mkVar lhyp :: args else args in - mkrpft 0 subgl (applist (mkVar hyp, List.fold_left mkarg [] lhyps)) [] in - let mkpfleaf (_, subgl, lhyps) = mkipft 1 gl (mkleaf subgl) lhyps in - let mkmeta _ = Evarutil.mk_new_meta () in - let mkhypdecl (hyp, subgl, lhyps) = - hyp, None, it_mkNamedProd_or_LetIn subgl.evar_concl lhyps in - let subgls, v as res0 = tac gls in - let sigma, subgll = Refiner.unpackage subgls in - let n = List.length subgll in if n = 0 then res0 else - let hyps = List.map mkhyp subgll in - let hyp_decls = List.map mkhypdecl (List.rev (perm hyps)) in - let c = applist (mkmeta (), List.map mkmeta subgll) in - let pft0 = mkipft 0 gl (v (List.map mkpfvar hyps)) hyp_decls in - let pft1 = mkrpft n gl c (pft0 :: List.map mkpfleaf (perm hyps)) in - let subgll', v' = Refiner.frontier pft1 in - Refiner.repackage sigma subgll', v' -*) - -let tclREV tac gl = tclPERM List.rev tac gl - -let rot_hyps dir i hyps = - let n = List.length hyps in - if i = 0 then List.rev hyps else - if i > n then Errors.error "Not enough subgoals" else - let rec rot i l_hyps = function - | hyp :: hyps' when i > 0 -> rot (i - 1) (hyp :: l_hyps) hyps' - | hyps' -> hyps' @ (List.rev l_hyps) in - rot (match dir with L2R -> i | R2L -> n - i) [] hyps - -let tclSEQAT ist atac1 dir (ivar, ((_, atacs2), atac3)) = - let i = get_index ivar in - let evtac = ssrevaltac ist in - let tac1 = evtac atac1 in - if atacs2 = [] && atac3 <> None then tclPERM (rot_hyps dir i) tac1 else - let evotac = function Some atac -> evtac atac | _ -> tclIDTAC in - let tac3 = evotac atac3 in - let rec mk_pad n = if n > 0 then tac3 :: mk_pad (n - 1) else [] in - match dir, mk_pad (i - 1), List.map evotac atacs2 with - | L2R, [], [tac2] when atac3 = None -> tclTHENFIRST tac1 tac2 - | L2R, [], [tac2] when atac3 = None -> tclTHENLAST tac1 tac2 - | L2R, pad, tacs2 -> tclTHENSFIRSTn tac1 (Array.of_list (pad @ tacs2)) tac3 - | R2L, pad, tacs2 -> tclTHENSLASTn tac1 tac3 (Array.of_list (tacs2 @ pad)) - -(* We can't actually parse the direction separately because this *) -(* would introduce conflicts with the basic ltac syntax. *) -let pr_ssrseqdir _ _ _ = function - | L2R -> str ";" ++ spc () ++ str "first " - | R2L -> str ";" ++ spc () ++ str "last " - -ARGUMENT EXTEND ssrseqdir TYPED AS ssrdir PRINTED BY pr_ssrseqdir -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -TACTIC EXTEND ssrtclseq -| [ "YouShouldNotTypeThis" ssrtclarg(tac) ssrseqdir(dir) ssrseqarg(arg) ] -> - [ Proofview.V82.tactic (tclSEQAT ist tac dir arg) ] -END -set_pr_ssrtac "tclseq" 5 [ArgSsr "tclarg"; ArgSsr "seqdir"; ArgSsr "seqarg"] - -let tclseq_expr loc tac dir arg = - let arg1 = in_gen (rawwit wit_ssrtclarg) tac in - let arg2 = in_gen (rawwit wit_ssrseqdir) dir in - let arg3 = in_gen (rawwit wit_ssrseqarg) (check_seqtacarg dir arg) in - ssrtac_expr loc "tclseq" [arg1; arg2; arg3] - -GEXTEND Gram - GLOBAL: tactic_expr; - ssr_first: [ - [ tac = ssr_first; ipats = ssrintros_ne -> tclintros_expr !@loc tac ipats - | "["; tacl = LIST0 tactic_expr SEP "|"; "]" -> TacFirst tacl - ] ]; - ssr_first_else: [ - [ tac1 = ssr_first; tac2 = ssrorelse -> TacOrelse (tac1, tac2) - | tac = ssr_first -> tac ]]; - tactic_expr: LEVEL "4" [ LEFTA - [ tac1 = tactic_expr; ";"; IDENT "first"; tac2 = ssr_first_else -> - TacThen (tac1, tac2) - | tac = tactic_expr; ";"; IDENT "first"; arg = ssrseqarg -> - tclseq_expr !@loc tac L2R arg - | tac = tactic_expr; ";"; IDENT "last"; arg = ssrseqarg -> - tclseq_expr !@loc tac R2L arg - ] ]; -END -(* }}} *) - -(** 5. Bookkeeping tactics (clear, move, case, elim) *) - -(* post-interpretation of terms *) -let all_ok _ _ = true - -let pf_abs_ssrterm ?(resolve_typeclasses=false) ist gl t = - let sigma, ct as t = interp_term ist gl t in - let sigma, _ as t = - let env = pf_env gl in - if not resolve_typeclasses then t - else - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - sigma, Evarutil.nf_evar sigma ct in - let n, c, abstracted_away, ucst = pf_abs_evars gl t in - List.fold_left Evd.remove sigma abstracted_away, pf_abs_cterm gl n c, ucst - -let pf_interp_ty ?(resolve_typeclasses=false) ist gl ty = - let n_binders = ref 0 in - let ty = match ty with - | a, (t, None) -> - let rec force_type = function - | GProd (l, x, k, s, t) -> incr n_binders; GProd (l, x, k, s, force_type t) - | GLetIn (l, x, v, t) -> incr n_binders; GLetIn (l, x, v, force_type t) - | ty -> mkRCast ty mkRType in - a, (force_type t, None) - | _, (_, Some ty) -> - let rec force_type = function - | CProdN (l, abs, t) -> - n_binders := !n_binders + List.length (List.flatten (List.map pi1 abs)); - CProdN (l, abs, force_type t) - | CLetIn (l, n, v, t) -> incr n_binders; CLetIn (l, n, v, force_type t) - | ty -> mkCCast dummy_loc ty (mkCType dummy_loc) in - mk_term ' ' (force_type ty) in - let strip_cast (sigma, t) = - let rec aux t = match kind_of_type t with - | CastType (t, ty) when !n_binders = 0 && isSort ty -> t - | ProdType(n,s,t) -> decr n_binders; mkProd (n, s, aux t) - | LetInType(n,v,ty,t) -> decr n_binders; mkLetIn (n, v, ty, aux t) - | _ -> anomaly "pf_interp_ty: ssr Type cast deleted by typecheck" in - sigma, aux t in - let sigma, cty as ty = strip_cast (interp_term ist gl ty) in - let ty = - let env = pf_env gl in - if not resolve_typeclasses then ty - else - let sigma = Typeclasses.resolve_typeclasses ~fail:false env sigma in - sigma, Evarutil.nf_evar sigma cty in - let n, c, _, ucst = pf_abs_evars gl ty in - let lam_c = pf_abs_cterm gl n c in - let ctx, c = decompose_lam_n n lam_c in - n, compose_prod ctx c, lam_c, ucst -;; - -let whd_app f args = Reductionops.whd_betaiota Evd.empty (mkApp (f, args)) - -let pr_cargs a = - str "[" ++ pr_list pr_spc pr_constr (Array.to_list a) ++ str "]" - -let pp_term gl t = - let t = Reductionops.nf_evar (project gl) t in pr_constr t -let pp_concat hd ?(sep=str", ") = function [] -> hd | x :: xs -> - hd ++ List.fold_left (fun acc x -> acc ++ sep ++ x) x xs - -let fake_pmatcher_end () = - mkProp, L2R, (Evd.empty, Evd.empty_evar_universe_context, mkProp) - -(* TASSI: given (c : ty), generates (c ??? : ty[???/...]) with m evars *) -exception NotEnoughProducts -let prof_saturate_whd = mk_profiler "saturate.whd";; -let saturate ?(beta=false) ?(bi_types=false) env sigma c ?(ty=Retyping.get_type_of env sigma c) m -= - let rec loop ty args sigma n = - if n = 0 then - let args = List.rev args in - (if beta then Reductionops.whd_beta sigma else fun x -> x) - (mkApp (c, Array.of_list (List.map snd args))), ty, args, sigma - else match kind_of_type ty with - | ProdType (_, src, tgt) -> - let sigma, x = - Evarutil.new_evar env (create_evar_defs sigma) - (if bi_types then Reductionops.nf_betaiota sigma src else src) in - loop (subst1 x tgt) ((m - n,x) :: args) sigma (n-1) - | CastType (t, _) -> loop t args sigma n - | LetInType (_, v, _, t) -> loop (subst1 v t) args sigma n - | SortType _ -> assert false - | AtomicType _ -> - let ty = - prof_saturate_whd.profile - (Reductionops.whd_betadeltaiota env sigma) ty in - match kind_of_type ty with - | ProdType _ -> loop ty args sigma n - | _ -> anomaly "saturate did not find enough products" - in - loop ty [] sigma m - -let pf_saturate ?beta ?bi_types gl c ?ty m = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - let t, ty, args, sigma = saturate ?beta ?bi_types env sigma c ?ty m in - t, ty, args, re_sig si sigma - -(** Rewrite redex switch *) - -(** Generalization (discharge) item *) - -(* An item is a switch + term pair. *) - -(* type ssrgen = ssrdocc * ssrterm *) - -let pr_gen (docc, dt) = pr_docc docc ++ pr_cpattern dt - -let pr_ssrgen _ _ _ = pr_gen - -ARGUMENT EXTEND ssrgen TYPED AS ssrdocc * cpattern PRINTED BY pr_ssrgen -| [ ssrdocc(docc) cpattern(dt) ] -> [ docc, dt ] -| [ cpattern(dt) ] -> [ nodocc, dt ] -END - -let has_occ ((_, occ), _) = occ <> None -let hyp_of_var v = SsrHyp (dummy_loc, destVar v) - -let interp_clr = function -| Some clr, (k, c) - when (k = ' ' || k = '@') && is_pf_var c -> hyp_of_var c :: clr -| Some clr, _ -> clr -| None, _ -> [] - -(* XXX the k of the redex should percolate out *) -let pf_interp_gen_aux ist gl to_ind ((oclr, occ), t) = - let pat = interp_cpattern ist gl t None in (* UGLY API *) - let cl, env, sigma = pf_concl gl, pf_env gl, project gl in - let (c, ucst), cl = - try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 - with NoMatch -> redex_of_pattern env pat, cl in - let clr = interp_clr (oclr, (tag_of_cpattern t, c)) in - if not(occur_existential c) then - if tag_of_cpattern t = '@' then - if not (isVar c) then - errorstrm (str "@ can be used with variables only") - else match pf_get_hyp gl (destVar c) with - | _, None, _ -> errorstrm (str "@ can be used with let-ins only") - | name, Some bo, ty -> true, pat, mkLetIn (Name name,bo,ty,cl),c,clr,ucst - else false, pat, pf_mkprod gl c cl, c, clr,ucst - else if to_ind && occ = None then - let nv, p, _, ucst' = pf_abs_evars gl (fst pat, c) in - let ucst = Evd.union_evar_universe_context ucst ucst' in - if nv = 0 then anomaly "occur_existential but no evars" else - false, pat, mkProd (constr_name c, pf_type_of gl p, pf_concl gl), p, clr,ucst - else loc_error (loc_of_cpattern t) "generalized term didn't match" - -let genclrtac cl cs clr = - let tclmyORELSE tac1 tac2 gl = - try tac1 gl - with e when Errors.noncritical e -> tac2 e gl in - (* apply_type may give a type error, but the useful message is - * the one of clear. You type "move: x" and you get - * "x is used in hyp H" instead of - * "The term H has type T x but is expected to have type T x0". *) - tclTHEN - (tclmyORELSE - (apply_type cl cs) - (fun type_err gl -> - tclTHEN - (tclTHEN (Proofview.V82.of_tactic (elim_type (build_coq_False ()))) (cleartac clr)) - (fun gl -> raise type_err) - gl)) - (cleartac clr) - -let gentac ist gen gl = -(* pp(lazy(str"sigma@gentac=" ++ pr_evar_map None (project gl))); *) - let conv, _, cl, c, clr, ucst = pf_interp_gen_aux ist gl false gen in - pp(lazy(str"c@gentac=" ++ pr_constr c)); - let gl = pf_merge_uc ucst gl in - if conv - then tclTHEN (Proofview.V82.of_tactic (convert_concl cl)) (cleartac clr) gl - else genclrtac cl [c] clr gl - -let pf_interp_gen ist gl to_ind gen = - let _, _, a, b, c, ucst = pf_interp_gen_aux ist gl to_ind gen in - a, b ,c, pf_merge_uc ucst gl - -(** Generalization (discharge) sequence *) - -(* A discharge sequence is represented as a list of up to two *) -(* lists of d-items, plus an ident list set (the possibly empty *) -(* final clear switch). The main list is empty iff the command *) -(* is defective, and has length two if there is a sequence of *) -(* dependent terms (and in that case it is the first of the two *) -(* lists). Thus, the first of the two lists is never empty. *) - -(* type ssrgens = ssrgen list *) -(* type ssrdgens = ssrgens list * ssrclear *) - -let gens_sep = function [], [] -> mt | _ -> spc - -let pr_dgens pr_gen (gensl, clr) = - let prgens s gens = str s ++ pr_list spc pr_gen gens in - let prdeps deps = prgens ": " deps ++ spc () ++ str "/" in - match gensl with - | [deps; []] -> prdeps deps ++ pr_clear pr_spc clr - | [deps; gens] -> prdeps deps ++ prgens " " gens ++ pr_clear spc clr - | [gens] -> prgens ": " gens ++ pr_clear spc clr - | _ -> pr_clear pr_spc clr - -let pr_ssrdgens _ _ _ = pr_dgens pr_gen - -let cons_gen gen = function - | gens :: gensl, clr -> (gen :: gens) :: gensl, clr - | _ -> anomaly "missing gen list" - -let cons_dep (gensl, clr) = - if List.length gensl = 1 then ([] :: gensl, clr) else - Errors.error "multiple dependents switches '/'" - -ARGUMENT EXTEND ssrdgens_tl TYPED AS ssrgen list list * ssrclear - PRINTED BY pr_ssrdgens -| [ "{" ne_ssrhyp_list(clr) "}" cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (mkclr clr, dt) dgens ] -| [ "{" ne_ssrhyp_list(clr) "}" ] -> - [ [[]], clr ] -| [ "{" ssrocc(occ) "}" cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (mkocc occ, dt) dgens ] -| [ "/" ssrdgens_tl(dgens) ] -> - [ cons_dep dgens ] -| [ cpattern(dt) ssrdgens_tl(dgens) ] -> - [ cons_gen (nodocc, dt) dgens ] -| [ ] -> - [ [[]], [] ] -END - -ARGUMENT EXTEND ssrdgens TYPED AS ssrdgens_tl PRINTED BY pr_ssrdgens -| [ ":" ssrgen(gen) ssrdgens_tl(dgens) ] -> [ cons_gen gen dgens ] -END - -let genstac (gens, clr) ist = - tclTHENLIST (cleartac clr :: List.rev_map (gentac ist) gens) - -(* Common code to handle generalization lists along with the defective case *) - -let with_defective maintac deps clr ist gl = - let top_id = - match kind_of_type (pf_concl gl) with - | ProdType (Name id, _, _) - when has_discharged_tag (string_of_id id) -> id - | _ -> top_id in - let top_gen = mkclr clr, cpattern_of_id top_id in - tclTHEN (introid top_id) (maintac deps top_gen ist) gl - -let with_dgens (gensl, clr) maintac ist = match gensl with - | [deps; []] -> with_defective maintac deps clr ist - | [deps; gen :: gens] -> - tclTHEN (genstac (gens, clr) ist) (maintac deps gen ist) - | [gen :: gens] -> tclTHEN (genstac (gens, clr) ist) (maintac [] gen ist) - | _ -> with_defective maintac [] clr ist - -let first_goal gls = - let gl = gls.Evd.it and sig_0 = gls.Evd.sigma in - if List.is_empty gl then Errors.error "first_goal"; - { Evd.it = List.hd gl; Evd.sigma = sig_0; } - -let with_deps deps0 maintac cl0 cs0 clr0 ist gl0 = - let rec loop gl cl cs clr args clrs = function - | [] -> - let n = List.length args in - maintac (if n > 0 then applist (to_lambda n cl, args) else cl) clrs ist gl0 - | dep :: deps -> - let gl' = first_goal (genclrtac cl cs clr gl) in - let cl', c', clr',gl' = pf_interp_gen ist gl' false dep in - loop gl' cl' [c'] clr' (c' :: args) (clr' :: clrs) deps in - loop gl0 cl0 cs0 clr0 cs0 [clr0] (List.rev deps0) - -(** Equations *) - -(* argument *) - -type ssreqid = ssripat option - -let pr_eqid = function Some pat -> str " " ++ pr_ipat pat | None -> mt () -let pr_ssreqid _ _ _ = pr_eqid - -(* We must use primitive parsing here to avoid conflicts with the *) -(* basic move, case, and elim tactics. *) -ARGUMENT EXTEND ssreqid TYPED AS ssripatrep option PRINTED BY pr_ssreqid -| [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let accept_ssreqid strm = - match Compat.get_tok (Util.stream_nth 0 strm) with - | Tok.IDENT _ -> accept_before_syms [":"] strm - | Tok.KEYWORD ":" -> () - | Tok.KEYWORD pat when List.mem pat ["_"; "?"; "->"; "<-"] -> - accept_before_syms [":"] strm - | _ -> raise Stream.Failure - -let test_ssreqid = Gram.Entry.of_parser "test_ssreqid" accept_ssreqid - -GEXTEND Gram - GLOBAL: ssreqid; - ssreqpat: [ - [ id = Prim.ident -> IpatId id - | "_" -> IpatWild - | "?" -> IpatAnon - | occ = ssrdocc; "->" -> (match occ with - | None, occ -> IpatRw (occ, L2R) - | _ -> loc_error !@loc "Only occurrences are allowed here") - | occ = ssrdocc; "<-" -> (match occ with - | None, occ -> IpatRw (occ, R2L) - | _ -> loc_error !@loc "Only occurrences are allowed here") - | "->" -> IpatRw (allocc, L2R) - | "<-" -> IpatRw (allocc, R2L) - ]]; - ssreqid: [ - [ test_ssreqid; pat = ssreqpat -> Some pat - | test_ssreqid -> None - ]]; -END - -(* creation *) - -let mkEq dir cl c t n gl = - let eqargs = [|t; c; c|] in eqargs.(dir_org dir) <- mkRel n; - let eq, gl = pf_fresh_global (build_coq_eq()) gl in - let refl, gl = mkRefl t c gl in - mkArrow (mkApp (eq, eqargs)) (lift 1 cl), refl, gl - -let pushmoveeqtac cl c gl = - let x, t, cl1 = destProd cl in - let cl2, eqc, gl = mkEq R2L cl1 c t 1 gl in - apply_type (mkProd (x, t, cl2)) [c; eqc] gl - -let pushcaseeqtac cl gl = - let cl1, args = destApplication cl in - let n = Array.length args in - let dc, cl2 = decompose_lam_n n cl1 in - let _, t = List.nth dc (n - 1) in - let cl3, eqc, gl = mkEq R2L cl2 args.(0) t n gl in - let prot, gl = mkProt (pf_type_of gl cl) cl3 gl in - let cl4 = mkApp (compose_lam dc prot, args) in - let gl, _ = pf_e_type_of gl cl4 in - tclTHEN (apply_type cl4 [eqc]) - (Proofview.V82.of_tactic (convert_concl cl4)) gl - -let pushelimeqtac gl = - let _, args = destApplication (pf_concl gl) in - let x, t, _ = destLambda args.(1) in - let cl1 = mkApp (args.(1), Array.sub args 2 (Array.length args - 2)) in - let cl2, eqc, gl = mkEq L2R cl1 args.(2) t 1 gl in - tclTHEN (apply_type (mkProd (x, t, cl2)) [args.(2); eqc]) - (Proofview.V82.of_tactic intro) gl - -(** Bookkeeping (discharge-intro) argument *) - -(* Since all bookkeeping ssr commands have the same discharge-intro *) -(* argument format we use a single grammar entry point to parse them. *) -(* the entry point parses only non-empty arguments to avoid conflicts *) -(* with the basic Coq tactics. *) - -(* type ssrarg = ssrview * (ssreqid * (ssrdgens * ssripats)) *) - -let pr_ssrarg _ _ _ (view, (eqid, (dgens, ipats))) = - let pri = pr_intros (gens_sep dgens) in - pr_view view ++ pr_eqid eqid ++ pr_dgens pr_gen dgens ++ pri ipats - -ARGUMENT EXTEND ssrarg TYPED AS ssrview * (ssreqid * (ssrdgens * ssrintros)) - PRINTED BY pr_ssrarg -| [ ssrview(view) ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] -> - [ view, (eqid, (dgens, ipats)) ] -| [ ssrview(view) ssrclear(clr) ssrintros(ipats) ] -> - [ view, (None, (([], clr), ipats)) ] -| [ ssreqid(eqid) ssrdgens(dgens) ssrintros(ipats) ] -> - [ [], (eqid, (dgens, ipats)) ] -| [ ssrclear_ne(clr) ssrintros(ipats) ] -> - [ [], (None, (([], clr), ipats)) ] -| [ ssrintros_ne(ipats) ] -> - [ [], (None, (([], []), ipats)) ] -END - -(** The "clear" tactic *) - -(* We just add a numeric version that clears the n top assumptions. *) - -let poptac ist n = introstac ~ist (List.init n (fun _ -> IpatWild)) - -TACTIC EXTEND ssrclear - | [ "clear" natural(n) ] -> [ Proofview.V82.tactic (poptac ist n) ] -END - -(** The "move" tactic *) - -let rec improper_intros = function - | IpatSimpl _ :: ipats -> improper_intros ipats - | (IpatId _ | IpatAnon | IpatCase _ | IpatAll) :: _ -> false - | _ -> true - -let check_movearg = function - | view, (eqid, _) when view <> [] && eqid <> None -> - Errors.error "incompatible view and equation in move tactic" - | view, (_, (([gen :: _], _), _)) when view <> [] && has_occ gen -> - Errors.error "incompatible view and occurrence switch in move tactic" - | _, (_, ((dgens, _), _)) when List.length dgens > 1 -> - Errors.error "dependents switch `/' in move tactic" - | _, (eqid, (_, ipats)) when eqid <> None && improper_intros ipats -> - Errors.error "no proper intro pattern for equation in move tactic" - | arg -> arg - -ARGUMENT EXTEND ssrmovearg TYPED AS ssrarg PRINTED BY pr_ssrarg -| [ ssrarg(arg) ] -> [ check_movearg arg ] -END - -let viewmovetac_aux clear name_ref (_, vl as v) _ gen ist gl = - let cl, c, clr, gl = pf_interp_gen ist gl false gen in - let cl, c, gl = if vl = [] then cl, c, gl else pf_with_view ist gl v cl c in - let clr = if clear then clr else [] in - name_ref := (match id_of_cpattern (snd gen) with Some id -> id | _ -> top_id); - genclrtac cl [c] clr gl - -let () = move_top_with_view := - (fun c r v -> with_defective (viewmovetac_aux c r v) [] []) - -let viewmovetac v deps gen ist gl = - viewmovetac_aux true (ref top_id) v deps gen ist gl - -let eqmovetac _ gen ist gl = - let cl, c, _, gl = pf_interp_gen ist gl false gen in pushmoveeqtac cl c gl - -let movehnftac gl = match kind_of_term (pf_concl gl) with - | Prod _ | LetIn _ -> tclIDTAC gl - | _ -> hnf_in_concl gl - -let ssrmovetac ist = function - | _::_ as view, (_, (dgens, ipats)) -> - let dgentac = with_dgens dgens (viewmovetac (true, view)) ist in - tclTHEN dgentac (introstac ~ist ipats) - | _, (Some pat, (dgens, ipats)) -> - let dgentac = with_dgens dgens eqmovetac ist in - tclTHEN dgentac (introstac ~ist (eqmoveipats pat ipats)) - | _, (_, (([gens], clr), ipats)) -> - let gentac = genstac (gens, clr) ist in - tclTHEN gentac (introstac ~ist ipats) - | _, (_, ((_, clr), ipats)) -> - tclTHENLIST [movehnftac; cleartac clr; introstac ~ist ipats] - -TACTIC EXTEND ssrmove -| [ "move" ssrmovearg(arg) ssrrpat(pat) ] -> - [ Proofview.V82.tactic (tclTHEN (ssrmovetac ist arg) (introstac ~ist [pat])) ] -| [ "move" ssrmovearg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrmovetac ist arg) clauses) ] -| [ "move" ssrrpat(pat) ] -> [ Proofview.V82.tactic (introstac ~ist [pat]) ] -| [ "move" ] -> [ Proofview.V82.tactic (movehnftac) ] -END - -(* TASSI: given the type of an elimination principle, it finds the higher order - * argument (index), it computes it's arity and the arity of the eliminator and - * checks if the eliminator is recursive or not *) -let analyze_eliminator elimty env sigma = - let rec loop ctx t = match kind_of_type t with - | AtomicType (hd, args) when isRel hd -> - ctx, destRel hd, not (noccurn 1 t), Array.length args - | CastType (t, _) -> loop ctx t - | ProdType (x, ty, t) -> loop ((x,None,ty) :: ctx) t - | LetInType (x,b,ty,t) -> loop ((x,Some b,ty) :: ctx) (subst1 b t) - | _ -> - let env' = Environ.push_rel_context ctx env in - let t' = Reductionops.whd_betadeltaiota env' sigma t in - if not (Term.eq_constr t t') then loop ctx t' else - errorstrm (str"The eliminator has the wrong shape."++spc()++ - str"A (applied) bound variable was expected as the conclusion of "++ - str"the eliminator's"++Pp.cut()++str"type:"++spc()++pr_constr elimty) in - let ctx, pred_id, elim_is_dep, n_pred_args = loop [] elimty in - let n_elim_args = rel_context_nhyps ctx in - let is_rec_elim = - let count_occurn n term = - let count = ref 0 in - let rec occur_rec n c = match kind_of_term c with - | Rel m -> if m = n then incr count - | _ -> iter_constr_with_binders succ occur_rec n c - in - occur_rec n term; !count in - let occurr2 n t = count_occurn n t > 1 in - not (List.for_all_i - (fun i (_,rd) -> pred_id <= i || not (occurr2 (pred_id - i) rd)) - 1 (assums_of_rel_context ctx)) - in - n_elim_args - pred_id, n_elim_args, is_rec_elim, elim_is_dep, n_pred_args - -(* TASSI: This version of unprotects inlines the unfold tactic definition, - * since we don't want to wipe out let-ins, and it seems there is no flag - * to change that behaviour in the standard unfold code *) -let unprotecttac gl = - let c, gl = pf_mkSsrConst "protect_term" gl in - let prot, _ = destConst c in - onClause (fun idopt -> - let hyploc = Option.map (fun id -> id, InHyp) idopt in - reduct_option - (Reductionops.clos_norm_flags - (Closure.RedFlags.mkflags - [Closure.RedFlags.fBETA; - Closure.RedFlags.fCONST prot; - Closure.RedFlags.fIOTA]), DEFAULTcast) hyploc) - allHypsAndConcl gl - -let dependent_apply_error = - try Errors.error "Could not fill dependent hole in \"apply\"" with err -> err - -(* TASSI: Sometimes Coq's apply fails. According to my experience it may be - * related to goals that are products and with beta redexes. In that case it - * guesses the wrong number of implicit arguments for your lemma. What follows - * is just like apply, but with a user-provided number n of implicits. - * - * Refine.refine function that handles type classes and evars but fails to - * handle "dependently typed higher order evars". - * - * Refiner.refiner that does not handle metas with a non ground type but works - * with dependently typed higher order metas. *) -let applyn ~with_evars ?beta ?(with_shelve=false) n t gl = - if with_evars then - let refine gl = - let t, ty, args, gl = pf_saturate ?beta ~bi_types:true gl t n in -(* pp(lazy(str"sigma@saturate=" ++ pr_evar_map None (project gl))); *) - let gl = pf_unify_HO gl ty (pf_concl gl) in - let gs = CList.map_filter (fun (_, e) -> - if isEvar (pf_nf_evar gl e) then Some e else None) - args in - pf_partial_solution gl t gs - in - Proofview.(V82.of_tactic - (tclTHEN (V82.tactic refine) - (if with_shelve then shelve_unifiable else tclUNIT ()))) gl - else - let t, gl = if n = 0 then t, gl else - let sigma, si = project gl, sig_it gl in - let rec loop sigma bo args = function (* saturate with metas *) - | 0 -> mkApp (t, Array.of_list (List.rev args)), re_sig si sigma - | n -> match kind_of_term bo with - | Lambda (_, ty, bo) -> - if not (closed0 ty) then raise dependent_apply_error; - let m = Evarutil.new_meta () in - loop (meta_declare m ty sigma) bo ((mkMeta m)::args) (n-1) - | _ -> assert false - in loop sigma t [] n in - pp(lazy(str"Refiner.refiner " ++ pr_constr t)); - Refiner.refiner (Proof_type.Refine t) gl - -let refine_with ?(first_goes_last=false) ?beta ?(with_evars=true) oc gl = - let rec mkRels = function 1 -> [] | n -> mkRel n :: mkRels (n-1) in - let uct = Evd.evar_universe_context (fst oc) in - let n, oc = pf_abs_evars_pirrel gl oc in - let gl = pf_merge_uc uct gl in - let oc = if not first_goes_last || n <= 1 then oc else - let l, c = decompose_lam oc in - if not (List.for_all_i (fun i (_,t) -> closedn ~-i t) (1-n) l) then oc else - compose_lam (let xs,y = List.chop (n-1) l in y @ xs) - (mkApp (compose_lam l c, Array.of_list (mkRel 1 :: mkRels n))) - in - pp(lazy(str"after: " ++ pr_constr oc)); - try applyn ~with_evars ~with_shelve:true ?beta n oc gl with _ -> raise dependent_apply_error - -let pf_fresh_inductive_instance ind gl = - let sigma, env, it = project gl, pf_env gl, sig_it gl in - let sigma, indu = Evd.fresh_inductive_instance env sigma ind in - indu, re_sig it sigma - -(** The "case" and "elim" tactic *) - -(* A case without explicit dependent terms but with both a view and an *) -(* occurrence switch and/or an equation is treated as dependent, with the *) -(* viewed term as the dependent term (the occurrence switch would be *) -(* meaningless otherwise). When both a view and explicit dependents are *) -(* present, it is forbidden to put a (meaningless) occurrence switch on *) -(* the viewed term. *) - -(* This is both elim and case (defaulting to the former). If ~elim is omitted - * the standard eliminator is chosen. The code is made of 4 parts: - * 1. find the eliminator if not given as ~elim and analyze it - * 2. build the patterns to be matched against the conclusion, looking at - * (occ, c), deps and the pattern inferred from the type of the eliminator - * 3. build the new predicate matching the patterns, and the tactic to - * generalize the equality in case eqid is not None - * 4. build the tactic handle intructions and clears as required in ipats and - * by eqid *) -let ssrelim ?(is_case=false) ?ist deps what ?elim eqid ipats gl = - (* some sanity checks *) - let oc, orig_clr, occ, c_gen, gl = match what with - | `EConstr(_,_,t) when isEvar t -> - anomaly "elim called on a constr evar" - | `EGen _ when ist = None -> - anomaly "no ist and non simple elimination" - | `EGen (_, g) when elim = None && is_wildcard g -> - errorstrm(str"Indeterminate pattern and no eliminator") - | `EGen ((Some clr,occ), g) when is_wildcard g -> - None, clr, occ, None, gl - | `EGen ((None, occ), g) when is_wildcard g -> None,[],occ,None,gl - | `EGen ((_, occ), p as gen) -> - let _, c, clr,gl = pf_interp_gen (Option.get ist) gl true gen in - Some c, clr, occ, Some p,gl - | `EConstr (clr, occ, c) -> Some c, clr, occ, None,gl in - let orig_gl, concl, env = gl, pf_concl gl, pf_env gl in - pp(lazy(str(if is_case then "==CASE==" else "==ELIM=="))); - (* Utils of local interest only *) - let iD s ?t gl = let t = match t with None -> pf_concl gl | Some x -> x in - pp(lazy(str s ++ pr_constr t)); tclIDTAC gl in - let eq, gl = pf_fresh_global (build_coq_eq ()) gl in - let protectC, gl = pf_mkSsrConst "protect_term" gl in - let fire_subst gl t = Reductionops.nf_evar (project gl) t in - let fire_sigma sigma t = Reductionops.nf_evar sigma t in - let is_undef_pat = function - | sigma, T t -> - (match kind_of_term (fire_sigma sigma t) with Evar _ -> true | _ -> false) - | _ -> false in - let match_pat env p occ h cl = - let sigma0 = project orig_gl in - pp(lazy(str"matching: " ++ pp_pattern p)); - let (c,ucst), cl = - fill_occ_pattern ~raise_NoMatch:true env sigma0 cl p occ h in - pp(lazy(str" got: " ++ pr_constr c)); - c, cl, ucst in - let mkTpat gl t = (* takes a term, refreshes it and makes a T pattern *) - let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in - let t, _, _, sigma = saturate ~beta:true env (project gl) t n in - Evd.merge_universe_context sigma ucst, T t in - let unif_redex gl (sigma, r as p) t = (* t is a hint for the redex of p *) - let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in - let t, _, _, sigma = saturate ~beta:true env sigma t n in - let sigma = Evd.merge_universe_context sigma ucst in - match r with - | X_In_T (e, p) -> sigma, E_As_X_In_T (t, e, p) - | _ -> - try unify_HO env sigma t (fst (redex_of_pattern env p)), r - with e when Errors.noncritical e -> p in - (* finds the eliminator applies it to evars and c saturated as needed *) - (* obtaining "elim ??? (c ???)". pred is the higher order evar *) - let cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl = - match elim with - | Some elim -> - let gl, elimty = pf_e_type_of gl elim in - let pred_id, n_elim_args, is_rec, elim_is_dep, n_pred_args = - analyze_eliminator elimty env (project gl) in - let elim, elimty, elim_args, gl = - pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in - let pred = List.assoc pred_id elim_args in - let elimty = Reductionops.whd_betadeltaiota env (project gl) elimty in - None, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl - | None -> - let c = Option.get oc in let c_ty = pf_type_of gl c in - let ((kn, i) as ind, _ as indu), unfolded_c_ty = - pf_reduce_to_quantified_ind gl c_ty in - let sort = elimination_sort_of_goal gl in - let gl, elim = - if not is_case then - let t, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in - gl, t - else - pf_eapply (fun env sigma -> - Indrec.build_case_analysis_scheme env sigma indu true) gl sort in - let elimty = pf_type_of gl elim in - let pred_id,n_elim_args,is_rec,elim_is_dep,n_pred_args = - analyze_eliminator elimty env (project gl) in - let rctx = fst (decompose_prod_assum unfolded_c_ty) in - let n_c_args = rel_context_length rctx in - let c, c_ty, t_args, gl = pf_saturate gl c ~ty:c_ty n_c_args in - let elim, elimty, elim_args, gl = - pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in - let pred = List.assoc pred_id elim_args in - let pc = match n_c_args, c_gen with - | 0, Some p -> interp_cpattern (Option.get ist) orig_gl p None - | _ -> mkTpat gl c in - let cty = Some (c, c_ty, pc) in - let elimty = Reductionops.whd_betadeltaiota env (project gl) elimty in - cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl - in - pp(lazy(str"elim= "++ pr_constr_pat elim)); - pp(lazy(str"elimty= "++ pr_constr elimty)); - let inf_deps_r = match kind_of_type elimty with - | AtomicType (_, args) -> List.rev (Array.to_list args) - | _ -> assert false in - let saturate_until gl c c_ty f = - let rec loop n = try - let c, c_ty, _, gl = pf_saturate gl c ~ty:c_ty n in - let gl' = f c c_ty gl in - Some (c, c_ty, gl, gl') - with NotEnoughProducts -> None | _ -> loop (n+1) in loop 0 in - let elim_is_dep, gl = match cty with - | None -> true, gl - | Some (c, c_ty, _) -> - let res = - if elim_is_dep then None else - let arg = List.assoc (n_elim_args - 1) elim_args in - let arg_ty = pf_type_of gl arg in - match saturate_until gl c c_ty (fun c c_ty gl -> - pf_unify_HO (pf_unify_HO gl c_ty arg_ty) arg c) with - | Some (c, _, _, gl) -> Some (false, gl) - | None -> None in - match res with - | Some x -> x - | None -> - let inf_arg = List.hd inf_deps_r in - let inf_arg_ty = pf_type_of gl inf_arg in - match saturate_until gl c c_ty (fun _ c_ty gl -> - pf_unify_HO gl c_ty inf_arg_ty) with - | Some (c, _, _,gl) -> true, gl - | None -> - errorstrm (str"Unable to apply the eliminator to the term"++ - spc()++pr_constr c++spc()++str"or to unify it's type with"++ - pr_constr inf_arg_ty) in - pp(lazy(str"elim_is_dep= " ++ bool elim_is_dep)); - let predty = pf_type_of gl pred in - (* Patterns for the inductive types indexes to be bound in pred are computed - * looking at the ones provided by the user and the inferred ones looking at - * the type of the elimination principle *) - let pp_pat (_,p,_,_) = pp_pattern p in - let pp_inf_pat gl (_,_,t,_) = pr_constr_pat (fire_subst gl t) in - let patterns, clr, gl = - let rec loop patterns clr i = function - | [],[] -> patterns, clr, gl - | ((oclr, occ), t):: deps, inf_t :: inf_deps -> - let ist = match ist with Some x -> x | None -> assert false in - let p = interp_cpattern ist orig_gl t None in - let clr_t = - interp_clr (oclr,(tag_of_cpattern t,fst (redex_of_pattern env p)))in - (* if we are the index for the equation we do not clear *) - let clr_t = if deps = [] && eqid <> None then [] else clr_t in - let p = if is_undef_pat p then mkTpat gl inf_t else p in - loop (patterns @ [i, p, inf_t, occ]) - (clr_t @ clr) (i+1) (deps, inf_deps) - | [], c :: inf_deps -> - pp(lazy(str"adding inferred pattern " ++ pr_constr_pat c)); - loop (patterns @ [i, mkTpat gl c, c, allocc]) - clr (i+1) ([], inf_deps) - | _::_, [] -> errorstrm (str "Too many dependent abstractions") in - let deps, head_p, inf_deps_r = match what, elim_is_dep, cty with - | `EConstr _, _, None -> anomaly "Simple welim with no term" - | _, false, _ -> deps, [], inf_deps_r - | `EGen gen, true, None -> deps @ [gen], [], inf_deps_r - | _, true, Some (c, _, pc) -> - let occ = if occ = None then allocc else occ in - let inf_p, inf_deps_r = List.hd inf_deps_r, List.tl inf_deps_r in - deps, [1, pc, inf_p, occ], inf_deps_r in - let patterns, clr, gl = - loop [] orig_clr (List.length head_p+1) (List.rev deps, inf_deps_r) in - head_p @ patterns, Util.List.uniquize clr, gl - in - pp(lazy(pp_concat (str"patterns=") (List.map pp_pat patterns))); - pp(lazy(pp_concat (str"inf. patterns=") (List.map (pp_inf_pat gl) patterns))); - (* Predicate generation, and (if necessary) tactic to generalize the - * equation asked by the user *) - let elim_pred, gen_eq_tac, clr, gl = - let error gl t inf_t = errorstrm (str"The given pattern matches the term"++ - spc()++pp_term gl t++spc()++str"while the inferred pattern"++ - spc()++pr_constr_pat (fire_subst gl inf_t)++spc()++ str"doesn't") in - let match_or_postpone (cl, gl, post) (h, p, inf_t, occ) = - let p = unif_redex gl p inf_t in - if is_undef_pat p then - let () = pp(lazy(str"postponing " ++ pp_pattern p)) in - cl, gl, post @ [h, p, inf_t, occ] - else try - let c, cl, ucst = match_pat env p occ h cl in - let gl = pf_merge_uc ucst gl in - let gl = try pf_unify_HO gl inf_t c with _ -> error gl c inf_t in - cl, gl, post - with - | NoMatch | NoProgress -> - let e, ucst = redex_of_pattern env p in - let gl = pf_merge_uc ucst gl in - let n, e, _, _ucst = pf_abs_evars gl (fst p, e) in - let e, _, _, gl = pf_saturate ~beta:true gl e n in - let gl = try pf_unify_HO gl inf_t e with _ -> error gl e inf_t in - cl, gl, post - in - let rec match_all concl gl patterns = - let concl, gl, postponed = - List.fold_left match_or_postpone (concl, gl, []) patterns in - if postponed = [] then concl, gl - else if List.length postponed = List.length patterns then - errorstrm (str "Some patterns are undefined even after all"++spc()++ - str"the defined ones matched") - else match_all concl gl postponed in - let concl, gl = match_all concl gl patterns in - let pred_rctx, _ = decompose_prod_assum (fire_subst gl predty) in - let concl, gen_eq_tac, clr, gl = match eqid with - | Some (IpatId _) when not is_rec -> - let k = List.length deps in - let c = fire_subst gl (List.assoc (n_elim_args - k - 1) elim_args) in - let t = pf_type_of gl c in - let gen_eq_tac, gl = - let refl = mkApp (eq, [|t; c; c|]) in - let new_concl = mkArrow refl (lift 1 (pf_concl orig_gl)) in - let new_concl = fire_subst gl new_concl in - let erefl, gl = mkRefl t c gl in - let erefl = fire_subst gl erefl in - apply_type new_concl [erefl], gl in - let rel = k + if elim_is_dep then 1 else 0 in - let src, gl = mkProt mkProp (mkApp (eq,[|t; c; mkRel rel|])) gl in - let concl = mkArrow src (lift 1 concl) in - let clr = if deps <> [] then clr else [] in - concl, gen_eq_tac, clr, gl - | _ -> concl, tclIDTAC, clr, gl in - let mk_lam t r = mkLambda_or_LetIn r t in - let concl = List.fold_left mk_lam concl pred_rctx in - let gl, concl = - if eqid <> None && is_rec then - let concl, gl = mkProt (pf_type_of gl concl) concl gl in - let gl, _ = pf_e_type_of gl concl in - gl, concl - else gl, concl in - concl, gen_eq_tac, clr, gl in - let gl, pty = pf_e_type_of gl elim_pred in - pp(lazy(str"elim_pred=" ++ pp_term gl elim_pred)); - pp(lazy(str"elim_pred_ty=" ++ pp_term gl pty)); - let gl = pf_unify_HO gl pred elim_pred in - let elim = fire_subst gl elim in - let gl, _ = pf_e_type_of gl elim in - (* check that the patterns do not contain non instantiated dependent metas *) - let () = - let evars_of_term = Evarutil.undefined_evars_of_term (project gl) in - let patterns = List.map (fun (_,_,t,_) -> fire_subst gl t) patterns in - let patterns_ev = List.map evars_of_term patterns in - let ev = List.fold_left Intset.union Intset.empty patterns_ev in - let ty_ev = Intset.fold (fun i e -> - let ex = i in - let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in - Intset.union e (evars_of_term i_ty)) - ev Intset.empty in - let inter = Intset.inter ev ty_ev in - if not (Intset.is_empty inter) then begin - let i = Intset.choose inter in - let pat = List.find (fun t -> Intset.mem i (evars_of_term t)) patterns in - errorstrm(str"Pattern"++spc()++pr_constr_pat pat++spc()++ - str"was not completely instantiated and one of its variables"++spc()++ - str"occurs in the type of another non instantieted pattern variable"); - end - in - (* the elim tactic, with the eliminator and the predicated we computed *) - let elim = project gl, elim in - let elim_tac gl = - tclTHENLIST [refine_with ~with_evars:false elim; cleartac clr] gl in - (* handling of following intro patterns and equation introduction if any *) - let elim_intro_tac gl = - let intro_eq = - match eqid with - | Some (IpatId ipat) when not is_rec -> - let rec intro_eq gl = match kind_of_type (pf_concl gl) with - | ProdType (_, src, tgt) -> - (match kind_of_type src with - | AtomicType (hd, _) when Term.eq_constr hd protectC -> - tclTHENLIST [unprotecttac; introid ipat] gl - | _ -> tclTHENLIST [ iD "IA"; introstac [IpatAnon]; intro_eq] gl) - |_ -> errorstrm (str "Too many names in intro pattern") in - intro_eq - | Some (IpatId ipat) -> - let name gl = mk_anon_id "K" gl in - let intro_lhs gl = - let elim_name = match orig_clr, what with - | [SsrHyp(_, x)], _ -> x - | _, `EConstr(_,_,t) when isVar t -> destVar t - | _ -> name gl in - if is_name_in_ipats elim_name ipats then introid (name gl) gl - else introid elim_name gl - in - let rec gen_eq_tac gl = - let concl = pf_concl gl in - let ctx, last = decompose_prod_assum concl in - let args = match kind_of_type last with - | AtomicType (hd, args) -> assert(Term.eq_constr hd protectC); args - | _ -> assert false in - let case = args.(Array.length args-1) in - if not(closed0 case) then tclTHEN (introstac [IpatAnon]) gen_eq_tac gl - else - let case_ty = pf_type_of gl case in - let refl = mkApp (eq, [|lift 1 case_ty; mkRel 1; lift 1 case|]) in - let new_concl = fire_subst gl - (mkProd (Name (name gl), case_ty, mkArrow refl (lift 2 concl))) in - let erefl, gl = mkRefl case_ty case gl in - let erefl = fire_subst gl erefl in - apply_type new_concl [case;erefl] gl in - tclTHENLIST [gen_eq_tac; intro_lhs; introid ipat] - | _ -> tclIDTAC in - let unprot = if eqid <> None && is_rec then unprotecttac else tclIDTAC in - tclEQINTROS ?ist elim_tac (tclTHENLIST [intro_eq; unprot]) ipats gl - in - tclTHENLIST [gen_eq_tac; elim_intro_tac] orig_gl -;; - -let simplest_newelim x= ssrelim ~is_case:false [] (`EConstr ([],None,x)) None [] -let simplest_newcase x= ssrelim ~is_case:true [] (`EConstr ([],None,x)) None [] -let _ = simplest_newcase_ref := simplest_newcase - -let check_casearg = function -| view, (_, (([_; gen :: _], _), _)) when view <> [] && has_occ gen -> - Errors.error "incompatible view and occurrence switch in dependent case tactic" -| arg -> arg - -ARGUMENT EXTEND ssrcasearg TYPED AS ssrarg PRINTED BY pr_ssrarg -| [ ssrarg(arg) ] -> [ check_casearg arg ] -END - -let ssrcasetac ist (view, (eqid, (dgens, ipats))) = - let ndefectcasetac view eqid ipats deps ((_, occ), _ as gen) ist gl = - let simple = (eqid = None && deps = [] && occ = None) in - let cl, c, clr, gl = pf_interp_gen ist gl true gen in - let _, vc, gl = - if view = [] then c, c, gl else pf_with_view ist gl (false, view) cl c in - if simple && is_injection_case vc gl then - tclTHENLIST [perform_injection vc; cleartac clr; introstac ~ist ipats] gl - else - (* macro for "case/v E: x" ---> "case E: x / (v x)" *) - let deps, clr, occ = - if view <> [] && eqid <> None && deps = [] then [gen], [], None - else deps, clr, occ in - ssrelim ~is_case:true ~ist deps (`EConstr (clr,occ, vc)) eqid ipats gl - in - with_dgens dgens (ndefectcasetac view eqid ipats) ist - -TACTIC EXTEND ssrcase -| [ "case" ssrcasearg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrcasetac ist arg) clauses) ] -| [ "case" ] -> [ Proofview.V82.tactic (with_top ssrscasetac) ] -END - -(** The "elim" tactic *) - -(* Elim views are elimination lemmas, so the eliminated term is not addded *) -(* to the dependent terms as for "case", unless it actually occurs in the *) -(* goal, the "all occurrences" {+} switch is used, or the equation switch *) -(* is used and there are no dependents. *) - -let ssrelimtac ist (view, (eqid, (dgens, ipats))) = - let ndefectelimtac view eqid ipats deps gen ist gl = - let elim = match view with [v] -> Some (snd(force_term ist gl v)) | _ -> None in - ssrelim ~ist deps (`EGen gen) ?elim eqid ipats gl - in - with_dgens dgens (ndefectelimtac view eqid ipats) ist - -TACTIC EXTEND ssrelim -| [ "elim" ssrarg(arg) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrelimtac ist arg) clauses) ] -| [ "elim" ] -> [ Proofview.V82.tactic (with_top simplest_newelim) ] -END - -(** 6. Backward chaining tactics: apply, exact, congr. *) - -(** The "apply" tactic *) - -let pr_agen (docc, dt) = pr_docc docc ++ pr_term dt -let pr_ssragen _ _ _ = pr_agen -let pr_ssragens _ _ _ = pr_dgens pr_agen - -ARGUMENT EXTEND ssragen TYPED AS ssrdocc * ssrterm PRINTED BY pr_ssragen -| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ] -> [ mkclr clr, dt ] -| [ ssrterm(dt) ] -> [ nodocc, dt ] -END - -ARGUMENT EXTEND ssragens TYPED AS ssragen list list * ssrclear -PRINTED BY pr_ssragens -| [ "{" ne_ssrhyp_list(clr) "}" ssrterm(dt) ssragens(agens) ] -> - [ cons_gen (mkclr clr, dt) agens ] -| [ "{" ne_ssrhyp_list(clr) "}" ] -> [ [[]], clr] -| [ ssrterm(dt) ssragens(agens) ] -> - [ cons_gen (nodocc, dt) agens ] -| [ ] -> [ [[]], [] ] -END - -let mk_applyarg views agens intros = views, (None, (agens, intros)) - -let pr_ssraarg _ _ _ (view, (eqid, (dgens, ipats))) = - let pri = pr_intros (gens_sep dgens) in - pr_view view ++ pr_eqid eqid ++ pr_dgens pr_agen dgens ++ pri ipats - -ARGUMENT EXTEND ssrapplyarg -TYPED AS ssrview * (ssreqid * (ssragens * ssrintros)) -PRINTED BY pr_ssraarg -| [ ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] -> - [ mk_applyarg [] (cons_gen gen dgens) intros ] -| [ ssrclear_ne(clr) ssrintros(intros) ] -> - [ mk_applyarg [] ([], clr) intros ] -| [ ssrintros_ne(intros) ] -> - [ mk_applyarg [] ([], []) intros ] -| [ ssrview(view) ":" ssragen(gen) ssragens(dgens) ssrintros(intros) ] -> - [ mk_applyarg view (cons_gen gen dgens) intros ] -| [ ssrview(view) ssrclear(clr) ssrintros(intros) ] -> - [ mk_applyarg view ([], clr) intros ] -END - -let interp_agen ist gl ((goclr, _), (k, gc)) (clr, rcs) = -(* pp(lazy(str"sigma@interp_agen=" ++ pr_evar_map None (project gl))); *) - let rc = glob_constr ist (pf_env gl) gc in - let rcs' = rc :: rcs in - match goclr with - | None -> clr, rcs' - | Some ghyps -> - let clr' = snd (interp_hyps ist gl ghyps) @ clr in - if k <> ' ' then clr', rcs' else - match rc with - | GVar (loc, id) when not_section_id id -> SsrHyp (loc, id) :: clr', rcs' - | GRef (loc, VarRef id, _) when not_section_id id -> - SsrHyp (loc, id) :: clr', rcs' - | _ -> clr', rcs' - -let interp_agens ist gl gagens = - match List.fold_right (interp_agen ist gl) gagens ([], []) with - | clr, rlemma :: args -> - let n = interp_nbargs ist gl rlemma - List.length args in - let rec loop i = - if i > n then - errorstrm (str "Cannot apply lemma " ++ pf_pr_glob_constr gl rlemma) - else - try interp_refine ist gl (mkRApp rlemma (mkRHoles i @ args)) - with _ -> loop (i + 1) in - clr, loop 0 - | _ -> assert false - -let apply_rconstr ?ist t gl = -(* pp(lazy(str"sigma@apply_rconstr=" ++ pr_evar_map None (project gl))); *) - let n = match ist, t with - | None, (GVar (_, id) | GRef (_, VarRef id,_)) -> pf_nbargs gl (mkVar id) - | Some ist, _ -> interp_nbargs ist gl t - | _ -> anomaly "apply_rconstr without ist and not RVar" in - let mkRlemma i = mkRApp t (mkRHoles i) in - let cl = pf_concl gl in - let rec loop i = - if i > n then - errorstrm (str"Cannot apply lemma "++pf_pr_glob_constr gl t) - else try pf_match gl (mkRlemma i) (OfType cl) with _ -> loop (i + 1) in - refine_with (loop 0) gl - -let mkRAppView ist gl rv gv = - let nb_view_imps = interp_view_nbimps ist gl rv in - mkRApp rv (mkRHoles (abs nb_view_imps)) - -let prof_apply_interp_with = mk_profiler "ssrapplytac.interp_with";; - -let refine_interp_apply_view i ist gl gv = - let pair i = List.map (fun x -> i, x) in - let rv = pf_intern_term ist gl gv in - let v = mkRAppView ist gl rv gv in - let interp_with (i, hint) = - interp_refine ist gl (mkRApp hint (v :: mkRHoles i)) in - let interp_with x = prof_apply_interp_with.profile interp_with x in - let rec loop = function - | [] -> (try apply_rconstr ~ist rv gl with _ -> view_error "apply" gv) - | h :: hs -> (try refine_with (snd (interp_with h)) gl with _ -> loop hs) in - loop (pair i viewtab.(i) @ if i = 2 then pair 1 viewtab.(1) else []) - -let apply_top_tac gl = - tclTHENLIST [introid top_id; apply_rconstr (mkRVar top_id); clear [top_id]] gl - -let inner_ssrapplytac gviews ggenl gclr ist gl = - let _, clr = interp_hyps ist gl gclr in - let vtac gv i gl' = refine_interp_apply_view i ist gl' gv in - let ggenl, tclGENTAC = - if gviews <> [] && ggenl <> [] then - let ggenl= List.map (fun (x,g) -> x, cpattern_of_term g) (List.hd ggenl) in - [], tclTHEN (genstac (ggenl,[]) ist) - else ggenl, tclTHEN tclIDTAC in - tclGENTAC (fun gl -> - match gviews, ggenl with - | v :: tl, [] -> - let dbl = if List.length tl = 1 then 2 else 1 in - tclTHEN - (List.fold_left (fun acc v -> tclTHENLAST acc (vtac v dbl)) (vtac v 1) tl) - (cleartac clr) gl - | [], [agens] -> - let clr', (sigma, lemma) = interp_agens ist gl agens in - let gl = pf_merge_uc_of sigma gl in - tclTHENLIST [cleartac clr; refine_with ~beta:true lemma; cleartac clr'] gl - | _, _ -> tclTHEN apply_top_tac (cleartac clr) gl) gl - -let ssrapplytac ist (views, (_, ((gens, clr), intros))) = - tclINTROS ist (inner_ssrapplytac views gens clr) intros - -TACTIC EXTEND ssrapply -| [ "apply" ssrapplyarg(arg) ] -> [ Proofview.V82.tactic (ssrapplytac ist arg) ] -| [ "apply" ] -> [ Proofview.V82.tactic apply_top_tac ] -END - -(** The "exact" tactic *) - -let mk_exactarg views dgens = mk_applyarg views dgens [] - -ARGUMENT EXTEND ssrexactarg TYPED AS ssrapplyarg PRINTED BY pr_ssraarg -| [ ":" ssragen(gen) ssragens(dgens) ] -> - [ mk_exactarg [] (cons_gen gen dgens) ] -| [ ssrview(view) ssrclear(clr) ] -> - [ mk_exactarg view ([], clr) ] -| [ ssrclear_ne(clr) ] -> - [ mk_exactarg [] ([], clr) ] -END - -let vmexacttac pf gl = exact_no_check (mkCast (pf, VMcast, pf_concl gl)) gl - -TACTIC EXTEND ssrexact -| [ "exact" ssrexactarg(arg) ] -> [ Proofview.V82.tactic (tclBY (ssrapplytac ist arg)) ] -| [ "exact" ] -> [ Proofview.V82.tactic (tclORELSE donetac (tclBY apply_top_tac)) ] -| [ "exact" "<:" lconstr(pf) ] -> [ Proofview.V82.tactic (vmexacttac pf) ] -END - -(** The "congr" tactic *) - -(* type ssrcongrarg = open_constr * (int * constr) *) - -let pr_ssrcongrarg _ _ _ ((n, f), dgens) = - (if n <= 0 then mt () else str " " ++ int n) ++ - str " " ++ pr_term f ++ pr_dgens pr_gen dgens - -ARGUMENT EXTEND ssrcongrarg TYPED AS (int * ssrterm) * ssrdgens - PRINTED BY pr_ssrcongrarg -| [ natural(n) constr(c) ssrdgens(dgens) ] -> [ (n, mk_term ' ' c), dgens ] -| [ natural(n) constr(c) ] -> [ (n, mk_term ' ' c),([[]],[]) ] -| [ constr(c) ssrdgens(dgens) ] -> [ (0, mk_term ' ' c), dgens ] -| [ constr(c) ] -> [ (0, mk_term ' ' c), ([[]],[]) ] -END - -let rec mkRnat n = - if n <= 0 then GRef (dummy_loc, glob_O, None) else - mkRApp (GRef (dummy_loc, glob_S, None)) [mkRnat (n - 1)] - -let interp_congrarg_at ist gl n rf ty m = - pp(lazy(str"===interp_congrarg_at===")); - let congrn, _ = mkSsrRRef "nary_congruence" in - let args1 = mkRnat n :: mkRHoles n @ [ty] in - let args2 = mkRHoles (3 * n) in - let rec loop i = - if i + n > m then None else - try - let rt = mkRApp congrn (args1 @ mkRApp rf (mkRHoles i) :: args2) in - pp(lazy(str"rt=" ++ pr_glob_constr rt)); - Some (interp_refine ist gl rt) - with _ -> loop (i + 1) in - loop 0 - -let pattern_id = mk_internal_id "pattern value" - -let congrtac ((n, t), ty) ist gl = - pp(lazy(str"===congr===")); - pp(lazy(str"concl=" ++ pr_constr (pf_concl gl))); - let sigma, _ as it = interp_term ist gl t in - let gl = pf_merge_uc_of sigma gl in - let _, f, _, _ucst = pf_abs_evars gl it in - let ist' = {ist with lfun = - Id.Map.add pattern_id (Value.of_constr f) Id.Map.empty } in - let rf = mkRltacVar pattern_id in - let m = pf_nbargs gl f in - let _, cf = if n > 0 then - match interp_congrarg_at ist' gl n rf ty m with - | Some cf -> cf - | None -> errorstrm (str "No " ++ int n ++ str "-congruence with " - ++ pr_term t) - else let rec loop i = - if i > m then errorstrm (str "No congruence with " ++ pr_term t) - else match interp_congrarg_at ist' gl i rf ty m with - | Some cf -> cf - | None -> loop (i + 1) in - loop 1 in - tclTHEN (refine_with cf) (tclTRY (Proofview.V82.of_tactic reflexivity)) gl - -let newssrcongrtac arg ist gl = - pp(lazy(str"===newcongr===")); - pp(lazy(str"concl=" ++ pr_constr (pf_concl gl))); - (* utils *) - let fs gl t = Reductionops.nf_evar (project gl) t in - let tclMATCH_GOAL (c, gl_c) proj t_ok t_fail gl = - match try Some (pf_unify_HO gl_c (pf_concl gl) c) with _ -> None with - | Some gl_c -> - tclTHEN (Proofview.V82.of_tactic (convert_concl (fs gl_c c))) - (t_ok (proj gl_c)) gl - | None -> t_fail () gl in - let mk_evar gl ty = - let env, sigma, si = pf_env gl, project gl, sig_it gl in - let sigma, x = Evarutil.new_evar env (create_evar_defs sigma) ty in - x, re_sig si sigma in - let arr, gl = pf_mkSsrConst "ssr_congr_arrow" gl in - let ssr_congr lr = mkApp (arr, lr) in - (* here thw two cases: simple equality or arrow *) - let equality, _, eq_args, gl' = - let eq, gl = pf_fresh_global (build_coq_eq ()) gl in - pf_saturate gl eq 3 in - tclMATCH_GOAL (equality, gl') (fun gl' -> fs gl' (List.assoc 0 eq_args)) - (fun ty -> congrtac (arg, Detyping.detype false [] (pf_env gl) (project gl) ty) ist) - (fun () -> - let lhs, gl' = mk_evar gl mkProp in let rhs, gl' = mk_evar gl' mkProp in - let arrow = mkArrow lhs (lift 1 rhs) in - tclMATCH_GOAL (arrow, gl') (fun gl' -> [|fs gl' lhs;fs gl' rhs|]) - (fun lr -> tclTHEN (Proofview.V82.of_tactic (apply (ssr_congr lr))) (congrtac (arg, mkRType) ist)) - (fun _ _ -> errorstrm (str"Conclusion is not an equality nor an arrow"))) - gl -;; - -TACTIC EXTEND ssrcongr -| [ "congr" ssrcongrarg(arg) ] -> -[ let arg, dgens = arg in - Proofview.V82.tactic begin - match dgens with - | [gens], clr -> tclTHEN (genstac (gens,clr) ist) (newssrcongrtac arg ist) - | _ -> errorstrm (str"Dependent family abstractions not allowed in congr") - end] -END - -(** 7. Rewriting tactics (rewrite, unlock) *) - -(** Coq rewrite compatibility flag *) - -let ssr_strict_match = ref false - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "strict redex matching"; - Goptions.optkey = ["Match"; "Strict"]; - Goptions.optread = (fun () -> !ssr_strict_match); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssr_strict_match := b) } - -(** Rewrite multiplier *) - -type ssrmult = int * ssrmmod - -let notimes = 0 -let nomult = 1, Once - -let pr_mult (n, m) = - if n > 0 && m <> Once then int n ++ pr_mmod m else pr_mmod m - -let pr_ssrmult _ _ _ = pr_mult - -ARGUMENT EXTEND ssrmult_ne TYPED AS int * ssrmmod PRINTED BY pr_ssrmult - | [ natural(n) ssrmmod(m) ] -> [ check_index loc n, m ] - | [ ssrmmod(m) ] -> [ notimes, m ] -END - -ARGUMENT EXTEND ssrmult TYPED AS ssrmult_ne PRINTED BY pr_ssrmult - | [ ssrmult_ne(m) ] -> [ m ] - | [ ] -> [ nomult ] -END - -(** Rewrite clear/occ switches *) - -let pr_rwocc = function - | None, None -> mt () - | None, occ -> pr_occ occ - | Some clr, _ -> pr_clear_ne clr - -let pr_ssrrwocc _ _ _ = pr_rwocc - -ARGUMENT EXTEND ssrrwocc TYPED AS ssrdocc PRINTED BY pr_ssrrwocc -| [ "{" ssrhyp_list(clr) "}" ] -> [ mkclr clr ] -| [ "{" ssrocc(occ) "}" ] -> [ mkocc occ ] -| [ ] -> [ noclr ] -END - -(** Rewrite rules *) - -type ssrwkind = RWred of ssrsimpl | RWdef | RWeq -(* type ssrrule = ssrwkind * ssrterm *) - -let pr_rwkind = function - | RWred s -> pr_simpl s - | RWdef -> str "/" - | RWeq -> mt () - -let wit_ssrrwkind = add_genarg "ssrrwkind" pr_rwkind - -let pr_rule = function - | RWred s, _ -> pr_simpl s - | RWdef, r-> str "/" ++ pr_term r - | RWeq, r -> pr_term r - -let pr_ssrrule _ _ _ = pr_rule - -let noruleterm loc = mk_term ' ' (mkCProp loc) - -ARGUMENT EXTEND ssrrule_ne TYPED AS ssrrwkind * ssrterm PRINTED BY pr_ssrrule - | [ ssrsimpl_ne(s) ] -> [ RWred s, noruleterm loc ] - | [ "/" ssrterm(t) ] -> [ RWdef, t ] - | [ ssrterm(t) ] -> [ RWeq, t ] -END - -ARGUMENT EXTEND ssrrule TYPED AS ssrrule_ne PRINTED BY pr_ssrrule - | [ ssrrule_ne(r) ] -> [ r ] - | [ ] -> [ RWred Nop, noruleterm loc ] -END - -(** Rewrite arguments *) - -(* type ssrrwarg = (ssrdir * ssrmult) * ((ssrdocc * ssrpattern) * ssrrule) *) - -let pr_option f = function None -> mt() | Some x -> f x -let pr_pattern_squarep= pr_option (fun r -> str "[" ++ pr_rpattern r ++ str "]") -let pr_ssrpattern_squarep _ _ _ = pr_pattern_squarep -let pr_rwarg ((d, m), ((docc, rx), r)) = - pr_rwdir d ++ pr_mult m ++ pr_rwocc docc ++ pr_pattern_squarep rx ++ pr_rule r - -let pr_ssrrwarg _ _ _ = pr_rwarg - -let mk_rwarg (d, (n, _ as m)) ((clr, occ as docc), rx) (rt, _ as r) = - if rt <> RWeq then begin - if rt = RWred Nop && not (m = nomult && occ = None && rx = None) - && (clr = None || clr = Some []) then - anomaly "Improper rewrite clear switch"; - if d = R2L && rt <> RWdef then - Errors.error "Right-to-left switch on simplification"; - if n <> 1 && rt = RWred Cut then - Errors.error "Bad or useless multiplier"; - if occ <> None && rx = None && rt <> RWdef then - Errors.error "Missing redex for simplification occurrence" - end; (d, m), ((docc, rx), r) - -let norwmult = L2R, nomult -let norwocc = noclr, None - -(* -let pattern_ident = Prim.pattern_ident in -GEXTEND Gram -GLOBAL: pattern_ident; -pattern_ident: -[[c = pattern_ident -> (CRef (Ident (loc,c)), NoBindings)]]; -END -*) - -ARGUMENT EXTEND ssrpattern_squarep -TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep - | [ "[" rpattern(rdx) "]" ] -> [ Some rdx ] - | [ ] -> [ None ] -END - -ARGUMENT EXTEND ssrpattern_ne_squarep -TYPED AS rpattern option PRINTED BY pr_ssrpattern_squarep - | [ "[" rpattern(rdx) "]" ] -> [ Some rdx ] -END - - -ARGUMENT EXTEND ssrrwarg - TYPED AS (ssrdir * ssrmult) * ((ssrdocc * rpattern option) * ssrrule) - PRINTED BY pr_ssrrwarg - | [ "-" ssrmult(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg (R2L, m) (docc, rx) r ] - | [ "-/" ssrterm(t) ] -> (* just in case '-/' should become a token *) - [ mk_rwarg (R2L, nomult) norwocc (RWdef, t) ] - | [ ssrmult_ne(m) ssrrwocc(docc) ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg (L2R, m) (docc, rx) r ] - | [ "{" ne_ssrhyp_list(clr) "}" ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (mkclr clr, rx) r ] - | [ "{" ne_ssrhyp_list(clr) "}" ssrrule(r) ] -> - [ mk_rwarg norwmult (mkclr clr, None) r ] - | [ "{" ssrocc(occ) "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (mkocc occ, rx) r ] - | [ "{" "}" ssrpattern_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (nodocc, rx) r ] - | [ ssrpattern_ne_squarep(rx) ssrrule_ne(r) ] -> - [ mk_rwarg norwmult (noclr, rx) r ] - | [ ssrrule_ne(r) ] -> - [ mk_rwarg norwmult norwocc r ] -END - -let simplintac occ rdx sim gl = - let simptac gl = - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let simp env c _ _ = red_safe Tacred.simpl env sigma0 c in - Proofview.V82.of_tactic - (convert_concl_no_check (eval_pattern env0 sigma0 concl0 rdx occ simp)) - gl in - match sim with - | Simpl -> simptac gl - | SimplCut -> tclTHEN simptac (tclTRY donetac) gl - | _ -> simpltac sim gl - -let rec get_evalref c = match kind_of_term c with - | Var id -> EvalVarRef id - | Const (k,_) -> EvalConstRef k - | App (c', _) -> get_evalref c' - | Cast (c', _, _) -> get_evalref c' - | _ -> errorstrm (str "The term " ++ pr_constr c ++ str " is not unfoldable") - -(* Strip a pattern generated by a prenex implicit to its constant. *) -let strip_unfold_term ((sigma, t) as p) kt = match kind_of_term t with - | App (f, a) when kt = ' ' && Array.for_all isEvar a && isConst f -> - (sigma, f), true - | Const _ | Var _ -> p, true - | _ -> p, false - -let unfoldintac occ rdx t (kt,_) gl = - let fs sigma x = Reductionops.nf_evar sigma x in - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let (sigma, t), const = strip_unfold_term t kt in - let body env t c = - Tacred.unfoldn [OnlyOccurrences [1], get_evalref t] env sigma0 c in - let easy = occ = None && rdx = None in - let red_flags = if easy then Closure.betaiotazeta else Closure.betaiota in - let beta env = Reductionops.clos_norm_flags red_flags env sigma0 in - let unfold, conclude = match rdx with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let ise = create_evar_defs sigma in - let ise, u = mk_tpattern env0 sigma0 (ise,t) all_ok L2R t in - let find_T, end_T = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in - (fun env c _ h -> - try find_T env c h (fun env c _ _ -> body env t c) - with NoMatch when easy -> c - | NoMatch | NoProgress -> errorstrm (str"No occurrence of " - ++ pr_constr_pat t ++ spc() ++ str "in " ++ pr_constr c)), - (fun () -> try end_T () with - | NoMatch when easy -> fake_pmatcher_end () - | NoMatch -> anomaly "unfoldintac") - | _ -> - (fun env (c as orig_c) _ h -> - if const then - let rec aux c = - match kind_of_term c with - | Const _ when Term.eq_constr c t -> body env t t - | App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a) - | _ -> let c = Reductionops.whd_betaiotazeta sigma0 c in - match kind_of_term c with - | Const _ when Term.eq_constr c t -> body env t t - | App (f,a) when Term.eq_constr f t -> mkApp (body env f f,a) - | Const f -> aux (body env c c) - | App (f, a) -> aux (mkApp (body env f f, a)) - | _ -> errorstrm (str "The term "++pr_constr orig_c++ - str" contains no " ++ pr_constr t ++ str" even after unfolding") - in aux c - else - try body env t (fs (unify_HO env sigma c t) t) - with _ -> errorstrm (str "The term " ++ - pr_constr c ++spc()++ str "does not unify with " ++ pr_constr_pat t)), - fake_pmatcher_end in - let concl = - try beta env0 (eval_pattern env0 sigma0 concl0 rdx occ unfold) - with Option.IsNone -> errorstrm (str"Failed to unfold " ++ pr_constr_pat t) in - let _ = conclude () in - Proofview.V82.of_tactic (convert_concl concl) gl -;; - -let foldtac occ rdx ft gl = - let fs sigma x = Reductionops.nf_evar sigma x in - let sigma0, concl0, env0 = project gl, pf_concl gl, pf_env gl in - let sigma, t = ft in - let fold, conclude = match rdx with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let ise = create_evar_defs sigma in - let ut = red_product_skip_id env0 sigma t in - let ise, ut = mk_tpattern env0 sigma0 (ise,t) all_ok L2R ut in - let find_T, end_T = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[ut]) in - (fun env c _ h -> try find_T env c h (fun env t _ _ -> t) with NoMatch ->c), - (fun () -> try end_T () with NoMatch -> fake_pmatcher_end ()) - | _ -> - (fun env c _ h -> try let sigma = unify_HO env sigma c t in fs sigma t - with _ -> errorstrm (str "fold pattern " ++ pr_constr_pat t ++ spc () - ++ str "does not match redex " ++ pr_constr_pat c)), - fake_pmatcher_end in - let concl = eval_pattern env0 sigma0 concl0 rdx occ fold in - let _ = conclude () in - Proofview.V82.of_tactic (convert_concl concl) gl -;; - -let converse_dir = function L2R -> R2L | R2L -> L2R - -let rw_progress rhs lhs ise = not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs)) - -(* Coq has a more general form of "equation" (any type with a single *) -(* constructor with no arguments with_rect_r elimination lemmas). *) -(* However there is no clear way of determining the LHS and RHS of *) -(* such a generic Leibnitz equation -- short of inspecting the type *) -(* of the elimination lemmas. *) - -let rec strip_prod_assum c = match kind_of_term c with - | Prod (_, _, c') -> strip_prod_assum c' - | LetIn (_, v, _, c') -> strip_prod_assum (subst1 v c) - | Cast (c', _, _) -> strip_prod_assum c' - | _ -> c - -let rule_id = mk_internal_id "rewrite rule" - -exception PRtype_error -exception PRindetermined_rhs of constr - -let pirrel_rewrite pred rdx rdx_ty new_rdx dir (sigma, c) c_ty gl = -(* pp(lazy(str"sigma@pirrel_rewrite=" ++ pr_evar_map None sigma)); *) - let env = pf_env gl in - let beta = Reductionops.clos_norm_flags Closure.beta env sigma in - let sigma, p = - let sigma = create_evar_defs sigma in - Evarutil.new_evar env sigma (beta (subst1 new_rdx pred)) in - let pred = mkNamedLambda pattern_id rdx_ty pred in - let elim, gl = - let ((kn, i) as ind, _), unfolded_c_ty = pf_reduce_to_quantified_ind gl c_ty in - let sort = elimination_sort_of_goal gl in - let elim, gl = pf_fresh_global (Indrec.lookup_eliminator ind sort) gl in - if dir = R2L then elim, gl else (* taken from Coq's rewrite *) - let elim, _ = destConst elim in - let mp,dp,l = repr_con (constant_of_kn (canonical_con elim)) in - let l' = label_of_id (Nameops.add_suffix (id_of_label l) "_r") in - let c1' = Global.constant_of_delta_kn (canonical_con (make_con mp dp l')) in - mkConst c1', gl in - let proof = mkApp (elim, [| rdx_ty; new_rdx; pred; p; rdx; c |]) in - (* We check the proof is well typed *) - let sigma, proof_ty = - try Typing.e_type_of env sigma proof with _ -> raise PRtype_error in - pp(lazy(str"pirrel_rewrite proof term of type: " ++ pr_constr proof_ty)); - try refine_with - ~first_goes_last:(not !ssroldreworder) ~with_evars:false (sigma, proof) gl - with _ -> - (* we generate a msg like: "Unable to find an instance for the variable" *) - let c = Reductionops.nf_evar sigma c in - let hd_ty, miss = match kind_of_term c with - | App (hd, args) -> - let hd_ty = Retyping.get_type_of env sigma hd in - let names = let rec aux t = function 0 -> [] | n -> - let t = Reductionops.whd_betadeltaiota env sigma t in - match kind_of_type t with - | ProdType (name, _, t) -> name :: aux t (n-1) - | _ -> assert false in aux hd_ty (Array.length args) in - hd_ty, Util.List.map_filter (fun (t, name) -> - let evs = Intset.elements (Evarutil.undefined_evars_of_term sigma t) in - let open_evs = List.filter (fun k -> - InProp <> Retyping.get_sort_family_of - env sigma (Evd.evar_concl (Evd.find sigma k))) - evs in - if open_evs <> [] then Some name else None) - (List.combine (Array.to_list args) names) - | _ -> anomaly "rewrite rule not an application" in - errorstrm (Himsg.explain_refiner_error (Logic.UnresolvedBindings miss)++ - (Pp.fnl()++str"Rule's type:" ++ spc() ++ pr_constr hd_ty)) -;; - -let is_const_ref c r = isConst c && eq_gr (ConstRef (fst(destConst c))) r -let is_construct_ref c r = - isConstruct c && eq_gr (ConstructRef (fst(destConstruct c))) r -let is_ind_ref c r = isInd c && eq_gr (IndRef (fst(destInd c))) r - -let rwcltac cl rdx dir sr gl = - let n, r_n,_, ucst = pf_abs_evars gl sr in - let r_n' = pf_abs_cterm gl n r_n in - let r' = subst_var pattern_id r_n' in - let gl = pf_merge_uc ucst gl in - let rdxt = Retyping.get_type_of (pf_env gl) (fst sr) rdx in -(* pp(lazy(str"sigma@rwcltac=" ++ pr_evar_map None (fst sr))); *) - pp(lazy(str"r@rwcltac=" ++ pr_constr (snd sr))); - let cvtac, rwtac, gl = - if closed0 r' then - let env, sigma, c, c_eq = pf_env gl, fst sr, snd sr, build_coq_eq () in - let sigma, c_ty = Typing.e_type_of env sigma c in - pp(lazy(str"c_ty@rwcltac=" ++ pr_constr c_ty)); - match kind_of_type (Reductionops.whd_betadeltaiota env sigma c_ty) with - | AtomicType(e, a) when is_ind_ref e c_eq -> - let new_rdx = if dir = L2R then a.(2) else a.(1) in - pirrel_rewrite cl rdx rdxt new_rdx dir (sigma,c) c_ty, tclIDTAC, gl - | _ -> - let cl' = mkApp (mkNamedLambda pattern_id rdxt cl, [|rdx|]) in - let sigma, _ = Typing.e_type_of env sigma cl' in - let gl = pf_merge_uc_of sigma gl in - Proofview.V82.of_tactic (convert_concl cl'), rewritetac dir r', gl - else - let dc, r2 = decompose_lam_n n r' in - let r3, _, r3t = - try destCast r2 with _ -> - errorstrm (str "no cast from " ++ pr_constr_pat (snd sr) - ++ str " to " ++ pr_constr r2) in - let cl' = mkNamedProd rule_id (compose_prod dc r3t) (lift 1 cl) in - let cl'' = mkNamedProd pattern_id rdxt cl' in - let itacs = [introid pattern_id; introid rule_id] in - let cltac = clear [pattern_id; rule_id] in - let rwtacs = [rewritetac dir (mkVar rule_id); cltac] in - apply_type cl'' [rdx; compose_lam dc r3], tclTHENLIST (itacs @ rwtacs), gl - in - let cvtac' _ = - try cvtac gl with - | PRtype_error -> - if occur_existential (pf_concl gl) - then errorstrm (str "Rewriting impacts evars") - else errorstrm (str "Dependent type error in rewrite of " - ++ pf_pr_constr gl (project gl) (mkNamedLambda pattern_id rdxt cl)) - | Errors.UserError _ as e -> raise e - | e -> anomaly ("cvtac's exception: " ^ Printexc.to_string e); - in - tclTHEN cvtac' rwtac gl - -let prof_rwcltac = mk_profiler "rwrxtac.rwcltac";; -let rwcltac cl rdx dir sr gl = - prof_rwcltac.profile (rwcltac cl rdx dir sr) gl -;; - - -let lz_coq_prod = - let prod = lazy (build_prod ()) in fun () -> Lazy.force prod - -let lz_setoid_relation = - let sdir = ["Classes"; "RelationClasses"] in - let last_srel = ref (Environ.empty_env, None) in - fun env -> match !last_srel with - | env', srel when env' == env -> srel - | _ -> - let srel = - try Some (coq_constant "Class_setoid" sdir "RewriteRelation") - with _ -> None in - last_srel := (env, srel); srel - -let ssr_is_setoid env = - match lz_setoid_relation env with - | None -> fun _ _ _ -> false - | Some srel -> - fun sigma r args -> - Rewrite.is_applied_rewrite_relation env - sigma [] (mkApp (r, args)) <> None - -let prof_rwxrtac_find_rule = mk_profiler "rwrxtac.find_rule";; - -let closed0_check cl p gl = - if closed0 cl then - errorstrm (str"No occurrence of redex "++pf_pr_constr gl (project gl) p) - -let rwprocess_rule dir rule gl = - let env = pf_env gl in - let coq_prod = lz_coq_prod () in - let is_setoid = ssr_is_setoid env in - let r_sigma, rules = - let rec loop d sigma r t0 rs red = - let t = - if red = 1 then Tacred.hnf_constr env sigma t0 - else Reductionops.whd_betaiotazeta sigma t0 in - pp(lazy(str"rewrule="++pr_constr t)); - match kind_of_term t with - | Prod (_, xt, at) -> - let ise, x = Evarutil.new_evar env (create_evar_defs sigma) xt in - loop d ise (mkApp (r, [|x|])) (subst1 x at) rs 0 - | App (pr, a) when is_ind_ref pr coq_prod.Coqlib.typ -> - let sr sigma = match kind_of_term (Tacred.hnf_constr env sigma r) with - | App (c, ra) when is_construct_ref c coq_prod.Coqlib.intro -> - fun i -> ra.(i + 1), sigma - | _ -> let ra = Array.append a [|r|] in - function 1 -> - let sigma, pi1 = Evd.fresh_global env sigma coq_prod.Coqlib.proj1 in - mkApp (pi1, ra), sigma - | _ -> - let sigma, pi2 = Evd.fresh_global env sigma coq_prod.Coqlib.proj2 in - mkApp (pi2, ra), sigma in - if Term.eq_constr a.(0) (build_coq_True ()) then - let s, sigma = sr sigma 2 in - loop (converse_dir d) sigma s a.(1) rs 0 - else - let s, sigma = sr sigma 2 in - let sigma, rs2 = loop d sigma s a.(1) rs 0 in - let s, sigma = sr sigma 1 in - loop d sigma s a.(0) rs2 0 - | App (r_eq, a) when Hipattern.match_with_equality_type t != None -> - let indu = destInd r_eq and rhs = Array.last a in - let np = Inductiveops.inductive_nparamdecls (fst indu) in - let ind_ct = Inductiveops.type_of_constructors env indu in - let lhs0 = last_arg (strip_prod_assum ind_ct.(0)) in - let rdesc = match kind_of_term lhs0 with - | Rel i -> - let lhs = a.(np - i) in - let lhs, rhs = if d = L2R then lhs, rhs else rhs, lhs in -(* msgnl (str "RW: " ++ pr_rwdir d ++ str " " ++ pr_constr_pat r ++ str " : " - ++ pr_constr_pat lhs ++ str " ~> " ++ pr_constr_pat rhs); *) - d, r, lhs, rhs -(* - let l_i, r_i = if d = L2R then i, 1 - ndep else 1 - ndep, i in - let lhs = a.(np - l_i) and rhs = a.(np - r_i) in - let a' = Array.copy a in let _ = a'.(np - l_i) <- mkVar pattern_id in - let r' = mkCast (r, DEFAULTcast, mkApp (r_eq, a')) in - (d, r', lhs, rhs) -*) - | _ -> - let lhs = substl (array_list_of_tl (Array.sub a 0 np)) lhs0 in - let lhs, rhs = if d = R2L then lhs, rhs else rhs, lhs in - let d' = if Array.length a = 1 then d else converse_dir d in - d', r, lhs, rhs in - sigma, rdesc :: rs - | App (s_eq, a) when is_setoid sigma s_eq a -> - let np = Array.length a and i = 3 - dir_org d in - let lhs = a.(np - i) and rhs = a.(np + i - 3) in - let a' = Array.copy a in let _ = a'.(np - i) <- mkVar pattern_id in - let r' = mkCast (r, DEFAULTcast, mkApp (s_eq, a')) in - sigma, (d, r', lhs, rhs) :: rs - | _ -> - if red = 0 then loop d sigma r t rs 1 - else errorstrm (str "not a rewritable relation: " ++ pr_constr_pat t - ++ spc() ++ str "in rule " ++ pr_constr_pat (snd rule)) - in - let sigma, r = rule in - let t = Retyping.get_type_of env sigma r in - loop dir sigma r t [] 0 - in - r_sigma, rules - -let rwrxtac occ rdx_pat dir rule gl = - let env = pf_env gl in - let r_sigma, rules = rwprocess_rule dir rule gl in - let find_rule rdx = - let rec rwtac = function - | [] -> - errorstrm (str "pattern " ++ pr_constr_pat rdx ++ - str " does not match " ++ pr_dir_side dir ++ - str " of " ++ pr_constr_pat (snd rule)) - | (d, r, lhs, rhs) :: rs -> - try - let ise = unify_HO env (create_evar_defs r_sigma) lhs rdx in - if not (rw_progress rhs rdx ise) then raise NoMatch else - d, (ise, Evd.evar_universe_context ise, Reductionops.nf_evar ise r) - with _ -> rwtac rs in - rwtac rules in - let find_rule rdx = prof_rwxrtac_find_rule.profile find_rule rdx in - let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in - let find_R, conclude = match rdx_pat with - | Some (_, (In_T _ | In_X_In_T _)) | None -> - let upats_origin = dir, snd rule in - let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in - let find_R, end_R = mk_tpattern_matcher sigma0 occ ~upats_origin rpats in - (fun e c _ i -> find_R ~k:(fun _ _ _ h -> mkRel h) e c i), - fun cl -> let rdx,d,r = end_R () in closed0_check cl rdx gl; (d,r),rdx - | Some(_, (T e | X_In_T (_,e) | E_As_X_In_T (e,_,_) | E_In_X_In_T (e,_,_))) -> - let r = ref None in - (fun env c _ h -> do_once r (fun () -> find_rule c, c); mkRel h), - (fun concl -> closed0_check concl e gl; assert_done r) in - let concl = eval_pattern env0 sigma0 concl0 rdx_pat occ find_R in - let (d, r), rdx = conclude concl in - let r = Evd.merge_universe_context (pi1 r) (pi2 r), pi3 r in - rwcltac concl rdx d r gl -;; - -let prof_rwxrtac = mk_profiler "rwrxtac";; -let rwrxtac occ rdx_pat dir rule gl = - prof_rwxrtac.profile (rwrxtac occ rdx_pat dir rule) gl -;; - -let ssrinstancesofrule ist dir arg gl = - let sigma0, env0, concl0 = project gl, pf_env gl, pf_concl gl in - let rule = interp_term ist gl arg in - let r_sigma, rules = rwprocess_rule dir rule gl in - let find, conclude = - let upats_origin = dir, snd rule in - let rpat env sigma0 (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env sigma0 (sigma,r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left (rpat env0 sigma0) (r_sigma,[]) rules in - mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true sigma0 None ~upats_origin rpats in - let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in - ppnl (str"BEGIN INSTANCES"); - try - while true do - ignore(find env0 concl0 1 ~k:print) - done; raise NoMatch - with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl - -TACTIC EXTEND ssrinstofruleL2R -| [ "ssrinstancesofruleL2R" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist L2R arg) ] -END -TACTIC EXTEND ssrinstofruleR2L -| [ "ssrinstancesofruleR2L" ssrterm(arg) ] -> [ Proofview.V82.tactic (ssrinstancesofrule ist R2L arg) ] -END - -(* Resolve forward reference *) -let _ = - ipat_rewritetac := fun occ dir c gl -> rwrxtac occ None dir (project gl, c) gl - -let rwargtac ist ((dir, mult), (((oclr, occ), grx), (kind, gt))) gl = - let fail = ref false in - let interp_rpattern ist gl gc = - try interp_rpattern ist gl gc - with _ when snd mult = May -> fail := true; project gl, T mkProp in - let interp gc gl = - try interp_term ist gl gc - with _ when snd mult = May -> fail := true; (project gl, mkProp) in - let rwtac gl = - let rx = Option.map (interp_rpattern ist gl) grx in - let t = interp gt gl in - (match kind with - | RWred sim -> simplintac occ rx sim - | RWdef -> if dir = R2L then foldtac occ rx t else unfoldintac occ rx t gt - | RWeq -> rwrxtac occ rx dir t) gl in - let ctac = cleartac (interp_clr (oclr, (fst gt, snd (interp gt gl)))) in - if !fail then ctac gl else tclTHEN (tclMULT mult rwtac) ctac gl - -(** Rewrite argument sequence *) - -(* type ssrrwargs = ssrrwarg list *) - -let pr_ssrrwargs _ _ _ rwargs = pr_list spc pr_rwarg rwargs - -ARGUMENT EXTEND ssrrwargs TYPED AS ssrrwarg list PRINTED BY pr_ssrrwargs - | [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let ssr_rw_syntax = Summary.ref ~name:"SSR:rewrite" true - -let _ = - Goptions.declare_bool_option - { Goptions.optsync = true; - Goptions.optname = "ssreflect rewrite"; - Goptions.optkey = ["SsrRewrite"]; - Goptions.optread = (fun _ -> !ssr_rw_syntax); - Goptions.optdepr = false; - Goptions.optwrite = (fun b -> ssr_rw_syntax := b) } - -let test_ssr_rw_syntax = - let test strm = - if not !ssr_rw_syntax then raise Stream.Failure else - if is_ssr_loaded () then () else - match Compat.get_tok (Util.stream_nth 0 strm) with - | Tok.KEYWORD key when List.mem key.[0] ['{'; '['; '/'] -> () - | _ -> raise Stream.Failure in - Gram.Entry.of_parser "test_ssr_rw_syntax" test - -GEXTEND Gram - GLOBAL: ssrrwargs; - ssrrwargs: [[ test_ssr_rw_syntax; a = LIST1 ssrrwarg -> a ]]; -END - -(** The "rewrite" tactic *) - -let ssrrewritetac ist rwargs = - tclTHENLIST (List.map (rwargtac ist) rwargs) - -TACTIC EXTEND ssrrewrite - | [ "rewrite" ssrrwargs(args) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrrewritetac ist args) clauses) ] -END - -(** The "unlock" tactic *) - -let pr_unlockarg (occ, t) = pr_occ occ ++ pr_term t -let pr_ssrunlockarg _ _ _ = pr_unlockarg - -ARGUMENT EXTEND ssrunlockarg TYPED AS ssrocc * ssrterm - PRINTED BY pr_ssrunlockarg - | [ "{" ssrocc(occ) "}" ssrterm(t) ] -> [ occ, t ] - | [ ssrterm(t) ] -> [ None, t ] -END - -let pr_ssrunlockargs _ _ _ args = pr_list spc pr_unlockarg args - -ARGUMENT EXTEND ssrunlockargs TYPED AS ssrunlockarg list - PRINTED BY pr_ssrunlockargs - | [ ssrunlockarg_list(args) ] -> [ args ] -END - -let unfoldtac occ ko t kt gl = - let cl, c = pf_fill_occ_term gl occ (fst (strip_unfold_term t kt)) in - let cl' = subst1 (pf_unfoldn [OnlyOccurrences [1], get_evalref c] gl c) cl in - let f = if ko = None then Closure.betaiotazeta else Closure.betaiota in - Proofview.V82.of_tactic - (convert_concl (pf_reduce (Reductionops.clos_norm_flags f) gl cl')) gl - -let unlocktac ist args gl = - let utac (occ, gt) gl = - unfoldtac occ occ (interp_term ist gl gt) (fst gt) gl in - let locked, gl = pf_mkSsrConst "locked" gl in - let key, gl = pf_mkSsrConst "master_key" gl in - let ktacs = [ - (fun gl -> unfoldtac None None (project gl,locked) '(' gl); - simplest_newcase key ] in - tclTHENLIST (List.map utac args @ ktacs) gl - -TACTIC EXTEND ssrunlock - | [ "unlock" ssrunlockargs(args) ssrclauses(clauses) ] -> -[ Proofview.V82.tactic (tclCLAUSES ist (unlocktac ist args) clauses) ] -END - -(** 8. Forward chaining tactics (pose, set, have, suffice, wlog) *) - -(** Defined identifier *) - -type ssrfwdid = identifier - -let pr_ssrfwdid _ _ _ id = pr_spc () ++ pr_id id - -(* We use a primitive parser for the head identifier of forward *) -(* tactis to avoid syntactic conflicts with basic Coq tactics. *) -ARGUMENT EXTEND ssrfwdid TYPED AS ident PRINTED BY pr_ssrfwdid - | [ "YouShouldNotTypeThis" ] -> [ anomaly "Grammar placeholder match" ] -END - -let accept_ssrfwdid strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT id -> accept_before_syms_or_any_id [":"; ":="; "("] strm - | _ -> raise Stream.Failure - - -let test_ssrfwdid = Gram.Entry.of_parser "test_ssrfwdid" accept_ssrfwdid - -GEXTEND Gram - GLOBAL: ssrfwdid; - ssrfwdid: [[ test_ssrfwdid; id = Prim.ident -> id ]]; - END - - - -(** Definition value formatting *) - -(* We use an intermediate structure to correctly render the binder list *) -(* abbreviations. We use a list of hints to extract the binders and *) -(* base term from a term, for the two first levels of representation of *) -(* of constr terms. *) - -type 'term ssrbind = - | Bvar of name - | Bdecl of name list * 'term - | Bdef of name * 'term option * 'term - | Bstruct of name - | Bcast of 'term - -let pr_binder prl = function - | Bvar x -> - pr_name x - | Bdecl (xs, t) -> - str "(" ++ pr_list pr_spc pr_name xs ++ str " : " ++ prl t ++ str ")" - | Bdef (x, None, v) -> - str "(" ++ pr_name x ++ str " := " ++ prl v ++ str ")" - | Bdef (x, Some t, v) -> - str "(" ++ pr_name x ++ str " : " ++ prl t ++ - str " := " ++ prl v ++ str ")" - | Bstruct x -> - str "{struct " ++ pr_name x ++ str "}" - | Bcast t -> - str ": " ++ prl t - -type 'term ssrbindval = 'term ssrbind list * 'term - -type ssrbindfmt = - | BFvar - | BFdecl of int (* #xs *) - | BFcast (* final cast *) - | BFdef of bool (* has cast? *) - | BFrec of bool * bool (* has struct? * has cast? *) - -let rec mkBstruct i = function - | Bvar x :: b -> - if i = 0 then [Bstruct x] else mkBstruct (i - 1) b - | Bdecl (xs, _) :: b -> - let i' = i - List.length xs in - if i' < 0 then [Bstruct (List.nth xs i)] else mkBstruct i' b - | _ :: b -> mkBstruct i b - | [] -> [] - -let rec format_local_binders h0 bl0 = match h0, bl0 with - | BFvar :: h, LocalRawAssum ([_, x], _, _) :: bl -> - Bvar x :: format_local_binders h bl - | BFdecl _ :: h, LocalRawAssum (lxs, _, t) :: bl -> - Bdecl (List.map snd lxs, t) :: format_local_binders h bl - | BFdef false :: h, LocalRawDef ((_, x), v) :: bl -> - Bdef (x, None, v) :: format_local_binders h bl - | BFdef true :: h, - LocalRawDef ((_, x), CCast (_, v, CastConv t)) :: bl -> - Bdef (x, Some t, v) :: format_local_binders h bl - | _ -> [] - -let rec format_constr_expr h0 c0 = match h0, c0 with - | BFvar :: h, CLambdaN (_, [[_, x], _, _], c) -> - let bs, c' = format_constr_expr h c in - Bvar x :: bs, c' - | BFdecl _:: h, CLambdaN (_, [lxs, _, t], c) -> - let bs, c' = format_constr_expr h c in - Bdecl (List.map snd lxs, t) :: bs, c' - | BFdef false :: h, CLetIn(_, (_, x), v, c) -> - let bs, c' = format_constr_expr h c in - Bdef (x, None, v) :: bs, c' - | BFdef true :: h, CLetIn(_, (_, x), CCast (_, v, CastConv t), c) -> - let bs, c' = format_constr_expr h c in - Bdef (x, Some t, v) :: bs, c' - | [BFcast], CCast (_, c, CastConv t) -> - [Bcast t], c - | BFrec (has_str, has_cast) :: h, - CFix (_, _, [_, (Some locn, CStructRec), bl, t, c]) -> - let bs = format_local_binders h bl in - let bstr = if has_str then [Bstruct (Name (snd locn))] else [] in - bs @ bstr @ (if has_cast then [Bcast t] else []), c - | BFrec (_, has_cast) :: h, CCoFix (_, _, [_, bl, t, c]) -> - format_local_binders h bl @ (if has_cast then [Bcast t] else []), c - | _, c -> - [], c - -let rec format_glob_decl h0 d0 = match h0, d0 with - | BFvar :: h, (x, _, None, _) :: d -> - Bvar x :: format_glob_decl h d - | BFdecl 1 :: h, (x, _, None, t) :: d -> - Bdecl ([x], t) :: format_glob_decl h d - | BFdecl n :: h, (x, _, None, t) :: d when n > 1 -> - begin match format_glob_decl (BFdecl (n - 1) :: h) d with - | Bdecl (xs, _) :: bs -> Bdecl (x :: xs, t) :: bs - | bs -> Bdecl ([x], t) :: bs - end - | BFdef false :: h, (x, _, Some v, _) :: d -> - Bdef (x, None, v) :: format_glob_decl h d - | BFdef true:: h, (x, _, Some (GCast (_, v, CastConv t)), _) :: d -> - Bdef (x, Some t, v) :: format_glob_decl h d - | _, (x, _, None, t) :: d -> - Bdecl ([x], t) :: format_glob_decl [] d - | _, (x, _, Some v, _) :: d -> - Bdef (x, None, v) :: format_glob_decl [] d - | _, [] -> [] - -let rec format_glob_constr h0 c0 = match h0, c0 with - | BFvar :: h, GLambda (_, x, _, _, c) -> - let bs, c' = format_glob_constr h c in - Bvar x :: bs, c' - | BFdecl 1 :: h, GLambda (_, x, _, t, c) -> - let bs, c' = format_glob_constr h c in - Bdecl ([x], t) :: bs, c' - | BFdecl n :: h, GLambda (_, x, _, t, c) when n > 1 -> - begin match format_glob_constr (BFdecl (n - 1) :: h) c with - | Bdecl (xs, _) :: bs, c' -> Bdecl (x :: xs, t) :: bs, c' - | _ -> [Bdecl ([x], t)], c - end - | BFdef false :: h, GLetIn(_, x, v, c) -> - let bs, c' = format_glob_constr h c in - Bdef (x, None, v) :: bs, c' - | BFdef true :: h, GLetIn(_, x, GCast (_, v, CastConv t), c) -> - let bs, c' = format_glob_constr h c in - Bdef (x, Some t, v) :: bs, c' - | [BFcast], GCast (_, c, CastConv t) -> - [Bcast t], c - | BFrec (has_str, has_cast) :: h, GRec (_, f, _, bl, t, c) - when Array.length c = 1 -> - let bs = format_glob_decl h bl.(0) in - let bstr = match has_str, f with - | true, GFix ([|Some i, GStructRec|], _) -> mkBstruct i bs - | _ -> [] in - bs @ bstr @ (if has_cast then [Bcast t.(0)] else []), c.(0) - | _, c -> - [], c - -(** Forward chaining argument *) - -(* There are three kinds of forward definitions: *) -(* - Hint: type only, cast to Type, may have proof hint. *) -(* - Have: type option + value, no space before type *) -(* - Pose: binders + value, space before binders. *) - -type ssrfwdkind = FwdHint of string * bool | FwdHave | FwdPose - -type ssrfwdfmt = ssrfwdkind * ssrbindfmt list - -let pr_fwdkind = function - | FwdHint (s,_) -> str (s ^ " ") | _ -> str " :=" ++ spc () -let pr_fwdfmt (fk, _ : ssrfwdfmt) = pr_fwdkind fk - -let wit_ssrfwdfmt = add_genarg "ssrfwdfmt" pr_fwdfmt - -(* type ssrfwd = ssrfwdfmt * ssrterm *) - -let mkFwdVal fk c = ((fk, []), mk_term ' ' c) -let mkssrFwdVal fk c = ((fk, []), (c,None)) - -let mkFwdCast fk loc t c = ((fk, [BFcast]), mk_term ' ' (CCast (loc, c, dC t))) -let mkssrFwdCast fk loc t c = ((fk, [BFcast]), (c, Some t)) - -let mkFwdHint s t = - let loc = constr_loc t in - mkFwdCast (FwdHint (s,false)) loc t (mkCHole loc) -let mkFwdHintNoTC s t = - let loc = constr_loc t in - mkFwdCast (FwdHint (s,true)) loc t (mkCHole loc) - -let pr_gen_fwd prval prc prlc fk (bs, c) = - let prc s = str s ++ spc () ++ prval prc prlc c in - match fk, bs with - | FwdHint (s,_), [Bcast t] -> str s ++ spc () ++ prlc t - | FwdHint (s,_), _ -> prc (s ^ "(* typeof *)") - | FwdHave, [Bcast t] -> str ":" ++ spc () ++ prlc t ++ prc " :=" - | _, [] -> prc " :=" - | _, _ -> spc () ++ pr_list spc (pr_binder prlc) bs ++ prc " :=" - -let pr_fwd_guarded prval prval' = function -| (fk, h), (_, (_, Some c)) -> - pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c) -| (fk, h), (_, (c, None)) -> - pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c) - -let pr_unguarded prc prlc = prlc - -let pr_fwd = pr_fwd_guarded pr_unguarded pr_unguarded -let pr_ssrfwd _ _ _ = pr_fwd - -ARGUMENT EXTEND ssrfwd TYPED AS (ssrfwdfmt * ssrterm) PRINTED BY pr_ssrfwd - | [ ":=" lconstr(c) ] -> [ mkFwdVal FwdPose c ] - | [ ":" lconstr (t) ":=" lconstr(c) ] -> [ mkFwdCast FwdPose loc t c ] -END - -(** Independent parsing for binders *) - -(* The pose, pose fix, and pose cofix tactics use these internally to *) -(* parse argument fragments. *) - -let pr_ssrbvar prc _ _ v = prc v - -ARGUMENT EXTEND ssrbvar TYPED AS constr PRINTED BY pr_ssrbvar -| [ ident(id) ] -> [ mkCVar loc id ] -| [ "_" ] -> [ mkCHole loc ] -END - -let bvar_lname = function - | CRef (Ident (loc, id), _) -> loc, Name id - | c -> constr_loc c, Anonymous - -let pr_ssrbinder prc _ _ (_, c) = prc c - -ARGUMENT EXTEND ssrbinder TYPED AS ssrfwdfmt * constr PRINTED BY pr_ssrbinder - | [ ssrbvar(bv) ] -> - [ let xloc, _ as x = bvar_lname bv in - (FwdPose, [BFvar]), - CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ] - | [ "(" ssrbvar(bv) ")" ] -> - [ let xloc, _ as x = bvar_lname bv in - (FwdPose, [BFvar]), - CLambdaN (loc,[[x],Default Explicit,mkCHole xloc],mkCHole loc) ] - | [ "(" ssrbvar(bv) ":" lconstr(t) ")" ] -> - [ let x = bvar_lname bv in - (FwdPose, [BFdecl 1]), - CLambdaN (loc, [[x], Default Explicit, t], mkCHole loc) ] - | [ "(" ssrbvar(bv) ne_ssrbvar_list(bvs) ":" lconstr(t) ")" ] -> - [ let xs = List.map bvar_lname (bv :: bvs) in - let n = List.length xs in - (FwdPose, [BFdecl n]), - CLambdaN (loc, [xs, Default Explicit, t], mkCHole loc) ] - | [ "(" ssrbvar(id) ":" lconstr(t) ":=" lconstr(v) ")" ] -> - [ let loc' = Loc.join_loc (constr_loc t) (constr_loc v) in - let v' = CCast (loc', v, dC t) in - (FwdPose,[BFdef true]), CLetIn (loc,bvar_lname id, v',mkCHole loc) ] - | [ "(" ssrbvar(id) ":=" lconstr(v) ")" ] -> - [ (FwdPose,[BFdef false]), CLetIn (loc,bvar_lname id, v,mkCHole loc) ] -END - -GEXTEND Gram - GLOBAL: ssrbinder; - ssrbinder: [ - [ ["of" | "&"]; c = operconstr LEVEL "99" -> - let loc = !@loc in - (FwdPose, [BFvar]), - CLambdaN (loc,[[loc,Anonymous],Default Explicit,c],mkCHole loc) ] - ]; -END - -let rec binders_fmts = function - | ((_, h), _) :: bs -> h @ binders_fmts bs - | _ -> [] - -let push_binders c2 bs = - let loc2 = constr_loc c2 in let mkloc loc1 = Loc.join_loc loc1 loc2 in - let rec loop ty c = function - | (_, CLambdaN (loc1, b, _)) :: bs when ty -> - CProdN (mkloc loc1, b, loop ty c bs) - | (_, CLambdaN (loc1, b, _)) :: bs -> - CLambdaN (mkloc loc1, b, loop ty c bs) - | (_, CLetIn (loc1, x, v, _)) :: bs -> - CLetIn (mkloc loc1, x, v, loop ty c bs) - | [] -> c - | _ -> anomaly "binder not a lambda nor a let in" in - match c2 with - | CCast (x, ct, CastConv cty) -> - (CCast (x, loop false ct bs, CastConv (loop true cty bs))) - | ct -> loop false ct bs - -let rec fix_binders = function - | (_, CLambdaN (_, [xs, _, t], _)) :: bs -> - LocalRawAssum (xs, Default Explicit, t) :: fix_binders bs - | (_, CLetIn (_, x, v, _)) :: bs -> - LocalRawDef (x, v) :: fix_binders bs - | _ -> [] - -let pr_ssrstruct _ _ _ = function - | Some id -> str "{struct " ++ pr_id id ++ str "}" - | None -> mt () - -ARGUMENT EXTEND ssrstruct TYPED AS ident option PRINTED BY pr_ssrstruct -| [ "{" "struct" ident(id) "}" ] -> [ Some id ] -| [ ] -> [ None ] -END - -(** The "pose" tactic *) - -(* The plain pose form. *) - -let bind_fwd bs = function - | (fk, h), (ck, (rc, Some c)) -> - (fk,binders_fmts bs @ h), (ck,(rc,Some (push_binders c bs))) - | fwd -> fwd - -ARGUMENT EXTEND ssrposefwd TYPED AS ssrfwd PRINTED BY pr_ssrfwd - | [ ssrbinder_list(bs) ssrfwd(fwd) ] -> [ bind_fwd bs fwd ] -END - -(* The pose fix form. *) - -let pr_ssrfixfwd _ _ _ (id, fwd) = str " fix " ++ pr_id id ++ pr_fwd fwd - -let bvar_locid = function - | CRef (Ident (loc, id), _) -> loc, id - | _ -> Errors.error "Missing identifier after \"(co)fix\"" - - -ARGUMENT EXTEND ssrfixfwd TYPED AS ident * ssrfwd PRINTED BY pr_ssrfixfwd - | [ "fix" ssrbvar(bv) ssrbinder_list(bs) ssrstruct(sid) ssrfwd(fwd) ] -> - [ let (_, id) as lid = bvar_locid bv in - let (fk, h), (ck, (rc, oc)) = fwd in - let c = Option.get oc in - let has_cast, t', c' = match format_constr_expr h c with - | [Bcast t'], c' -> true, t', c' - | _ -> false, mkCHole (constr_loc c), c in - let lb = fix_binders bs in - let has_struct, i = - let rec loop = function - (l', Name id') :: _ when Option.equal Id.equal sid (Some id') -> true, (l', id') - | [l', Name id'] when sid = None -> false, (l', id') - | _ :: bn -> loop bn - | [] -> Errors.error "Bad structural argument" in - loop (names_of_local_assums lb) in - let h' = BFrec (has_struct, has_cast) :: binders_fmts bs in - let fix = CFix (loc, lid, [lid, (Some i, CStructRec), lb, t', c']) in - id, ((fk, h'), (ck, (rc, Some fix))) ] -END - - -(* The pose cofix form. *) - -let pr_ssrcofixfwd _ _ _ (id, fwd) = str " cofix " ++ pr_id id ++ pr_fwd fwd - -ARGUMENT EXTEND ssrcofixfwd TYPED AS ssrfixfwd PRINTED BY pr_ssrcofixfwd - | [ "cofix" ssrbvar(bv) ssrbinder_list(bs) ssrfwd(fwd) ] -> - [ let _, id as lid = bvar_locid bv in - let (fk, h), (ck, (rc, oc)) = fwd in - let c = Option.get oc in - let has_cast, t', c' = match format_constr_expr h c with - | [Bcast t'], c' -> true, t', c' - | _ -> false, mkCHole (constr_loc c), c in - let h' = BFrec (false, has_cast) :: binders_fmts bs in - let cofix = CCoFix (loc, lid, [lid, fix_binders bs, t', c']) in - id, ((fk, h'), (ck, (rc, Some cofix))) - ] -END - -let ssrposetac ist (id, (_, t)) gl = - let sigma, t, ucst = pf_abs_ssrterm ist gl t in - posetac id t (pf_merge_uc ucst gl) - - -let prof_ssrposetac = mk_profiler "ssrposetac";; -let ssrposetac arg gl = prof_ssrposetac.profile (ssrposetac arg) gl;; - -TACTIC EXTEND ssrpose -| [ "pose" ssrfixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ] -| [ "pose" ssrcofixfwd(ffwd) ] -> [ Proofview.V82.tactic (ssrposetac ist ffwd) ] -| [ "pose" ssrfwdid(id) ssrposefwd(fwd) ] -> [ Proofview.V82.tactic (ssrposetac ist (id, fwd)) ] -END - -(** The "set" tactic *) - -(* type ssrsetfwd = ssrfwd * ssrdocc *) - -let guard_setrhs s i = s.[i] = '{' - -let pr_setrhs occ prc prlc c = - if occ = nodocc then pr_guarded guard_setrhs prlc c else pr_docc occ ++ prc c - -let pr_fwd_guarded prval prval' = function -| (fk, h), (_, (_, Some c)) -> - pr_gen_fwd prval pr_constr_expr prl_constr_expr fk (format_constr_expr h c) -| (fk, h), (_, (c, None)) -> - pr_gen_fwd prval' pr_glob_constr prl_glob_constr fk (format_glob_constr h c) - -(* This does not print the type, it should be fixed... *) -let pr_ssrsetfwd _ _ _ (((fk,_),(t,_)), docc) = - pr_gen_fwd (fun _ _ -> pr_cpattern) - (fun _ -> mt()) (fun _ -> mt()) fk ([Bcast ()],t) - -ARGUMENT EXTEND ssrsetfwd -TYPED AS (ssrfwdfmt * (lcpattern * ssrterm option)) * ssrdocc -PRINTED BY pr_ssrsetfwd -| [ ":" lconstr(t) ":=" "{" ssrocc(occ) "}" cpattern(c) ] -> - [ mkssrFwdCast FwdPose loc (mk_lterm t) c, mkocc occ ] -| [ ":" lconstr(t) ":=" lcpattern(c) ] -> - [ mkssrFwdCast FwdPose loc (mk_lterm t) c, nodocc ] -| [ ":=" "{" ssrocc(occ) "}" cpattern(c) ] -> - [ mkssrFwdVal FwdPose c, mkocc occ ] -| [ ":=" lcpattern(c) ] -> [ mkssrFwdVal FwdPose c, nodocc ] -END - -let ssrsettac ist id ((_, (pat, pty)), (_, occ)) gl = - let pat = interp_cpattern ist gl pat (Option.map snd pty) in - let cl, sigma, env = pf_concl gl, project gl, pf_env gl in - let (c, ucst), cl = - try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 - with NoMatch -> redex_of_pattern ~resolve_typeclasses:true env pat, cl in - if occur_existential c then errorstrm(str"The pattern"++spc()++ - pr_constr_pat c++spc()++str"did not match and has holes."++spc()++ - str"Did you mean pose?") else - let c, cty = match kind_of_term c with - | Cast(t, DEFAULTcast, ty) -> t, ty - | _ -> c, pf_type_of gl c in - let cl' = mkLetIn (Name id, c, cty, cl) in - let gl = pf_merge_uc ucst gl in - tclTHEN (Proofview.V82.of_tactic (convert_concl cl')) (introid id) gl - -TACTIC EXTEND ssrset -| [ "set" ssrfwdid(id) ssrsetfwd(fwd) ssrclauses(clauses) ] -> - [ Proofview.V82.tactic (tclCLAUSES ist (ssrsettac ist id fwd) clauses) ] -END - -(** The "have" tactic *) - -(* type ssrhavefwd = ssrfwd * ssrhint *) - -let pr_ssrhavefwd _ _ prt (fwd, hint) = pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrhavefwd TYPED AS ssrfwd * ssrhint PRINTED BY pr_ssrhavefwd -| [ ":" lconstr(t) ssrhint(hint) ] -> [ mkFwdHint ":" t, hint ] -| [ ":" lconstr(t) ":=" lconstr(c) ] -> [ mkFwdCast FwdHave loc t c, nohint ] -| [ ":" lconstr(t) ":=" ] -> [ mkFwdHintNoTC ":" t, nohint ] -| [ ":=" lconstr(c) ] -> [ mkFwdVal FwdHave c, nohint ] -END - -let intro_id_to_binder = List.map (function - | IpatId id -> - let xloc, _ as x = bvar_lname (mkCVar dummy_loc id) in - (FwdPose, [BFvar]), - CLambdaN (dummy_loc, [[x], Default Explicit, mkCHole xloc], - mkCHole dummy_loc) - | _ -> anomaly "non-id accepted as binder") - -let binder_to_intro_id = List.map (function - | (FwdPose, [BFvar]), CLambdaN (_,[ids,_,_],_) - | (FwdPose, [BFdecl _]), CLambdaN (_,[ids,_,_],_) -> - List.map (function (_, Name id) -> IpatId id | _ -> IpatAnon) ids - | (FwdPose, [BFdef _]), CLetIn (_,(_,Name id),_,_) -> [IpatId id] - | (FwdPose, [BFdef _]), CLetIn (_,(_,Anonymous),_,_) -> [IpatAnon] - | _ -> anomaly "ssrbinder is not a binder") - -let pr_ssrhavefwdwbinders _ _ prt (tr,((hpats, (fwd, hint)))) = - pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrhavefwdwbinders - TYPED AS bool * (ssrhpats * (ssrfwd * ssrhint)) - PRINTED BY pr_ssrhavefwdwbinders -| [ ssrhpats_wtransp(trpats) ssrbinder_list(bs) ssrhavefwd(fwd) ] -> - [ let tr, pats = trpats in - let ((clr, pats), binders), simpl = pats in - let allbs = intro_id_to_binder binders @ bs in - let allbinders = binders @ List.flatten (binder_to_intro_id bs) in - let hint = bind_fwd allbs (fst fwd), snd fwd in - tr, ((((clr, pats), allbinders), simpl), hint) ] -END - -(* Tactic. *) - -let is_Evar_or_CastedMeta x = - isEvar_or_Meta x || - (isCast x && isEvar_or_Meta (pi1 (destCast x))) - -let occur_existential_or_casted_meta c = - let rec occrec c = match kind_of_term c with - | Evar _ -> raise Not_found - | Cast (m,_,_) when isMeta m -> raise Not_found - | _ -> iter_constr occrec c - in try occrec c; false with Not_found -> true - -let examine_abstract id gl = - let tid = pf_type_of gl id in - let abstract, gl = pf_mkSsrConst "abstract" gl in - if not (isApp tid) || not (Term.eq_constr (fst(destApp tid)) abstract) then - errorstrm(strbrk"not an abstract constant: "++pr_constr id); - let _, args_id = destApp tid in - if Array.length args_id <> 3 then - errorstrm(strbrk"not a proper abstract constant: "++pr_constr id); - if not (is_Evar_or_CastedMeta args_id.(2)) then - errorstrm(strbrk"abstract constant "++pr_constr id++str" already used"); - tid, args_id - -let pf_find_abstract_proof check_lock gl abstract_n = - let fire gl t = Reductionops.nf_evar (project gl) t in - let abstract, gl = pf_mkSsrConst "abstract" gl in - let l = Evd.fold_undefined (fun e ei l -> - match kind_of_term ei.Evd.evar_concl with - | App(hd, [|ty; n; lock|]) - when (not check_lock || - (occur_existential_or_casted_meta (fire gl ty) && - is_Evar_or_CastedMeta (fire gl lock))) && - Term.eq_constr hd abstract && Term.eq_constr n abstract_n -> e::l - | _ -> l) (project gl) [] in - match l with - | [e] -> e - | _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++ - strbrk" not found in the evar map exactly once. "++ - strbrk"Did you tamper with it?") - -let unfold cl = - let module R = Reductionops in let module F = Closure.RedFlags in - reduct_in_concl (R.clos_norm_flags (F.mkflags - (List.map (fun c -> F.fCONST (fst (destConst c))) cl @ [F.fBETA; F.fIOTA]))) - -let havegentac ist t gl = - let sigma, c, ucst = pf_abs_ssrterm ist gl t in - let gl = pf_merge_uc ucst gl in - apply_type (mkArrow (pf_type_of gl c) (pf_concl gl)) [c] gl - -let havetac ist - (transp,((((clr, pats), binders), simpl), (((fk, _), t), hint))) - suff namefst gl -= - let concl = pf_concl gl in - let skols, pats = - List.partition (function IpatNewHidden _ -> true | _ -> false) pats in - let itac_mkabs = introstac ~ist skols in - let itac_c = introstac ~ist (IpatSimpl(clr,Nop) :: pats) in - let itac, id, clr = introstac ~ist pats, tclIDTAC, cleartac clr in - let binderstac n = - let rec aux = function 0 -> [] | n -> IpatAnon :: aux (n-1) in - tclTHEN (if binders <> [] then introstac ~ist (aux n) else tclIDTAC) - (introstac ~ist binders) in - let simpltac = introstac ~ist simpl in - let fixtc = - not !ssrhaveNOtcresolution && - match fk with FwdHint(_,true) -> false | _ -> true in - let hint = hinttac ist true hint in - let cuttac t gl = - if transp then - let have_let, gl = pf_mkSsrConst "ssr_have_let" gl in - let step = mkApp (have_let, [|concl;t|]) in - let gl, _ = pf_e_type_of gl step in - applyn ~with_evars:true ~with_shelve:false 2 step gl - else basecuttac "ssr_have" t gl in - (* Introduce now abstract constants, so that everything sees them *) - let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in - let unlock_abs (idty,args_id) gl = - let gl, _ = pf_e_type_of gl idty in - pf_unify_HO gl args_id.(2) abstract_key in - tclTHENFIRST itac_mkabs (fun gl -> - let mkt t = mk_term ' ' t in - let mkl t = (' ', (t, None)) in - let interp gl rtc t = pf_abs_ssrterm ~resolve_typeclasses:rtc ist gl t in - let interp_ty gl rtc t = - let a,b,_,u = pf_interp_ty ~resolve_typeclasses:rtc ist gl t in a,b,u in - let ct, cty, hole, loc = match t with - | _, (_, Some (CCast (loc, ct, CastConv cty))) -> - mkt ct, mkt cty, mkt (mkCHole dummy_loc), loc - | _, (_, Some ct) -> - mkt ct, mkt (mkCHole dummy_loc), mkt (mkCHole dummy_loc), dummy_loc - | _, (GCast (loc, ct, CastConv cty), None) -> - mkl ct, mkl cty, mkl mkRHole, loc - | _, (t, None) -> mkl t, mkl mkRHole, mkl mkRHole, dummy_loc in - let gl, cut, sol, itac1, itac2 = - match fk, namefst, suff with - | FwdHave, true, true -> - errorstrm (str"Suff have does not accept a proof term") - | FwdHave, false, true -> - let cty = combineCG cty hole (mkCArrow loc) mkRArrow in - let _, t, uc = interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in - let gl = pf_merge_uc uc gl in - let ty = pf_type_of gl t in - let ctx, _ = decompose_prod_n 1 ty in - let assert_is_conv gl = - try Proofview.V82.of_tactic (convert_concl (compose_prod ctx concl)) gl - with _ -> errorstrm (str "Given proof term is not of type " ++ - pr_constr (mkArrow (mkVar (id_of_string "_")) concl)) in - gl, ty, tclTHEN assert_is_conv (Proofview.V82.of_tactic (apply t)), id, itac_c - | FwdHave, false, false -> - let skols = List.flatten (List.map (function - | IpatNewHidden ids -> ids - | _ -> assert false) skols) in - let skols_args = - List.map (fun id -> examine_abstract (mkVar id) gl) skols in - let gl = List.fold_right unlock_abs skols_args gl in - let sigma, t, uc = - interp gl false (combineCG ct cty (mkCCast loc) mkRCast) in - let gl = re_sig (sig_it gl) (Evd.merge_universe_context sigma uc) in - let gs = - List.map (fun (_,a) -> - pf_find_abstract_proof false gl a.(1)) skols_args in - let tacopen_skols gl = - let stuff, g = Refiner.unpackage gl in - Refiner.repackage stuff (gs @ [g]) in - let gl, ty = pf_e_type_of gl t in - gl, ty, Proofview.V82.of_tactic (apply t), id, - tclTHEN (tclTHEN itac_c simpltac) - (tclTHEN tacopen_skols (fun gl -> - let abstract, gl = pf_mkSsrConst "abstract" gl in - unfold [abstract; abstract_key] gl)) - | _,true,true -> - let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, mkArrow ty concl, hint, itac, clr - | _,false,true -> - let _, ty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, mkArrow ty concl, hint, id, itac_c - | _, false, false -> - let n, cty, uc = interp_ty gl fixtc cty in let gl = pf_merge_uc uc gl in - gl, cty, tclTHEN (binderstac n) hint, id, tclTHEN itac_c simpltac - | _, true, false -> assert false in - tclTHENS (cuttac cut) [ tclTHEN sol itac1; itac2 ] gl) - gl -;; - -(* to extend the abstract value one needs: - Utility lemma to partially instantiate an abstract constant type. - Lemma use_abstract T n l (x : abstract T n l) : T. - Proof. by case: l x. Qed. -*) -let ssrabstract ist gens (*last*) gl = - let main _ (_,cid) ist gl = -(* - let proj1, proj2, prod = - let pdata = build_prod () in - pdata.Coqlib.proj1, pdata.Coqlib.proj2, pdata.Coqlib.typ in -*) - let concl, env = pf_concl gl, pf_env gl in - let fire gl t = Reductionops.nf_evar (project gl) t in - let abstract, gl = pf_mkSsrConst "abstract" gl in - let abstract_key, gl = pf_mkSsrConst "abstract_key" gl in - let id = mkVar (Option.get (id_of_cpattern cid)) in - let idty, args_id = examine_abstract id gl in - let abstract_n = args_id.(1) in - let abstract_proof = pf_find_abstract_proof true gl abstract_n in - let gl, proof = - let pf_unify_HO gl a b = - try pf_unify_HO gl a b - with _ -> errorstrm(strbrk"The abstract variable "++pr_constr id++ - strbrk" cannot abstract this goal. Did you generalize it?") in - let rec find_hole p t = - match kind_of_term t with - | Evar _ (*when last*) -> pf_unify_HO gl concl t, p - | Meta _ (*when last*) -> pf_unify_HO gl concl t, p - | Cast(m,_,_) when isEvar_or_Meta m (*when last*) -> pf_unify_HO gl concl t, p -(* - | Evar _ -> - let sigma, it = project gl, sig_it gl in - let sigma, ty = Evarutil.new_type_evar sigma env in - let gl = re_sig it sigma in - let p = mkApp (proj2,[|ty;concl;p|]) in - let concl = mkApp(prod,[|ty; concl|]) in - pf_unify_HO gl concl t, p - | App(hd, [|left; right|]) when Term.eq_constr hd prod -> - find_hole (mkApp (proj1,[|left;right;p|])) left -*) - | _ -> errorstrm(strbrk"abstract constant "++pr_constr abstract_n++ - strbrk" has an unexpected shape. Did you tamper with it?") - in - find_hole - ((*if last then*) id - (*else mkApp(mkSsrConst "use_abstract",Array.append args_id [|id|])*)) - (fire gl args_id.(0)) in - let gl = (*if last then*) pf_unify_HO gl abstract_key args_id.(2) (*else gl*) in - let gl, _ = pf_e_type_of gl idty in - let proof = fire gl proof in -(* if last then *) - let tacopen gl = - let stuff, g = Refiner.unpackage gl in - Refiner.repackage stuff [ g; abstract_proof ] in - tclTHENS tacopen [tclSOLVE [Proofview.V82.of_tactic (apply proof)];unfold[abstract;abstract_key]] gl -(* else apply proof gl *) - in - let introback ist (gens, _) = - introstac ~ist - (List.map (fun (_,cp) -> match id_of_cpattern cp with - | None -> IpatAnon - | Some id -> IpatId id) - (List.tl (List.hd gens))) in - tclTHEN (with_dgens gens main ist) (introback ist gens) gl - -(* The standard TACTIC EXTEND does not work for abstract *) -GEXTEND Gram - GLOBAL: tactic_expr; - tactic_expr: LEVEL "3" - [ RIGHTA [ IDENT "abstract"; gens = ssrdgens -> - Tacexpr.TacML (!@loc, ssrtac_name "abstract", - [Genarg.in_gen (Genarg.rawwit wit_ssrdgens) gens]) ]]; -END -TACTIC EXTEND ssrabstract -| [ "abstract" ssrdgens(gens) ] -> [ - if List.length (fst gens) <> 1 then - errorstrm (str"dependents switches '/' not allowed here"); - Proofview.V82.tactic (ssrabstract ist gens) ] -END - -let prof_havetac = mk_profiler "havetac";; -let havetac arg a b gl = prof_havetac.profile (havetac arg a b) gl;; - -TACTIC EXTEND ssrhave -| [ "have" ssrhavefwdwbinders(fwd) ] -> - [ Proofview.V82.tactic (havetac ist fwd false false) ] -END - -TACTIC EXTEND ssrhavesuff -| [ "have" "suff" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ] -END - -TACTIC EXTEND ssrhavesuffices -| [ "have" "suffices" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true false) ] -END - -TACTIC EXTEND ssrsuffhave -| [ "suff" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ] -END - -TACTIC EXTEND ssrsufficeshave -| [ "suffices" "have" ssrhpats_nobs(pats) ssrhavefwd(fwd) ] -> - [ Proofview.V82.tactic (havetac ist (false,(pats,fwd)) true true) ] -END - -(** The "suffice" tactic *) - -let pr_ssrsufffwdwbinders _ _ prt (hpats, (fwd, hint)) = - pr_hpats hpats ++ pr_fwd fwd ++ pr_hint prt hint - -ARGUMENT EXTEND ssrsufffwd - TYPED AS ssrhpats * (ssrfwd * ssrhint) PRINTED BY pr_ssrsufffwdwbinders -| [ ssrhpats(pats) ssrbinder_list(bs) ":" lconstr(t) ssrhint(hint) ] -> - [ let ((clr, pats), binders), simpl = pats in - let allbs = intro_id_to_binder binders @ bs in - let allbinders = binders @ List.flatten (binder_to_intro_id bs) in - let fwd = mkFwdHint ":" t in - (((clr, pats), allbinders), simpl), (bind_fwd allbs fwd, hint) ] -END - -let sufftac ist ((((clr, pats),binders),simpl), ((_, c), hint)) = - let htac = tclTHEN (introstac ~ist pats) (hinttac ist true hint) in - let c = match c with - | (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty) - | (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None) - | _ -> anomaly "suff: ssr cast hole deleted by typecheck" in - let ctac gl = - let _,ty,_,uc = pf_interp_ty ist gl c in let gl = pf_merge_uc uc gl in - basecuttac "ssr_suff" ty gl in - tclTHENS ctac [htac; tclTHEN (cleartac clr) (introstac ~ist (binders@simpl))] - -TACTIC EXTEND ssrsuff -| [ "suff" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ] -END - -TACTIC EXTEND ssrsuffices -| [ "suffices" ssrsufffwd(fwd) ] -> [ Proofview.V82.tactic (sufftac ist fwd) ] -END - -(** The "wlog" (Without Loss Of Generality) tactic *) - -(* type ssrwlogfwd = ssrwgen list * ssrfwd *) - -let pr_ssrwlogfwd _ _ _ (gens, t) = - str ":" ++ pr_list mt pr_wgen gens ++ spc() ++ pr_fwd t - -ARGUMENT EXTEND ssrwlogfwd TYPED AS ssrwgen list * ssrfwd - PRINTED BY pr_ssrwlogfwd -| [ ":" ssrwgen_list(gens) "/" lconstr(t) ] -> [ gens, mkFwdHint "/" t] -END - -let destProd_or_LetIn c = - match kind_of_term c with - | Prod (n,ty,c) -> (n,None,ty), c - | LetIn (n,bo,ty,c) -> (n,Some bo,ty), c - | _ -> raise DestKO - -let wlogtac ist (((clr0, pats),_),_) (gens, ((_, ct))) hint suff ghave gl = - let mkabs gen = abs_wgen false ist (fun x -> x) gen in - let mkclr gen clrs = clr_of_wgen gen clrs in - let mkpats = function - | _, Some ((x, _), _) -> fun pats -> IpatId (hoi_id x) :: pats - | _ -> fun x -> x in - let ct = match ct with - | (a, (b, Some (CCast (_, _, CastConv cty)))) -> a, (b, Some cty) - | (a, (GCast (_, _, CastConv cty), None)) -> a, (cty, None) - | _ -> anomaly "wlog: ssr cast hole deleted by typecheck" in - let cut_implies_goal = not (suff || ghave <> `NoGen) in - let c, args, ct, gl = - let gens = List.filter (function _, Some _ -> true | _ -> false) gens in - let concl = pf_concl gl in - let c = mkProp in - let c = if cut_implies_goal then mkArrow c concl else c in - let gl, args, c = List.fold_right mkabs gens (gl,[],c) in - let env, _ = - List.fold_left (fun (env, c) _ -> - let rd, c = destProd_or_LetIn c in - Environ.push_rel rd env, c) (pf_env gl, c) gens in - let sigma, ev = Evarutil.new_evar env (project gl) Term.mkProp in - let k, _ = Term.destEvar ev in - let fake_gl = {Evd.it = k; Evd.sigma = sigma} in - let _, ct, _, uc = pf_interp_ty ist fake_gl ct in - let rec var2rel c g s = match kind_of_term c, g with - | Prod(Anonymous,_,c), [] -> mkProd(Anonymous, Vars.subst_vars s ct, c) - | Sort _, [] -> Vars.subst_vars s ct - | LetIn(Name id as n,b,ty,c), _::g -> mkLetIn (n,b,ty,var2rel c g (id::s)) - | Prod(Name id as n,ty,c), _::g -> mkProd (n,ty,var2rel c g (id::s)) - | _ -> Errors.anomaly(str"SSR: wlog: var2rel: " ++ pr_constr c) in - let c = var2rel c gens [] in - let rec pired c = function - | [] -> c - | t::ts as args -> match kind_of_term c with - | Prod(_,_,c) -> pired (subst1 t c) ts - | LetIn(id,b,ty,c) -> mkLetIn (id,b,ty,pired c args) - | _ -> Errors.anomaly(str"SSR: wlog: pired: " ++ pr_constr c) in - c, args, pired c args, pf_merge_uc uc gl in - let tacipat pats = introstac ~ist pats in - let tacigens = - tclTHEN - (tclTHENLIST(List.rev(List.fold_right mkclr gens [cleartac clr0]))) - (introstac ~ist (List.fold_right mkpats gens [])) in - let hinttac = hinttac ist true hint in - let cut_kind, fst_goal_tac, snd_goal_tac = - match suff, ghave with - | true, `NoGen -> "ssr_wlog", tclTHEN hinttac (tacipat pats), tacigens - | false, `NoGen -> "ssr_wlog", hinttac, tclTHEN tacigens (tacipat pats) - | true, `Gen _ -> assert false - | false, `Gen id -> - if gens = [] then errorstrm(str"gen have requires some generalizations"); - let clear0 = cleartac clr0 in - let id, name_general_hyp, cleanup, pats = match id, pats with - | None, (IpatId id as ip)::pats -> Some id, tacipat [ip], clear0, pats - | None, _ -> None, tclIDTAC, clear0, pats - | Some (Some id),_ -> Some id, introid id, clear0, pats - | Some _,_ -> - let id = mk_anon_id "tmp" gl in - Some id, introid id, tclTHEN clear0 (clear [id]), pats in - let tac_specialize = match id with - | None -> tclIDTAC - | Some id -> - if pats = [] then tclIDTAC else - let args = Array.of_list args in - pp(lazy(str"specialized="++pr_constr (mkApp (mkVar id,args)))); - pp(lazy(str"specialized_ty="++pr_constr ct)); - tclTHENS (basecuttac "ssr_have" ct) - [Proofview.V82.of_tactic (apply (mkApp (mkVar id,args))); tclIDTAC] in - "ssr_have", - (if hint = nohint then tacigens else hinttac), - tclTHENLIST [name_general_hyp; tac_specialize; tacipat pats; cleanup] - in - tclTHENS (basecuttac cut_kind c) [fst_goal_tac; snd_goal_tac] gl - -TACTIC EXTEND ssrwlog -| [ "wlog" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ] -END - -TACTIC EXTEND ssrwlogs -| [ "wlog" "suff" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwlogss -| [ "wlog" "suffices" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]-> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwithoutloss -| [ "without" "loss" ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint false `NoGen) ] -END - -TACTIC EXTEND ssrwithoutlosss -| [ "without" "loss" "suff" - ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -TACTIC EXTEND ssrwithoutlossss -| [ "without" "loss" "suffices" - ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ]-> - [ Proofview.V82.tactic (wlogtac ist pats fwd hint true `NoGen) ] -END - -(* Generally have *) -let pr_idcomma _ _ _ = function - | None -> mt() - | Some None -> str"_, " - | Some (Some id) -> pr_id id ++ str", " - -ARGUMENT EXTEND ssr_idcomma TYPED AS ident option option PRINTED BY pr_idcomma - | [ ] -> [ None ] -END - -let accept_idcomma strm = - match Compat.get_tok (stream_nth 0 strm) with - | Tok.IDENT _ | Tok.KEYWORD "_" -> accept_before_syms [","] strm - | _ -> raise Stream.Failure - -let test_idcomma = Gram.Entry.of_parser "test_idcomma" accept_idcomma - -GEXTEND Gram - GLOBAL: ssr_idcomma; - ssr_idcomma: [ [ test_idcomma; - ip = [ id = IDENT -> Some (id_of_string id) | "_" -> None ]; "," -> - Some ip - ] ]; -END - -let augment_preclr clr1 (((clr0, x),y),z) = (((clr1 @ clr0, x),y),z) - -TACTIC EXTEND ssrgenhave -| [ "gen" "have" ssrclear(clr) - ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ let pats = augment_preclr clr pats in - Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ] -END - -TACTIC EXTEND ssrgenhave2 -| [ "generally" "have" ssrclear(clr) - ssr_idcomma(id) ssrhpats_nobs(pats) ssrwlogfwd(fwd) ssrhint(hint) ] -> - [ let pats = augment_preclr clr pats in - Proofview.V82.tactic (wlogtac ist pats fwd hint false (`Gen id)) ] -END - -(** Canonical Structure alias *) - -let def_body : Vernacexpr.definition_expr Gram.Entry.e = Obj.magic - (Grammar.Entry.find (Obj.magic gallina_ext) "vernac:def_body") in - -GEXTEND Gram - GLOBAL: gallina_ext; - - gallina_ext: - (* Canonical structure *) - [[ IDENT "Canonical"; qid = Constr.global -> - Vernacexpr.VernacCanonical (AN qid) - | IDENT "Canonical"; ntn = Prim.by_notation -> - Vernacexpr.VernacCanonical (ByNotation ntn) - | IDENT "Canonical"; qid = Constr.global; - d = def_body -> - let s = coerce_reference_to_id qid in - Vernacexpr.VernacDefinition - ((Some Decl_kinds.Global,Decl_kinds.CanonicalStructure), - (dummy_loc,s),(d )) - ]]; -END - -(** 9. Keyword compatibility fixes. *) - -(* Coq v8.1 notation uses "by" and "of" quasi-keywords, i.e., reserved *) -(* identifiers used as keywords. This is incompatible with ssreflect.v *) -(* which makes "by" and "of" true keywords, because of technicalities *) -(* in the internal lexer-parser API of Coq. We patch this here by *) -(* adding new parsing rules that recognize the new keywords. *) -(* To make matters worse, the Coq grammar for tactics fails to *) -(* export the non-terminals we need to patch. Fortunately, the CamlP5 *) -(* API provides a backdoor access (with loads of Obj.magic trickery). *) - -(* Coq v8.3 defines "by" as a keyword, some hacks are not needed any *) -(* longer and thus comment out. Such comments are marked with v8.3 *) - -let tac_ent = List.fold_left Grammar.Entry.find (Obj.magic simple_tactic) in -let hypident_ent = - tac_ent ["clause_dft_all"; "in_clause"; "hypident_occ"; "hypident"] in -let id_or_meta : Obj.t Gram.Entry.e = Obj.magic - (Grammar.Entry.find hypident_ent "id_or_meta") in -let hypident : (Obj.t * hyp_location_flag) Gram.Entry.e = - Obj.magic hypident_ent in -GEXTEND Gram - GLOBAL: hypident; -hypident: [ - [ "("; IDENT "type"; "of"; id = id_or_meta; ")" -> id, InHypTypeOnly - | "("; IDENT "value"; "of"; id = id_or_meta; ")" -> id, InHypValueOnly - ] ]; -END - -GEXTEND Gram - GLOBAL: hloc; -hloc: [ - [ "in"; "("; "Type"; "of"; id = ident; ")" -> - HypLocation ((dummy_loc,id), InHypTypeOnly) - | "in"; "("; IDENT "Value"; "of"; id = ident; ")" -> - HypLocation ((dummy_loc,id), InHypValueOnly) - ] ]; -END - -let constr_eval - : (Constrexpr.constr_expr,Obj.t,Obj.t) Genredexpr.may_eval Gram.Entry.e - = Obj.magic (Grammar.Entry.find (Obj.magic constr_may_eval) "constr_eval") - -GEXTEND Gram - GLOBAL: constr_eval; - constr_eval: [ - [ IDENT "type"; "of"; c = Constr.constr -> Genredexpr.ConstrTypeOf c ] - ]; -END - -(* We wipe out all the keywords generated by the grammar rules we defined. *) -(* The user is supposed to Require Import ssreflect or Require ssreflect *) -(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *) -(* consequence the extended ssreflect grammar. *) -let () = Lexer.unfreeze frozen_lexer ;; - -(* vim: set filetype=ocaml foldmethod=marker: *) diff --git a/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.mllib b/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.mllib deleted file mode 100644 index 006b70f..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta2/ssreflect.mllib +++ /dev/null @@ -1,2 +0,0 @@ -Ssrmatching -Ssreflect diff --git a/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.ml4 b/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.ml4 deleted file mode 100644 index 2fd0fe6..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.ml4 +++ /dev/null @@ -1,1290 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -(* Defining grammar rules with "xx" in it automatically declares keywords too, - * we thus save the lexer to restore it at the end of the file *) -let frozen_lexer = Lexer.freeze () ;; - -(*i camlp4use: "pa_extend.cmo" i*) -(*i camlp4deps: "grammar/grammar.cma" i*) - -open Names -open Pp -open Pcoq -open Genarg -open Constrarg -open Term -open Vars -open Topconstr -open Libnames -open Tactics -open Tacticals -open Termops -open Namegen -open Recordops -open Tacmach -open Coqlib -open Glob_term -open Util -open Evd -open Extend -open Goptions -open Tacexpr -open Tacinterp -open Pretyping -open Constr -open Tactic -open Extraargs -open Ppconstr -open Printer - -open Globnames -open Misctypes -open Decl_kinds -open Evar_kinds -open Constrexpr -open Constrexpr_ops -open Notation_term -open Notation_ops -open Locus -open Locusops - -DECLARE PLUGIN "ssreflect" - -type loc = Loc.t -let dummy_loc = Loc.ghost -let errorstrm = Errors.errorlabstrm "ssreflect" -let loc_error loc msg = Errors.user_err_loc (loc, msg, str msg) - -(* 0 cost pp function. Active only if env variable SSRDEBUG is set *) -(* or if SsrDebug is Set *) -let pp_ref = ref (fun _ -> ()) -let ssr_pp s = pperrnl (str"SSR: "++Lazy.force s) -let _ = try ignore(Sys.getenv "SSRDEBUG"); pp_ref := ssr_pp with Not_found -> () -let debug b = - if b then pp_ref := ssr_pp else pp_ref := fun _ -> () -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssrmatching debugging"; - Goptions.optkey = ["SsrMatchingDebug"]; - Goptions.optdepr = false; - Goptions.optread = (fun _ -> !pp_ref == ssr_pp); - Goptions.optwrite = debug } -let pp s = !pp_ref s - -(** Utils {{{ *****************************************************************) -let env_size env = List.length (Environ.named_context env) -let safeDestApp c = - match kind_of_term c with App (f, a) -> f, a | _ -> c, [| |] -let get_index = function ArgArg i -> i | _ -> - Errors.anomaly (str"Uninterpreted index") -(* Toplevel constr must be globalized twice ! *) -let glob_constr ist genv = function - | _, Some ce -> - let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in - let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in - Constrintern.intern_gen WithoutTypeConstraint ~ltacvars:ltacvars genv ce - | rc, None -> rc - -(* Term printing utilities functions for deciding bracketing. *) -let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")") -(* String lexing utilities *) -let skip_wschars s = - let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop -(* We also guard characters that might interfere with the ssreflect *) -(* tactic syntax. *) -let guard_term ch1 s i = match s.[i] with - | '(' -> false - | '{' | '/' | '=' -> true - | _ -> ch1 = '(' -(* The call 'guard s i' should return true if the contents of s *) -(* starting at i need bracketing to avoid ambiguities. *) -let pr_guarded guard prc c = - msg_with Format.str_formatter (prc c); - let s = Format.flush_str_formatter () ^ "$" in - if guard s (skip_wschars s 0) then pr_paren prc c else prc c -(* More sensible names for constr printers *) -let pr_constr = pr_constr -let prl_glob_constr c = pr_lglob_constr_env (Global.env ()) c -let pr_glob_constr c = pr_glob_constr_env (Global.env ()) c -let prl_constr_expr = pr_lconstr_expr -let pr_constr_expr = pr_constr_expr -let prl_glob_constr_and_expr = function - | _, Some c -> prl_constr_expr c - | c, None -> prl_glob_constr c -let pr_glob_constr_and_expr = function - | _, Some c -> pr_constr_expr c - | c, None -> pr_glob_constr c -let pr_term (k, c) = pr_guarded (guard_term k) pr_glob_constr_and_expr c -let prl_term (k, c) = pr_guarded (guard_term k) prl_glob_constr_and_expr c - -(** Adding a new uninterpreted generic argument type *) -let add_genarg tag pr = - let wit = Genarg.make0 None tag in - let glob ist x = (ist, x) in - let subst _ x = x in - let interp ist gl x = (gl.Evd.sigma, x) in - let gen_pr _ _ _ = pr in - let () = Genintern.register_intern0 wit glob in - let () = Genintern.register_subst0 wit subst in - let () = Geninterp.register_interp0 wit interp in - Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr; - wit - -(** Constructors for cast type *) -let dC t = CastConv t -(** Constructors for constr_expr *) -let isCVar = function CRef (Ident _, _) -> true | _ -> false -let destCVar = function CRef (Ident (_, id), _) -> id | _ -> - Errors.anomaly (str"not a CRef") -let mkCHole loc = CHole (loc, None, IntroAnonymous, None) -let mkCLambda loc name ty t = - CLambdaN (loc, [[loc, name], Default Explicit, ty], t) -let mkCLetIn loc name bo t = - CLetIn (loc, (loc, name), bo, t) -let mkCCast loc t ty = CCast (loc,t, dC ty) -(** Constructors for rawconstr *) -let mkRHole = GHole (dummy_loc, InternalHole, IntroAnonymous, None) -let mkRApp f args = if args = [] then f else GApp (dummy_loc, f, args) -let mkRCast rc rt = GCast (dummy_loc, rc, dC rt) -let mkRLambda n s t = GLambda (dummy_loc, n, Explicit, s, t) - -(* ssrterm conbinators *) -let combineCG t1 t2 f g = match t1, t2 with - | (x, (t1, None)), (_, (t2, None)) -> x, (g t1 t2, None) - | (x, (_, Some t1)), (_, (_, Some t2)) -> x, (mkRHole, Some (f t1 t2)) - | _, (_, (_, None)) -> Errors.anomaly (str"have: mixed C-G constr") - | _ -> Errors.anomaly (str"have: mixed G-C constr") -let loc_ofCG = function - | (_, (s, None)) -> Glob_ops.loc_of_glob_constr s - | (_, (_, Some s)) -> Constrexpr_ops.constr_loc s - -let mk_term k c = k, (mkRHole, Some c) -let mk_lterm = mk_term ' ' - -(* }}} *) - -(** Profiling {{{ *************************************************************) -type profiler = { - profile : 'a 'b. ('a -> 'b) -> 'a -> 'b; - reset : unit -> unit; - print : unit -> unit } -let profile_now = ref false -let something_profiled = ref false -let profilers = ref [] -let add_profiler f = profilers := f :: !profilers;; -let profile b = - profile_now := b; - if b then List.iter (fun f -> f.reset ()) !profilers; - if not b then List.iter (fun f -> f.print ()) !profilers -;; -let _ = - Goptions.declare_bool_option - { Goptions.optsync = false; - Goptions.optname = "ssrmatching profiling"; - Goptions.optkey = ["SsrMatchingProfiling"]; - Goptions.optread = (fun _ -> !profile_now); - Goptions.optdepr = false; - Goptions.optwrite = profile } -let () = - let prof_total = - let init = ref 0.0 in { - profile = (fun f x -> assert false); - reset = (fun () -> init := Unix.gettimeofday ()); - print = (fun () -> if !something_profiled then - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - "total" 0 (Unix.gettimeofday() -. !init) 0.0 0.0)) } in - let prof_legenda = { - profile = (fun f x -> assert false); - reset = (fun () -> ()); - print = (fun () -> if !something_profiled then begin - prerr_endline - (Printf.sprintf "!! %39s ---------- --------- --------- ---------" - (String.make 39 '-')); - prerr_endline - (Printf.sprintf "!! %-39s %10s %9s %9s %9s" - "function" "#calls" "total" "max" "average") end) } in - add_profiler prof_legenda; - add_profiler prof_total -;; - -let mk_profiler s = - let total, calls, max = ref 0.0, ref 0, ref 0.0 in - let reset () = total := 0.0; calls := 0; max := 0.0 in - let profile f x = - if not !profile_now then f x else - let before = Unix.gettimeofday () in - try - incr calls; - let res = f x in - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - res - with exc -> - let after = Unix.gettimeofday () in - let delta = after -. before in - total := !total +. delta; - if delta > !max then max := delta; - raise exc in - let print () = - if !calls <> 0 then begin - something_profiled := true; - prerr_endline - (Printf.sprintf "!! %-39s %10d %9.4f %9.4f %9.4f" - s !calls !total !max (!total /. (float_of_int !calls))) end in - let prof = { profile = profile; reset = reset; print = print } in - add_profiler prof; - prof -;; -(* }}} *) - -exception NoProgress - -(** Unification procedures. *) - -(* To enforce the rigidity of the rooted match we always split *) -(* top applications, so the unification procedures operate on *) -(* arrays of patterns and terms. *) -(* We perform three kinds of unification: *) -(* EQ: exact conversion check *) -(* FO: first-order unification of evars, without conversion *) -(* HO: higher-order unification with conversion *) -(* The subterm unification strategy is to find the first FO *) -(* match, if possible, and the first HO match otherwise, then *) -(* compute all the occurrences that are EQ matches for the *) -(* relevant subterm. *) -(* Additional twists: *) -(* - If FO/HO fails then we attempt to fill evars using *) -(* typeclasses before raising an outright error. We also *) -(* fill typeclasses even after a successful match, since *) -(* beta-reduction and canonical instances may leave *) -(* undefined evars. *) -(* - We do postchecks to rule out matches that are not *) -(* closed or that assign to a global evar; these can be *) -(* disabled for rewrite or dependent family matches. *) -(* - We do a full FO scan before turning to HO, as the FO *) -(* comparison can be much faster than the HO one. *) - -let unif_EQ env sigma p c = - let evars = existential_opt_value sigma in - try let _ = Reduction.conv env p ~evars c in true with _ -> false - -let unif_EQ_args env sigma pa a = - let n = Array.length pa in - let rec loop i = (i = n) || unif_EQ env sigma pa.(i) a.(i) && loop (i + 1) in - loop 0 - -let prof_unif_eq_args = mk_profiler "unif_EQ_args";; -let unif_EQ_args env sigma pa a = - prof_unif_eq_args.profile (unif_EQ_args env sigma pa) a -;; - -let unif_HO env ise p c = Evarconv.the_conv_x env p c ise - -let unif_HOtype env ise p c = Evarconv.the_conv_x_leq env p c ise - -let unif_HO_args env ise0 pa i ca = - let n = Array.length pa in - let rec loop ise j = - if j = n then ise else loop (unif_HO env ise pa.(j) ca.(i + j)) (j + 1) in - loop ise0 0 - -(* FO unification should boil down to calling w_unify with no_delta, but *) -(* alas things are not so simple: w_unify does partial type-checking, *) -(* which breaks down when the no-delta flag is on (as the Coq type system *) -(* requires full convertibility. The workaround here is to convert all *) -(* evars into metas, since 8.2 does not TC metas. This means some lossage *) -(* for HO evars, though hopefully Miller patterns can pick up some of *) -(* those cases, and HO matching will mop up the rest. *) -let flags_FO = - let flags = - { (Unification.default_no_delta_unify_flags ()).Unification.core_unify_flags - with - Unification.modulo_conv_on_closed_terms = None; - Unification.modulo_eta = true; - Unification.modulo_betaiota = true; - Unification.modulo_delta_types = full_transparent_state} - in - { Unification.core_unify_flags = flags; - Unification.merge_unify_flags = flags; - Unification.subterm_unify_flags = flags; - Unification.allow_K_in_toplevel_higher_order_unification = false; - Unification.resolve_evars = - (Unification.default_no_delta_unify_flags ()).Unification.resolve_evars - } -let unif_FO env ise p c = - Unification.w_unify env ise Reduction.CONV ~flags:flags_FO p c - -(* Perform evar substitution in main term and prune substitution. *) -let nf_open_term sigma0 ise c = - let s = ise and s' = ref sigma0 in - let rec nf c' = match kind_of_term c' with - | Evar ex -> - begin try nf (existential_value s ex) with _ -> - let k, a = ex in let a' = Array.map nf a in - if not (Evd.mem !s' k) then - s' := Evd.add !s' k (Evarutil.nf_evar_info s (Evd.find s k)); - mkEvar (k, a') - end - | _ -> map_constr nf c' in - let copy_def k evi () = - if evar_body evi != Evd.Evar_empty then () else - match Evd.evar_body (Evd.find s k) with - | Evar_defined c' -> s' := Evd.define k (nf c') !s' - | _ -> () in - let c' = nf c in let _ = Evd.fold copy_def sigma0 () in - !s', Evd.evar_universe_context s, c' - -let unif_end env sigma0 ise0 pt ok = - let ise = Evarconv.consider_remaining_unif_problems env ise0 in - let s, uc, t = nf_open_term sigma0 ise pt in - let ise1 = create_evar_defs s in - let ise2 = Typeclasses.resolve_typeclasses ~fail:true env ise1 in - if not (ok ise) then raise NoProgress else - if ise2 == ise1 then (s, uc, t) - else - let s, uc', t = nf_open_term sigma0 ise2 t in - s, Evd.union_evar_universe_context uc uc', t - -let pf_unif_HO gl sigma pt p c = - let env = pf_env gl in - let ise = unif_HO env (create_evar_defs sigma) p c in - unif_end env (project gl) ise pt (fun _ -> true) - -let unify_HO env sigma0 t1 t2 = - let sigma = unif_HO env sigma0 t1 t2 in - let sigma, uc, _ = unif_end env sigma0 sigma t2 (fun _ -> true) in - Evd.merge_universe_context sigma uc - -let pf_unify_HO gl t1 t2 = - let env, sigma0, si = pf_env gl, project gl, sig_it gl in - let sigma = unify_HO env sigma0 t1 t2 in - re_sig si sigma - -(* This is what the definition of iter_constr should be... *) -let iter_constr_LR f c = match kind_of_term c with - | Evar (k, a) -> Array.iter f a - | Cast (cc, _, t) -> f cc; f t - | Prod (_, t, b) | Lambda (_, t, b) -> f t; f b - | LetIn (_, v, t, b) -> f v; f t; f b - | App (cf, a) -> f cf; Array.iter f a - | Case (_, p, v, b) -> f v; f p; Array.iter f b - | Fix (_, (_, t, b)) | CoFix (_, (_, t, b)) -> - for i = 0 to Array.length t - 1 do f t.(i); f b.(i) done - | _ -> () - -(* The comparison used to determine which subterms matches is KEYED *) -(* CONVERSION. This looks for convertible terms that either have the same *) -(* same head constant as pat if pat is an application (after beta-iota), *) -(* or start with the same constr constructor (esp. for LetIn); this is *) -(* disregarded if the head term is let x := ... in x, and casts are always *) -(* ignored and removed). *) -(* Record projections get special treatment: in addition to the projection *) -(* constant itself, ssreflect also recognizes head constants of canonical *) -(* projections. *) - -exception NoMatch -type ssrdir = L2R | R2L -let pr_dir_side = function L2R -> str "LHS" | R2L -> str "RHS" -let inv_dir = function L2R -> R2L | R2L -> L2R - - -type pattern_class = - | KpatFixed - | KpatConst - | KpatEvar of existential_key - | KpatLet - | KpatLam - | KpatRigid - | KpatFlex - | KpatProj of constant - -type tpattern = { - up_k : pattern_class; - up_FO : constr; - up_f : constr; - up_a : constr array; - up_t : constr; (* equation proof term or matched term *) - up_dir : ssrdir; (* direction of the rule *) - up_ok : constr -> evar_map -> bool; (* progess test for rewrite *) - } - -let all_ok _ _ = true - -let proj_nparams c = - try 1 + Recordops.find_projection_nparams (ConstRef c) with _ -> 0 - -let isFixed c = match kind_of_term c with - | Var _ | Ind _ | Construct _ | Const _ -> true - | _ -> false - -let isRigid c = match kind_of_term c with - | Prod _ | Sort _ | Lambda _ | Case _ | Fix _ | CoFix _ -> true - | _ -> false - -exception UndefPat - -let hole_var = mkVar (id_of_string "_") -let pr_constr_pat c0 = - let rec wipe_evar c = - if isEvar c then hole_var else map_constr wipe_evar c in - pr_constr (wipe_evar c0) - -(* Turn (new) evars into metas *) -let evars_for_FO ~hack env sigma0 (ise0:evar_map) c0 = - let ise = ref ise0 in - let sigma = ref ise0 in - let nenv = env_size env + if hack then 1 else 0 in - let rec put c = match kind_of_term c with - | Evar (k, a as ex) -> - begin try put (existential_value !sigma ex) - with NotInstantiatedEvar -> - if Evd.mem sigma0 k then map_constr put c else - let evi = Evd.find !sigma k in - let dc = List.firstn (max 0 (Array.length a - nenv)) (evar_filtered_context evi) in - let abs_dc (d, c) = function - | x, Some b, t -> d, mkNamedLetIn x (put b) (put t) c - | x, None, t -> mkVar x :: d, mkNamedProd x (put t) c in - let a, t = - Context.fold_named_context_reverse abs_dc ~init:([], (put evi.evar_concl)) dc in - let m = Evarutil.new_meta () in - ise := meta_declare m t !ise; - sigma := Evd.define k (applist (mkMeta m, a)) !sigma; - put (existential_value !sigma ex) - end - | _ -> map_constr put c in - let c1 = put c0 in !ise, c1 - -(* Compile a match pattern from a term; t is the term to fill. *) -(* p_origin can be passed to obtain a better error message *) -let mk_tpattern ?p_origin ?(hack=false) env sigma0 (ise, t) ok dir p = - let k, f, a = - let f, a = Reductionops.whd_betaiota_stack ise p in - match kind_of_term f with - | Const (p,_) -> - let np = proj_nparams p in - if np = 0 || np > List.length a then KpatConst, f, a else - let a1, a2 = List.chop np a in KpatProj p, applist(f, a1), a2 - | Var _ | Ind _ | Construct _ -> KpatFixed, f, a - | Evar (k, _) -> - if Evd.mem sigma0 k then KpatEvar k, f, a else - if a <> [] then KpatFlex, f, a else - (match p_origin with None -> Errors.error "indeterminate pattern" - | Some (dir, rule) -> - errorstrm (str "indeterminate " ++ pr_dir_side dir - ++ str " in " ++ pr_constr_pat rule)) - | LetIn (_, v, _, b) -> - if b <> mkRel 1 then KpatLet, f, a else KpatFlex, v, a - | Lambda _ -> KpatLam, f, a - | _ -> KpatRigid, f, a in - let aa = Array.of_list a in - let ise', p' = evars_for_FO ~hack env sigma0 ise (mkApp (f, aa)) in - ise', - { up_k = k; up_FO = p'; up_f = f; - up_a = aa; up_ok = ok; up_dir = dir; up_t = t} - -(* Specialize a pattern after a successful match: assign a precise head *) -(* kind and arity for Proj and Flex patterns. *) -let ungen_upat lhs (sigma, uc, t) u = - let f, a = safeDestApp lhs in - let k = match kind_of_term f with - | Var _ | Ind _ | Construct _ -> KpatFixed - | Const _ -> KpatConst - | Evar (k, _) -> if is_defined sigma k then raise NoMatch else KpatEvar k - | LetIn _ -> KpatLet - | Lambda _ -> KpatLam - | _ -> KpatRigid in - sigma, uc, {u with up_k = k; up_FO = lhs; up_f = f; up_a = a; up_t = t} - -let nb_cs_proj_args pc f u = - let na k = - List.length (snd (lookup_canonical_conversion (ConstRef pc, k))).o_TCOMPS in - try match kind_of_term f with - | Prod _ -> na Prod_cs - | Sort s -> na (Sort_cs (family_of_sort s)) - | Const (c',_) when Constant.equal c' pc -> Array.length (snd (destApp u.up_f)) - | Var _ | Ind _ | Construct _ | Const _ -> na (Const_cs (global_of_constr f)) - | _ -> -1 - with Not_found -> -1 - -let isEvar_k k f = - match kind_of_term f with Evar (k', _) -> k = k' | _ -> false - -let nb_args c = - match kind_of_term c with App (_, a) -> Array.length a | _ -> 0 - -let mkSubArg i a = if i = Array.length a then a else Array.sub a 0 i -let mkSubApp f i a = if i = 0 then f else mkApp (f, mkSubArg i a) - -let splay_app ise = - let rec loop c a = match kind_of_term c with - | App (f, a') -> loop f (Array.append a' a) - | Cast (c', _, _) -> loop c' a - | Evar ex -> - (try loop (existential_value ise ex) a with _ -> c, a) - | _ -> c, a in - fun c -> match kind_of_term c with - | App (f, a) -> loop f a - | Cast _ | Evar _ -> loop c [| |] - | _ -> c, [| |] - -let filter_upat i0 f n u fpats = - let na = Array.length u.up_a in - if n < na then fpats else - let np = match u.up_k with - | KpatConst when Term.eq_constr u.up_f f -> na - | KpatFixed when Term.eq_constr u.up_f f -> na - | KpatEvar k when isEvar_k k f -> na - | KpatLet when isLetIn f -> na - | KpatLam when isLambda f -> na - | KpatRigid when isRigid f -> na - | KpatFlex -> na - | KpatProj pc -> - let np = na + nb_cs_proj_args pc f u in if n < np then -1 else np - | _ -> -1 in - if np < na then fpats else - let () = if !i0 < np then i0 := n in (u, np) :: fpats - -let filter_upat_FO i0 f n u fpats = - let np = nb_args u.up_FO in - if n < np then fpats else - let ok = match u.up_k with - | KpatConst -> Term.eq_constr u.up_f f - | KpatFixed -> Term.eq_constr u.up_f f - | KpatEvar k -> isEvar_k k f - | KpatLet -> isLetIn f - | KpatLam -> isLambda f - | KpatRigid -> isRigid f - | KpatProj pc -> Term.eq_constr f (mkConst pc) - | KpatFlex -> i0 := n; true in - if ok then begin if !i0 < np then i0 := np; (u, np) :: fpats end else fpats - -exception FoundUnif of (evar_map * evar_universe_context * tpattern) -(* Note: we don't update env as we descend into the term, as the primitive *) -(* unification procedure always rejects subterms with bound variables. *) - -(* We are forced to duplicate code between the FO/HO matching because we *) -(* have to work around several kludges in unify.ml: *) -(* - w_unify drops into second-order unification when the pattern is an *) -(* application whose head is a meta. *) -(* - w_unify tries to unify types without subsumption when the pattern *) -(* head is an evar or meta (e.g., it fails on ?1 = nat when ?1 : Type). *) -(* - w_unify expands let-in (zeta conversion) eagerly, whereas we want to *) -(* match a head let rigidly. *) -let match_upats_FO upats env sigma0 ise = - let rec loop c = - let f, a = splay_app ise c in let i0 = ref (-1) in - let fpats = - List.fold_right (filter_upat_FO i0 f (Array.length a)) upats [] in - while !i0 >= 0 do - let i = !i0 in i0 := -1; - let c' = mkSubApp f i a in - let one_match (u, np) = - let skip = - if i <= np then i < np else - if u.up_k == KpatFlex then begin i0 := i - 1; false end else - begin if !i0 < np then i0 := np; true end in - if skip || not (closed0 c') then () else try - let _ = match u.up_k with - | KpatFlex -> - let kludge v = mkLambda (Anonymous, mkProp, v) in - unif_FO env ise (kludge u.up_FO) (kludge c') - | KpatLet -> - let kludge vla = - let vl, a = safeDestApp vla in - let x, v, t, b = destLetIn vl in - mkApp (mkLambda (x, t, b), Array.cons v a) in - unif_FO env ise (kludge u.up_FO) (kludge c') - | _ -> unif_FO env ise u.up_FO c' in - let ise' = (* Unify again using HO to assign evars *) - let p = mkApp (u.up_f, u.up_a) in - try unif_HO env ise p c' with _ -> raise NoMatch in - let lhs = mkSubApp f i a in - let pt' = unif_end env sigma0 ise' u.up_t (u.up_ok lhs) in - raise (FoundUnif (ungen_upat lhs pt' u)) - with FoundUnif _ as sigma_u -> raise sigma_u - | Not_found -> Errors.anomaly (str"incomplete ise in match_upats_FO") - | _ -> () in - List.iter one_match fpats - done; - iter_constr_LR loop f; Array.iter loop a in - fun c -> try loop c with Invalid_argument _ -> Errors.anomaly (str"IN FO") - -let prof_FO = mk_profiler "match_upats_FO";; -let match_upats_FO upats env sigma0 ise c = - prof_FO.profile (match_upats_FO upats env sigma0) ise c -;; - - -let match_upats_HO ~on_instance upats env sigma0 ise c = - let it_did_match = ref false in - let rec aux upats env sigma0 ise c = - let f, a = splay_app ise c in let i0 = ref (-1) in - let fpats = List.fold_right (filter_upat i0 f (Array.length a)) upats [] in - while !i0 >= 0 do - let i = !i0 in i0 := -1; - let one_match (u, np) = - let skip = - if i <= np then i < np else - if u.up_k == KpatFlex then begin i0 := i - 1; false end else - begin if !i0 < np then i0 := np; true end in - if skip then () else try - let ise' = match u.up_k with - | KpatFixed | KpatConst -> ise - | KpatEvar _ -> - let _, pka = destEvar u.up_f and _, ka = destEvar f in - unif_HO_args env ise pka 0 ka - | KpatLet -> - let x, v, t, b = destLetIn f in - let _, pv, _, pb = destLetIn u.up_f in - let ise' = unif_HO env ise pv v in - unif_HO (Environ.push_rel (x, None, t) env) ise' pb b - | KpatFlex | KpatProj _ -> - unif_HO env ise u.up_f (mkSubApp f (i - Array.length u.up_a) a) - | _ -> unif_HO env ise u.up_f f in - let ise'' = unif_HO_args env ise' u.up_a (i - Array.length u.up_a) a in - let lhs = mkSubApp f i a in - let pt' = unif_end env sigma0 ise'' u.up_t (u.up_ok lhs) in - on_instance (ungen_upat lhs pt' u) - with FoundUnif _ as sigma_u -> raise sigma_u - | NoProgress -> it_did_match := true - | _ -> () in - List.iter one_match fpats - done; - iter_constr_LR (aux upats env sigma0 ise) f; - Array.iter (aux upats env sigma0 ise) a - in - aux upats env sigma0 ise c; - if !it_did_match then raise NoProgress - -let prof_HO = mk_profiler "match_upats_HO";; -let match_upats_HO ~on_instance upats env sigma0 ise c = - prof_HO.profile (match_upats_HO ~on_instance upats env sigma0) ise c -;; - - -let fixed_upat = function -| {up_k = KpatFlex | KpatEvar _ | KpatProj _} -> false -| {up_t = t} -> not (occur_existential t) - -let do_once r f = match !r with Some _ -> () | None -> r := Some (f ()) - -let assert_done r = - match !r with Some x -> x | None -> Errors.anomaly (str"do_once never called") - -let assert_done_multires r = - match !r with - | None -> Errors.anomaly (str"do_once never called") - | Some (n, xs) -> - r := Some (n+1,xs); - try List.nth xs n with Failure _ -> raise NoMatch - -type subst = Environ.env -> Term.constr -> Term.constr -> int -> Term.constr -type find_P = - Environ.env -> Term.constr -> int -> - k:subst -> - Term.constr -type conclude = unit -> - Term.constr * ssrdir * (Evd.evar_map * Evd.evar_universe_context * Term.constr) - -(* upats_origin makes a better error message only *) -let mk_tpattern_matcher ?(all_instances=false) - ?(raise_NoMatch=false) ?upats_origin sigma0 occ (ise, upats) -= - let nocc = ref 0 and skip_occ = ref false in - let use_occ, occ_list = match occ with - | Some (true, ol) -> ol = [], ol - | Some (false, ol) -> ol <> [], ol - | None -> false, [] in - let max_occ = List.fold_right max occ_list 0 in - let subst_occ = - let occ_set = Array.make max_occ (not use_occ) in - let _ = List.iter (fun i -> occ_set.(i - 1) <- use_occ) occ_list in - let _ = if max_occ = 0 then skip_occ := use_occ in - fun () -> incr nocc; - if !nocc = max_occ then skip_occ := use_occ; - if !nocc <= max_occ then occ_set.(!nocc - 1) else not use_occ in - let upat_that_matched = ref None in - let match_EQ env sigma u = - match u.up_k with - | KpatLet -> - let x, pv, t, pb = destLetIn u.up_f in - let env' = Environ.push_rel (x, None, t) env in - let match_let f = match kind_of_term f with - | LetIn (_, v, _, b) -> unif_EQ env sigma pv v && unif_EQ env' sigma pb b - | _ -> false in match_let - | KpatFixed -> Term.eq_constr u.up_f - | KpatConst -> Term.eq_constr u.up_f - | KpatLam -> fun c -> - (match kind_of_term c with - | Lambda _ -> unif_EQ env sigma u.up_f c - | _ -> false) - | _ -> unif_EQ env sigma u.up_f in -let p2t p = mkApp(p.up_f,p.up_a) in -let source () = match upats_origin, upats with - | None, [p] -> - (if fixed_upat p then str"term " else str"partial term ") ++ - pr_constr_pat (p2t p) ++ spc() - | Some (dir,rule), [p] -> str"The " ++ pr_dir_side dir ++ str" of " ++ - pr_constr_pat rule ++ fnl() ++ ws 4 ++ pr_constr_pat (p2t p) ++ fnl() - | Some (dir,rule), _ -> str"The " ++ pr_dir_side dir ++ str" of " ++ - pr_constr_pat rule ++ spc() - | _, [] | None, _::_::_ -> - Errors.anomaly (str"mk_tpattern_matcher with no upats_origin") in -let on_instance, instances = - let instances = ref [] in - (fun x -> - if all_instances then instances := !instances @ [x] - else raise (FoundUnif x)), - (fun () -> !instances) in -let rec uniquize = function - | [] -> [] - | (sigma,_,{ up_f = f; up_a = a; up_t = t } as x) :: xs -> - let t = Reductionops.nf_evar sigma t in - let f = Reductionops.nf_evar sigma f in - let a = Array.map (Reductionops.nf_evar sigma) a in - let neq (sigma1,_,{ up_f = f1; up_a = a1; up_t = t1 }) = - let t1 = Reductionops.nf_evar sigma1 t1 in - let f1 = Reductionops.nf_evar sigma1 f1 in - let a1 = Array.map (Reductionops.nf_evar sigma1) a1 in - not (Term.eq_constr t t1 && - Term.eq_constr f f1 && CArray.for_all2 Term.eq_constr a a1) in - x :: uniquize (List.filter neq xs) in - -((fun env c h ~k -> - do_once upat_that_matched (fun () -> - try - if not all_instances then match_upats_FO upats env sigma0 ise c; - match_upats_HO ~on_instance upats env sigma0 ise c; - raise NoMatch - with FoundUnif sigma_u -> 0,[sigma_u] - | (NoMatch|NoProgress) when all_instances && instances () <> [] -> - 0, uniquize (instances ()) - | NoMatch when (not raise_NoMatch) -> - errorstrm (source () ++ str "does not match any subterm of the goal") - | NoProgress when (not raise_NoMatch) -> - let dir = match upats_origin with Some (d,_) -> d | _ -> - Errors.anomaly (str"mk_tpattern_matcher with no upats_origin") in - errorstrm (str"all matches of "++source()++ - str"are equal to the " ++ pr_dir_side (inv_dir dir)) - | NoProgress -> raise NoMatch); - let sigma, _, ({up_f = pf; up_a = pa} as u) = - if all_instances then assert_done_multires upat_that_matched - else List.hd (snd(assert_done upat_that_matched)) in - pp(lazy(str"sigma@tmatch=" ++ pr_evar_map None sigma)); - if !skip_occ then ((*ignore(k env u.up_t 0);*) c) else - let match_EQ = match_EQ env sigma u in - let pn = Array.length pa in - let rec subst_loop (env,h as acc) c' = - if !skip_occ then c' else - let f, a = splay_app sigma c' in - if Array.length a >= pn && match_EQ f && unif_EQ_args env sigma pa a then - let a1, a2 = Array.chop (Array.length pa) a in - let fa1 = mkApp (f, a1) in - let f' = if subst_occ () then k env u.up_t fa1 h else fa1 in - mkApp (f', Array.map_left (subst_loop acc) a2) - else - (* TASSI: clear letin values to avoid unfolding *) - let inc_h (n,_,ty) (env,h') = Environ.push_rel (n,None,ty) env, h' + 1 in - let f' = map_constr_with_binders_left_to_right inc_h subst_loop acc f in - mkApp (f', Array.map_left (subst_loop acc) a) in - subst_loop (env,h) c) : find_P), -((fun () -> - let sigma, uc, ({up_f = pf; up_a = pa} as u) = - match !upat_that_matched with - | Some (_,x) -> List.hd x | None when raise_NoMatch -> raise NoMatch - | None -> Errors.anomaly (str"companion function never called") in - let p' = mkApp (pf, pa) in - if max_occ <= !nocc then p', u.up_dir, (sigma, uc, u.up_t) - else errorstrm (str"Only " ++ int !nocc ++ str" < " ++ int max_occ ++ - str(String.plural !nocc " occurence") ++ match upats_origin with - | None -> str" of" ++ spc() ++ pr_constr_pat p' - | Some (dir,rule) -> str" of the " ++ pr_dir_side dir ++ fnl() ++ - ws 4 ++ pr_constr_pat p' ++ fnl () ++ - str"of " ++ pr_constr_pat rule)) : conclude) - -type ('ident, 'term) ssrpattern = - | T of 'term - | In_T of 'term - | X_In_T of 'ident * 'term - | In_X_In_T of 'ident * 'term - | E_In_X_In_T of 'term * 'ident * 'term - | E_As_X_In_T of 'term * 'ident * 'term - -let pr_pattern = function - | T t -> prl_term t - | In_T t -> str "in " ++ prl_term t - | X_In_T (x,t) -> prl_term x ++ str " in " ++ prl_term t - | In_X_In_T (x,t) -> str "in " ++ prl_term x ++ str " in " ++ prl_term t - | E_In_X_In_T (e,x,t) -> - prl_term e ++ str " in " ++ prl_term x ++ str " in " ++ prl_term t - | E_As_X_In_T (e,x,t) -> - prl_term e ++ str " as " ++ prl_term x ++ str " in " ++ prl_term t - -let pr_pattern_w_ids = function - | T t -> prl_term t - | In_T t -> str "in " ++ prl_term t - | X_In_T (x,t) -> pr_id x ++ str " in " ++ prl_term t - | In_X_In_T (x,t) -> str "in " ++ pr_id x ++ str " in " ++ prl_term t - | E_In_X_In_T (e,x,t) -> - prl_term e ++ str " in " ++ pr_id x ++ str " in " ++ prl_term t - | E_As_X_In_T (e,x,t) -> - prl_term e ++ str " as " ++ pr_id x ++ str " in " ++ prl_term t - -let pr_pattern_aux pr_constr = function - | T t -> pr_constr t - | In_T t -> str "in " ++ pr_constr t - | X_In_T (x,t) -> pr_constr x ++ str " in " ++ pr_constr t - | In_X_In_T (x,t) -> str "in " ++ pr_constr x ++ str " in " ++ pr_constr t - | E_In_X_In_T (e,x,t) -> - pr_constr e ++ str " in " ++ pr_constr x ++ str " in " ++ pr_constr t - | E_As_X_In_T (e,x,t) -> - pr_constr e ++ str " as " ++ pr_constr x ++ str " in " ++ pr_constr t -let pp_pattern (sigma, p) = - pr_pattern_aux (fun t -> pr_constr (pi3 (nf_open_term sigma sigma t))) p -let pr_cpattern = pr_term -let pr_rpattern _ _ _ = pr_pattern - -let pr_option f = function None -> mt() | Some x -> f x -let pr_ssrpattern _ _ _ = pr_option pr_pattern -let pr_pattern_squarep = pr_option (fun r -> str "[" ++ pr_pattern r ++ str "]") -let pr_ssrpattern_squarep _ _ _ = pr_pattern_squarep -let pr_pattern_roundp = pr_option (fun r -> str "(" ++ pr_pattern r ++ str ")") -let pr_ssrpattern_roundp _ _ _ = pr_pattern_roundp - -let wit_rpatternty = add_genarg "rpatternty" pr_pattern - -ARGUMENT EXTEND rpattern TYPED AS rpatternty PRINTED BY pr_rpattern - | [ lconstr(c) ] -> [ T (mk_lterm c) ] - | [ "in" lconstr(c) ] -> [ In_T (mk_lterm c) ] - | [ lconstr(x) "in" lconstr(c) ] -> - [ X_In_T (mk_lterm x, mk_lterm c) ] - | [ "in" lconstr(x) "in" lconstr(c) ] -> - [ In_X_In_T (mk_lterm x, mk_lterm c) ] - | [ lconstr(e) "in" lconstr(x) "in" lconstr(c) ] -> - [ E_In_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ] - | [ lconstr(e) "as" lconstr(x) "in" lconstr(c) ] -> - [ E_As_X_In_T (mk_lterm e, mk_lterm x, mk_lterm c) ] -END - -type cpattern = char * glob_constr_and_expr -let tag_of_cpattern = fst -let loc_of_cpattern = loc_ofCG -let cpattern_of_term t = t -type occ = (bool * int list) option - -type rpattern = (cpattern, cpattern) ssrpattern -let pr_rpattern = pr_pattern - -type pattern = Evd.evar_map * (Term.constr, Term.constr) ssrpattern - - -let id_of_cpattern = function - | _,(_,Some (CRef (Ident (_, x), _))) -> Some x - | _,(_,Some (CAppExpl (_, (_, Ident (_, x), _), []))) -> Some x - | _,(GRef (_, VarRef x, _) ,None) -> Some x - | _ -> None -let id_of_Cterm t = match id_of_cpattern t with - | Some x -> x - | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here" - -let interp_wit wit ist gl x = - let globarg = in_gen (glbwit wit) x in - let sigma, arg = interp_genarg ist (pf_env gl) (project gl) (pf_concl gl) gl.Evd.it globarg in - sigma, out_gen (topwit wit) arg -let interp_constr = interp_wit wit_constr -let interp_open_constr ist gl gc = - interp_wit wit_open_constr ist gl ((), gc) -let pf_intern_term ist gl (_, c) = glob_constr ist (pf_env gl) c -let interp_term ist gl (_, c) = snd (interp_open_constr ist gl c) -let glob_ssrterm gs = function - | k, (_, Some c) -> k, Tacintern.intern_constr gs c - | ct -> ct -let subst_ssrterm s (k, c) = k, Tacsubst.subst_glob_constr_and_expr s c -let pr_ssrterm _ _ _ = pr_term -let input_ssrtermkind strm = match Compat.get_tok (stream_nth 0 strm) with - | Tok.KEYWORD "(" -> '(' - | Tok.KEYWORD "@" -> '@' - | _ -> ' ' -let ssrtermkind = Gram.Entry.of_parser "ssrtermkind" input_ssrtermkind - -(* This piece of code asserts the following notations are reserved *) -(* Reserved Notation "( a 'in' b )" (at level 0). *) -(* Reserved Notation "( a 'as' b )" (at level 0). *) -(* Reserved Notation "( a 'in' b 'in' c )" (at level 0). *) -(* Reserved Notation "( a 'as' b 'in' c )" (at level 0). *) -let glob_cpattern gs p = - pp(lazy(str"globbing pattern: " ++ pr_term p)); - let glob x = snd (glob_ssrterm gs (mk_lterm x)) in - let encode k s l = - let name = Name (id_of_string ("_ssrpat_" ^ s)) in - k, (mkRCast mkRHole (mkRLambda name mkRHole (mkRApp mkRHole l)), None) in - let bind_in t1 t2 = - let d = dummy_loc in let n = Name (destCVar t1) in - fst (glob (mkCCast d (mkCHole d) (mkCLambda d n (mkCHole d) t2))) in - let check_var t2 = if not (isCVar t2) then - loc_error (constr_loc t2) "Only identifiers are allowed here" in - match p with - | _, (_, None) as x -> x - | k, (v, Some t) as orig -> - if k = 'x' then glob_ssrterm gs ('(', (v, Some t)) else - match t with - | CNotation(_, "( _ in _ )", ([t1; t2], [], [])) -> - (try match glob t1, glob t2 with - | (r1, None), (r2, None) -> encode k "In" [r1;r2] - | (r1, Some _), (r2, Some _) when isCVar t1 -> - encode k "In" [r1; r2; bind_in t1 t2] - | (r1, Some _), (r2, Some _) -> encode k "In" [r1; r2] - | _ -> Errors.anomaly (str"where are we?") - with _ when isCVar t1 -> encode k "In" [bind_in t1 t2]) - | CNotation(_, "( _ in _ in _ )", ([t1; t2; t3], [], [])) -> - check_var t2; encode k "In" [fst (glob t1); bind_in t2 t3] - | CNotation(_, "( _ as _ )", ([t1; t2], [], [])) -> - encode k "As" [fst (glob t1); fst (glob t2)] - | CNotation(_, "( _ as _ in _ )", ([t1; t2; t3], [], [])) -> - check_var t2; encode k "As" [fst (glob t1); bind_in t2 t3] - | _ -> glob_ssrterm gs orig -;; - -let interp_ssrterm _ gl t = Tacmach.project gl, t - -ARGUMENT EXTEND cpattern - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "Qed" constr(c) ] -> [ mk_lterm c ] -END - -let (!@) = Compat.to_coqloc - -GEXTEND Gram - GLOBAL: cpattern; - cpattern: [[ k = ssrtermkind; c = constr -> - let pattern = mk_term k c in - if loc_ofCG pattern <> !@loc && k = '(' then mk_term 'x' c else pattern ]]; -END - -ARGUMENT EXTEND lcpattern - PRINTED BY pr_ssrterm - INTERPRETED BY interp_ssrterm - GLOBALIZED BY glob_cpattern SUBSTITUTED BY subst_ssrterm - RAW_TYPED AS cpattern RAW_PRINTED BY pr_ssrterm - GLOB_TYPED AS cpattern GLOB_PRINTED BY pr_ssrterm -| [ "Qed" lconstr(c) ] -> [ mk_lterm c ] -END - -GEXTEND Gram - GLOBAL: lcpattern; - lcpattern: [[ k = ssrtermkind; c = lconstr -> - let pattern = mk_term k c in - if loc_ofCG pattern <> !@loc && k = '(' then mk_term 'x' c else pattern ]]; -END - -let interp_pattern ist gl red redty = - pp(lazy(str"interpreting: " ++ pr_pattern red)); - let xInT x y = X_In_T(x,y) and inXInT x y = In_X_In_T(x,y) in - let inT x = In_T x and eInXInT e x t = E_In_X_In_T(e,x,t) in - let eAsXInT e x t = E_As_X_In_T(e,x,t) in - let mkG ?(k=' ') x = k,(x,None) in - let decode t f g = - try match (pf_intern_term ist gl t) with - | GCast(_,GHole _,CastConv(GLambda(_,Name x,_,_,c))) -> f x (' ',(c,None)) - | it -> g t with _ -> g t in - let decodeG t f g = decode (mkG t) f g in - let bad_enc id _ = Errors.anomaly (str"bad encoding for pattern "++str id) in - let cleanup_XinE h x rp sigma = - let h_k = match kind_of_term h with Evar (k,_) -> k | _ -> assert false in - let to_clean, update = (* handle rename if x is already used *) - let ctx = pf_hyps gl in - let len = Context.named_context_length ctx in - let name = ref None in - try ignore(Context.lookup_named x ctx); (name, fun k -> - if !name = None then - let nctx = Evd.evar_context (Evd.find sigma k) in - let nlen = Context.named_context_length nctx in - if nlen > len then begin - name := Some (pi1 (List.nth nctx (nlen - len - 1))) - end) - with Not_found -> ref (Some x), fun _ -> () in - let sigma0 = project gl in - let new_evars = - let rec aux acc t = match kind_of_term t with - | Evar (k,_) -> - if k = h_k || List.mem k acc || Evd.mem sigma0 k then acc else - (update k; k::acc) - | _ -> fold_constr aux acc t in - aux [] (Evarutil.nf_evar sigma rp) in - let sigma = - List.fold_left (fun sigma e -> - if Evd.is_defined sigma e then sigma else (* clear may be recursiv *) - let name = Option.get !to_clean in - pp(lazy(pr_id name)); - try snd(Logic.prim_refiner (Proof_type.Thin [name]) sigma e) - with Evarutil.ClearDependencyError _ -> sigma) - sigma new_evars in - sigma in - let red = match red with - | T(k,(GCast (_,GHole _,(CastConv(GLambda (_,Name id,_,_,t)))),None)) - when let id = string_of_id id in let len = String.length id in - (len > 8 && String.sub id 0 8 = "_ssrpat_") -> - let id = string_of_id id in let len = String.length id in - (match String.sub id 8 (len - 8), t with - | "In", GApp(_, _, [t]) -> decodeG t xInT (fun x -> T x) - | "In", GApp(_, _, [e; t]) -> decodeG t (eInXInT (mkG e)) (bad_enc id) - | "In", GApp(_, _, [e; t; e_in_t]) -> - decodeG t (eInXInT (mkG e)) - (fun _ -> decodeG e_in_t xInT (fun _ -> assert false)) - | "As", GApp(_, _, [e; t]) -> decodeG t (eAsXInT (mkG e)) (bad_enc id) - | _ -> bad_enc id ()) - | T t -> decode t xInT (fun x -> T x) - | In_T t -> decode t inXInT inT - | X_In_T (e,t) -> decode t (eInXInT e) (fun x -> xInT (id_of_Cterm e) x) - | In_X_In_T (e,t) -> inXInT (id_of_Cterm e) t - | E_In_X_In_T (e,x,rp) -> eInXInT e (id_of_Cterm x) rp - | E_As_X_In_T (e,x,rp) -> eAsXInT e (id_of_Cterm x) rp in - pp(lazy(str"decoded as: " ++ pr_pattern_w_ids red)); - let red = match redty with None -> red | Some ty -> let ty = ' ', ty in - match red with - | T t -> T (combineCG t ty (mkCCast (loc_ofCG t)) mkRCast) - | X_In_T (x,t) -> - let ty = pf_intern_term ist gl ty in - E_As_X_In_T (mkG (mkRCast mkRHole ty), x, t) - | E_In_X_In_T (e,x,t) -> - let ty = mkG (pf_intern_term ist gl ty) in - E_In_X_In_T (combineCG e ty (mkCCast (loc_ofCG t)) mkRCast, x, t) - | E_As_X_In_T (e,x,t) -> - let ty = mkG (pf_intern_term ist gl ty) in - E_As_X_In_T (combineCG e ty (mkCCast (loc_ofCG t)) mkRCast, x, t) - | red -> red in - pp(lazy(str"typed as: " ++ pr_pattern_w_ids red)); - let mkXLetIn loc x (a,(g,c)) = match c with - | Some b -> a,(g,Some (mkCLetIn loc x (mkCHole loc) b)) - | None -> a,(GLetIn (loc,x,(GHole (loc, BinderType x, IntroAnonymous, None)), g), None) in - match red with - | T t -> let sigma, t = interp_term ist gl t in sigma, T t - | In_T t -> let sigma, t = interp_term ist gl t in sigma, In_T t - | X_In_T (x, rp) | In_X_In_T (x, rp) -> - let mk x p = match red with X_In_T _ -> X_In_T(x,p) | _ -> In_X_In_T(x,p) in - let rp = mkXLetIn dummy_loc (Name x) rp in - let sigma, rp = interp_term ist gl rp in - let _, h, _, rp = destLetIn rp in - let sigma = cleanup_XinE h x rp sigma in - let rp = subst1 h (Evarutil.nf_evar sigma rp) in - sigma, mk h rp - | E_In_X_In_T(e, x, rp) | E_As_X_In_T (e, x, rp) -> - let mk e x p = - match red with E_In_X_In_T _ ->E_In_X_In_T(e,x,p)|_->E_As_X_In_T(e,x,p) in - let rp = mkXLetIn dummy_loc (Name x) rp in - let sigma, rp = interp_term ist gl rp in - let _, h, _, rp = destLetIn rp in - let sigma = cleanup_XinE h x rp sigma in - let rp = subst1 h (Evarutil.nf_evar sigma rp) in - let sigma, e = interp_term ist (re_sig (sig_it gl) sigma) e in - sigma, mk e h rp -;; -let interp_cpattern ist gl red redty = interp_pattern ist gl (T red) redty;; -let interp_rpattern ist gl red = interp_pattern ist gl red None;; - -(* The full occurrence set *) -let noindex = Some(false,[]) - -(* calls do_subst on every sub-term identified by (pattern,occ) *) -let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst = - let fs sigma x = Reductionops.nf_evar sigma x in - let pop_evar sigma e p = - let { Evd.evar_body = e_body } as e_def = Evd.find sigma e in - let e_body = match e_body with Evar_defined c -> c - | _ -> errorstrm (str "Matching the pattern " ++ pr_constr p ++ - str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++ - str "Does the variable bound by the \"in\" construct occur "++ - str "in the pattern?") in - let sigma = - Evd.add (Evd.remove sigma e) e {e_def with Evd.evar_body = Evar_empty} in - sigma, e_body in - let ex_value hole = - match kind_of_term hole with Evar (e,_) -> e | _ -> assert false in - let mk_upat_for ?hack env sigma0 (sigma, t) ?(p=t) ok = - let sigma,pat= mk_tpattern ?hack env sigma0 (sigma,p) ok L2R (fs sigma t) in - sigma, [pat] in - match pattern with - | None -> do_subst env0 concl0 concl0 1 - | Some (sigma, (T rp | In_T rp)) -> - let rp = fs sigma rp in - let ise = create_evar_defs sigma in - let occ = match pattern with Some (_, T _) -> occ | _ -> noindex in - let rp = mk_upat_for env0 sigma0 (ise, rp) all_ok in - let find_T, end_T = mk_tpattern_matcher ?raise_NoMatch sigma0 occ rp in - let concl = find_T env0 concl0 1 do_subst in - let _ = end_T () in - concl - | Some (sigma, (X_In_T (hole, p) | In_X_In_T (hole, p))) -> - let p = fs sigma p in - let occ = match pattern with Some (_, X_In_T _) -> occ | _ -> noindex in - let ex = ex_value hole in - let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in - let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in - (* we start from sigma, so hole is considered a rigid head *) - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher ?raise_NoMatch sigma occ holep in - let concl = find_T env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h - (fun env _ -> do_subst env e_body))) in - let _ = end_X () in let _ = end_T () in - concl - | Some (sigma, E_In_X_In_T (e, hole, p)) -> - let p, e = fs sigma p, fs sigma e in - let ex = ex_value hole in - let rp = mk_upat_for ~hack:true env0 sigma0 (sigma, p) all_ok in - let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher sigma noindex holep in - let re = mk_upat_for env0 sigma0 (sigma, e) all_ok in - let find_E, end_E = mk_tpattern_matcher ?raise_NoMatch sigma0 occ re in - let concl = find_T env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h (fun env c _ h -> - find_E env e_body h do_subst))) in - let _ = end_E () in let _ = end_X () in let _ = end_T () in - concl - | Some (sigma, E_As_X_In_T (e, hole, p)) -> - let p, e = fs sigma p, fs sigma e in - let ex = ex_value hole in - let rp = - let e_sigma = unify_HO env0 sigma hole e in - e_sigma, fs e_sigma p in - let rp = mk_upat_for ~hack:true env0 sigma0 rp all_ok in - let find_TE, end_TE = mk_tpattern_matcher sigma0 noindex rp in - let holep = mk_upat_for env0 sigma (sigma, hole) all_ok in - let find_X, end_X = mk_tpattern_matcher sigma occ holep in - let concl = find_TE env0 concl0 1 (fun env c _ h -> - let p_sigma = unify_HO env (create_evar_defs sigma) c p in - let sigma, e_body = pop_evar p_sigma ex p in - fs p_sigma (find_X env (fs sigma p) h (fun env c _ h -> - let e_sigma = unify_HO env sigma e_body e in - let e_body = fs e_sigma e in - do_subst env e_body e_body h))) in - let _ = end_X () in let _ = end_TE () in - concl -;; - -let redex_of_pattern ?(resolve_typeclasses=false) env (sigma, p) = - let e = match p with - | In_T _ | In_X_In_T _ -> Errors.anomaly (str"pattern without redex") - | T e | X_In_T (e, _) | E_As_X_In_T (e, _, _) | E_In_X_In_T (e, _, _) -> e in - let sigma = - if not resolve_typeclasses then sigma - else Typeclasses.resolve_typeclasses ~fail:false env sigma in - Reductionops.nf_evar sigma e, Evd.evar_universe_context sigma - -let fill_occ_pattern ?raise_NoMatch env sigma cl pat occ h = - let find_R, conclude = let r = ref None in - (fun env c _ h' -> do_once r (fun () -> c, Evd.empty_evar_universe_context); - mkRel (h'+h-1)), - (fun _ -> if !r = None then redex_of_pattern env pat else assert_done r) in - let cl = eval_pattern ?raise_NoMatch env sigma cl (Some pat) occ find_R in - let e = conclude cl in - e, cl -;; - -(* clenup interface for external use *) -let mk_tpattern ?p_origin env sigma0 sigma_t f dir c = - mk_tpattern ?p_origin env sigma0 sigma_t f dir c -;; - -let pf_fill_occ env concl occ sigma0 p (sigma, t) ok h = - let ise = create_evar_defs sigma in - let ise, u = mk_tpattern env sigma0 (ise,t) ok L2R p in - let find_U, end_U = - mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ (ise,[u]) in - let concl = find_U env concl h (fun _ _ _ -> mkRel) in - let rdx, _, (sigma, uc, p) = end_U () in - sigma, uc, p, concl, rdx - -let fill_occ_term env cl occ sigma0 (sigma, t) = - try - let sigma',uc,t',cl,_= pf_fill_occ env cl occ sigma0 t (sigma, t) all_ok 1 in - if sigma' != sigma0 then Errors.error "matching impacts evars" - else cl, (Evd.merge_universe_context sigma' uc, t') - with NoMatch -> try - let sigma', uc, t' = - unif_end env sigma0 (create_evar_defs sigma) t (fun _ -> true) in - if sigma' != sigma0 then raise NoMatch - else cl, (Evd.merge_universe_context sigma' uc, t') - with _ -> - errorstrm (str "partial term " ++ pr_constr_pat t - ++ str " does not match any subterm of the goal") - -let pf_fill_occ_term gl occ t = - let sigma0 = project gl and env = pf_env gl and concl = pf_concl gl in - let cl,(_,t) = fill_occ_term env concl occ sigma0 t in - cl, t - -let cpattern_of_id id = ' ', (GRef (dummy_loc, VarRef id, None), None) - -let is_wildcard = function - | _,(_,Some (CHole _)|GHole _,None) -> true - | _ -> false - -(* "ssrpattern" *) -let pr_ssrpatternarg _ _ _ cpat = pr_rpattern cpat - -ARGUMENT EXTEND ssrpatternarg - TYPED AS rpattern - PRINTED BY pr_ssrpatternarg -| [ "[" rpattern(pat) "]" ] -> [ pat ] -END - -let pf_merge_uc uc gl = - re_sig (sig_it gl) (Evd.merge_universe_context (project gl) uc) - -let ssrpatterntac ist arg gl = - let pat = interp_rpattern ist gl arg in - let sigma0 = project gl in - let concl0 = pf_concl gl in - let (t, uc), concl_x = - fill_occ_pattern (Global.env()) sigma0 concl0 pat noindex 1 in - let tty = pf_type_of gl t in - let concl = mkLetIn (Name (id_of_string "toto"), t, tty, concl_x) in - Proofview.V82.of_tactic (convert_concl concl DEFAULTcast) gl - -TACTIC EXTEND ssrat -| [ "ssrpattern" ssrpatternarg(arg) ] -> [ Proofview.V82.tactic (ssrpatterntac ist arg) ] -END - -let ssrinstancesof ist arg gl = - let ok rhs lhs ise = true in -(* not (Term.eq_constr lhs (Evarutil.nf_evar ise rhs)) in *) - let env, sigma, concl = pf_env gl, project gl, pf_concl gl in - let sigma0, cpat = interp_cpattern ist gl arg None in - let pat = match cpat with T x -> x | _ -> errorstrm (str"Not supported") in - let etpat, tpat = mk_tpattern env sigma (sigma0,pat) (ok pat) L2R pat in - let find, conclude = - mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true - sigma None (etpat,[tpat]) in - let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_constr p ++ spc() ++ str "matches:" ++ spc() ++ pr_constr c)); c in - ppnl (str"BEGIN INSTANCES"); - try - while true do - ignore(find env concl 1 ~k:print) - done; raise NoMatch - with NoMatch -> ppnl (str"END INSTANCES"); tclIDTAC gl - -TACTIC EXTEND ssrinstoftpat -| [ "ssrinstancesoftpat" cpattern(arg) ] -> [ Proofview.V82.tactic (ssrinstancesof ist arg) ] -END - -(* We wipe out all the keywords generated by the grammar rules we defined. *) -(* The user is supposed to Require Import ssreflect or Require ssreflect *) -(* and Import ssreflect.SsrSyntax to obtain these keywords and as a *) -(* consequence the extended ssreflect grammar. *) -let () = Lexer.unfreeze frozen_lexer ;; - -(* vim: set filetype=ocaml foldmethod=marker: *) diff --git a/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.mli b/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.mli deleted file mode 100644 index e8b4d81..0000000 --- a/mathcomp/ssreflect/plugin/v8.5beta2/ssrmatching.mli +++ /dev/null @@ -1,239 +0,0 @@ -(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) - -open Genarg -open Tacexpr -open Environ -open Evd -open Proof_type -open Term - -(** ******** Small Scale Reflection pattern matching facilities ************* *) - -(** Pattern parsing *) - -(** The type of context patterns, the patterns of the [set] tactic and - [:] tactical. These are patterns that identify a precise subterm. *) -type cpattern -val pr_cpattern : cpattern -> Pp.std_ppcmds - -(** CS cpattern: (f _), (X in t), (t in X in t), (t as X in t) *) -val cpattern : cpattern Pcoq.Gram.entry -val wit_cpattern : cpattern uniform_genarg_type - -(** OS cpattern: f _, (X in t), (t in X in t), (t as X in t) *) -val lcpattern : cpattern Pcoq.Gram.entry -val wit_lcpattern : cpattern uniform_genarg_type - -(** The type of rewrite patterns, the patterns of the [rewrite] tactic. - These patterns also include patterns that identify all the subterms - of a context (i.e. "in" prefix) *) -type rpattern -val pr_rpattern : rpattern -> Pp.std_ppcmds - -(** OS rpattern: f _, in t, X in t, in X in t, t in X in t, t as X in t *) -val rpattern : rpattern Pcoq.Gram.entry -val wit_rpattern : rpattern uniform_genarg_type - -(** Pattern interpretation and matching *) - -exception NoMatch -exception NoProgress - -(** AST for [rpattern] (and consequently [cpattern]) *) -type ('ident, 'term) ssrpattern = - | T of 'term - | In_T of 'term - | X_In_T of 'ident * 'term - | In_X_In_T of 'ident * 'term - | E_In_X_In_T of 'term * 'ident * 'term - | E_As_X_In_T of 'term * 'ident * 'term - -type pattern = evar_map * (constr, constr) ssrpattern -val pp_pattern : pattern -> Pp.std_ppcmds - -(** Extracts the redex and applies to it the substitution part of the pattern. - @raise Anomaly if called on [In_T] or [In_X_In_T] *) -val redex_of_pattern : - ?resolve_typeclasses:bool -> env -> pattern -> - constr Evd.in_evar_universe_context - -(** [interp_rpattern ise gl rpat] "internalizes" and "interprets" [rpat] - in the current [Ltac] interpretation signature [ise] and tactic input [gl]*) -val interp_rpattern : - Tacinterp.interp_sign -> goal Tacmach.sigma -> - rpattern -> - pattern - -(** [interp_cpattern ise gl cpat ty] "internalizes" and "interprets" [cpat] - in the current [Ltac] interpretation signature [ise] and tactic input [gl]. - [ty] is an optional type for the redex of [cpat] *) -val interp_cpattern : - Tacinterp.interp_sign -> goal Tacmach.sigma -> - cpattern -> glob_constr_and_expr option -> - pattern - -(** The set of occurrences to be matched. The boolean is set to true - * to signal the complement of this set (i.e. {-1 3}) *) -type occ = (bool * int list) option - -(** [subst e p t i]. [i] is the number of binders - traversed so far, [p] the term from the pattern, [t] the matched one *) -type subst = env -> constr -> constr -> int -> constr - -(** [eval_pattern b env sigma t pat occ subst] maps [t] calling [subst] on every - [occ] occurrence of [pat]. The [int] argument is the number of - binders traversed. If [pat] is [None] then then subst is called on [t]. - [t] must live in [env] and [sigma], [pat] must have been interpreted in - (an extension of) [sigma]. - @raise NoMatch if [pat] has no occurrence and [b] is [true] (default [false]) - @return [t] where all [occ] occurrences of [pat] have been mapped using - [subst] *) -val eval_pattern : - ?raise_NoMatch:bool -> - env -> evar_map -> constr -> - pattern option -> occ -> subst -> - constr - -(** [fill_occ_pattern b env sigma t pat occ h] is a simplified version of - [eval_pattern]. - It replaces all [occ] occurrences of [pat] in [t] with Rel [h]. - [t] must live in [env] and [sigma], [pat] must have been interpreted in - (an extension of) [sigma]. - @raise NoMatch if [pat] has no occurrence and [b] is [true] (default [false]) - @return the instance of the redex of [pat] that was matched and [t] - transformed as described above. *) -val fill_occ_pattern : - ?raise_NoMatch:bool -> - env -> evar_map -> constr -> - pattern -> occ -> int -> - constr Evd.in_evar_universe_context * constr - -(** *************************** Low level APIs ****************************** *) - -(* The primitive matching facility. It matches of a term with holes, like - the T pattern above, and calls a continuation on its occurrences. *) - -type ssrdir = L2R | R2L -val pr_dir_side : ssrdir -> Pp.std_ppcmds - -(** a pattern for a term with wildcards *) -type tpattern - -(** [mk_tpattern env sigma0 sigma_p ok p_origin dir t] compiles a term [t] - living in [env] [sigma] (an extension of [sigma0]) intro a [tpattern]. - The [tpattern] can hold a (proof) term [p] and a diction [dir]. The [ok] - callback is used to filter occurrences. - @return the compiled [tpattern] and its [evar_map] - @raise UserEerror is the pattern is a wildcard *) -val mk_tpattern : - ?p_origin:ssrdir * constr -> - env -> evar_map -> - evar_map * constr -> - (constr -> evar_map -> bool) -> - ssrdir -> constr -> - evar_map * tpattern - -(** [findP env t i k] is a stateful function that finds the next occurrence - of a tpattern and calls the callback [k] to map the subterm matched. - The [int] argument passed to [k] is the number of binders traversed so far - plus the initial value [i]. - @return [t] where the subterms identified by the selected occurrences of - the patter have been mapped using [k] - @raise NoMatch if the raise_NoMatch flag given to [mk_tpattern_matcher] is - [true] and if the pattern did not match - @raise UserEerror if the raise_NoMatch flag given to [mk_tpattern_matcher] is - [false] and if the pattern did not match *) -type find_P = - env -> constr -> int -> k:subst -> constr - -(** [conclude ()] asserts that all mentioned ocurrences have been visited. - @return the instance of the pattern, the evarmap after the pattern - instantiation, the proof term and the ssrdit stored in the tpattern - @raise UserEerror if too many occurrences were specified *) -type conclude = - unit -> constr * ssrdir * (evar_map * Evd.evar_universe_context * constr) - -(** [mk_tpattern_matcher b o sigma0 occ sigma_tplist] creates a pair - a function [find_P] and [conclude] with the behaviour explained above. - The flag [b] (default [false]) changes the error reporting behaviour - of [find_P] if none of the [tpattern] matches. The argument [o] can - be passed to tune the [UserError] eventually raised (useful if the - pattern is coming from the LHS/RHS of an equation) *) -val mk_tpattern_matcher : - ?all_instances:bool -> - ?raise_NoMatch:bool -> - ?upats_origin:ssrdir * constr -> - evar_map -> occ -> evar_map * tpattern list -> - find_P * conclude - -(** Example of [mk_tpattern_matcher] to implement - [rewrite \{occ\}\[in t\]rules]. - It first matches "in t" (called [pat]), then in all matched subterms - it matches the LHS of the rules using [find_R]. - [concl0] is the initial goal, [concl] will be the goal where some terms - are replaced by a De Bruijn index. The [rw_progress] extra check - selects only occurrences that are not rewritten to themselves (e.g. - an occurrence "x + x" rewritten with the commutativity law of addition - is skipped) {[ - let find_R, conclude = match pat with - | Some (_, In_T _) -> - let aux (sigma, pats) (d, r, lhs, rhs) = - let sigma, pat = - mk_tpattern env0 sigma0 (sigma, r) (rw_progress rhs) d lhs in - sigma, pats @ [pat] in - let rpats = List.fold_left aux (r_sigma, []) rules in - let find_R, end_R = mk_tpattern_matcher sigma0 occ rpats in - find_R ~k:(fun _ _ h -> mkRel h), - fun cl -> let rdx, d, r = end_R () in (d,r),rdx - | _ -> ... in - let concl = eval_pattern env0 sigma0 concl0 pat occ find_R in - let (d, r), rdx = conclude concl in ]} *) - -(* convenience shortcut: [pf_fill_occ_term gl occ (sigma,t)] returns - * the conclusion of [gl] where [occ] occurrences of [t] have been replaced - * by [Rel 1] and the instance of [t] *) -val pf_fill_occ_term : - goal Tacmach.sigma -> occ -> evar_map * constr -> constr * constr - -(* It may be handy to inject a simple term into the first form of cpattern *) -val cpattern_of_term : char * glob_constr_and_expr -> cpattern - -(** Helpers to make stateful closures. Example: a [find_P] function may be - called many times, but the pattern instantiation phase is performed only the - first time. The corresponding [conclude] has to return the instantiated - pattern redex. Since it is up to [find_P] to raise [NoMatch] if the pattern - has no instance, [conclude] considers it an anomaly if the pattern did - not match *) - -(** [do_once r f] calls [f] and updates the ref only once *) -val do_once : 'a option ref -> (unit -> 'a) -> unit -(** [assert_done r] return the content of r. @raise Anomaly is r is [None] *) -val assert_done : 'a option ref -> 'a - -(** Very low level APIs. - these are calls to evarconv's [the_conv_x] followed by - [consider_remaining_unif_problems] and [resolve_typeclasses]. - In case of failure they raise [NoMatch] *) - -val unify_HO : env -> evar_map -> constr -> constr -> evar_map -val pf_unify_HO : goal Tacmach.sigma -> constr -> constr -> goal Tacmach.sigma - -(** Some more low level functions needed to implement the full SSR language - on top of the former APIs *) -val tag_of_cpattern : cpattern -> char -val loc_of_cpattern : cpattern -> Loc.t -val id_of_cpattern : cpattern -> Names.variable option -val is_wildcard : cpattern -> bool -val cpattern_of_id : Names.variable -> cpattern -val cpattern_of_id : Names.variable -> cpattern -val pr_constr_pat : constr -> Pp.std_ppcmds -val pf_merge_uc : Evd.evar_universe_context -> goal Evd.sigma -> goal Evd.sigma - -(* One can also "Set SsrMatchingDebug" from a .v *) -val debug : bool -> unit - -(* One should delimit a snippet with "Set SsrMatchingProfiling" and - * "Unset SsrMatchingProfiling" to get timings *) -val profile : bool -> unit - -(* eof *) |
