aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
authorCyril Cohen2020-11-11 23:07:35 +0100
committerCyril Cohen2020-11-12 14:17:50 +0100
commite0d5c492d95b6833879a920430833fdaa2d7b621 (patch)
treec9a42b63c2a2c909fccce1bf422864c2ad92ff2c /mathcomp
parent94dd02febd112669b6a1543695df2eea5291dcde (diff)
Apply suggestions from Kazuhiko
Co-authored-by: Kazuhiko Sakaguchi <pi8027@gmail.com>
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/seq.v43
1 files changed, 21 insertions, 22 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v
index 14a7c26..9747171 100644
--- a/mathcomp/ssreflect/seq.v
+++ b/mathcomp/ssreflect/seq.v
@@ -1271,13 +1271,17 @@ elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}].
by rewrite in_cons; case: (eqVneq y x) => // <-; rewrite s'y.
Qed.
-Lemma leq_uniq_count s1 s2 : uniq s1 -> {subset s1 <= s2} ->
- (forall x, count_mem x s1 <= count_mem x s2).
+Lemma leq_uniq_countP x s1 s2 : uniq s1 ->
+ reflect (x \in s1 -> x \in s2) (count_mem x s1 <= count_mem x s2).
Proof.
-move=> s1_uniq s1_s2 x; rewrite count_uniq_mem//.
-by case: (boolP (_ \in _)) => // /s1_s2/count_memPn/eqP; rewrite -lt0n.
+move/count_uniq_mem->; case: (boolP (_ \in _)) => //= _; last by constructor.
+by rewrite -has_pred1 has_count; apply: (iffP idP) => //; apply.
Qed.
+Lemma leq_uniq_count s1 s2 : uniq s1 -> {subset s1 <= s2} ->
+ (forall x, count_mem x s1 <= count_mem x s2).
+Proof. by move=> s1_uniq s1_s2 x; apply/leq_uniq_countP/s1_s2. Qed.
+
Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x].
Proof.
move=> uniq_s s_x; rewrite (all_pred1P _ _ (filter_all _ _)).
@@ -1464,7 +1468,7 @@ Implicit Types x y z : T.
Lemma rot_index s x (i := index x s) : x \in s ->
rot i s = x :: (drop i.+1 s ++ take i s).
-Proof. by move=> x_s; rewrite /rot drop_index ?cat_cons. Qed.
+Proof. by move=> x_s; rewrite /rot drop_index. Qed.
Variant rot_to_spec s x := RotToSpec i s' of rot i s = x :: s'.
@@ -2218,9 +2222,7 @@ Lemma remE s : rem s = take (index x s) s ++ drop (index x s).+1 s.
Proof. by elim: s => //= y s ->; case: eqVneq; rewrite ?drop0. Qed.
Lemma rem_id s : x \notin s -> rem s = s.
-Proof.
-by move=> xNs; rewrite remE memNindex ?take_size ?drop_oversize ?cats0.
-Qed.
+Proof. by elim: s => //= y s IHs /norP[neq_yx /IHs->]; case: eqVneq neq_yx. Qed.
Lemma perm_to_rem s : x \in s -> perm_eq s (x :: rem s).
Proof.
@@ -2257,15 +2259,14 @@ Proof. by move/mem_rem_uniq->; rewrite inE eqxx. Qed.
Lemma count_rem P s : count P (rem s) = count P s - (x \in s) && P x.
Proof.
-have [xs|xNs]/= := boolP (x \in s); last by rewrite subn0 rem_id.
-rewrite -[s in RHS](cat_take_drop (index x s)) drop_index// remE !count_cat/=.
-by rewrite addnCA addKn.
+have [/perm_to_rem/permP->|xNs]/= := boolP (x \in s); first by rewrite addKn.
+by rewrite subn0 rem_id.
Qed.
Lemma count_mem_rem y s : count_mem y (rem s) = count_mem y s - (x == y).
Proof.
-rewrite count_rem/=; have [->|] := eqVneq y x; last by rewrite andbF subn0.
-by have [|/count_memPn->] := boolP (x \in _).
+rewrite count_rem; have []//= := boolP (x \in s).
+by case: eqP => // <- /count_memPn->.
Qed.
End Rem.
@@ -2375,6 +2376,12 @@ Proof. by elim: s => //= x s <-; case: (a x). Qed.
Section MiscMask.
+Lemma leq_count_mask T (P : {pred T}) m s : count P (mask m s) <= count P s.
+Proof.
+by elim: s m => [|x s IHs] [|[] m]//=;
+ rewrite ?leq_add2l (leq_trans (IHs _)) ?leq_addl.
+Qed.
+
Variable (T : eqType).
Implicit Types (s : seq T) (m : bitseq).
@@ -2387,12 +2394,6 @@ elim: m s => [|[] m ih] [|x s] //=.
- by case: ifP => [/mem_mask -> // | _ /andP [] _ /ih].
Qed.
-Lemma leq_count_mask P m s : count P (mask m s) <= count P s.
-Proof.
-by elim: s m => [|x s IHs] [|[] m]//=;
- rewrite ?leq_add2l (leq_trans (IHs _)) ?leq_addl.
-Qed.
-
Lemma leq_count_subseq P s1 s2 : subseq s1 s2 -> count P s1 <= count P s2.
Proof. by move=> /subseqP[m _ ->]; rewrite leq_count_mask. Qed.
@@ -2400,9 +2401,7 @@ Lemma count_maskP s1 s2 :
(forall x, count_mem x s1 <= count_mem x s2) <->
exists2 m : bitseq, size m = size s2 & perm_eq s1 (mask m s2).
Proof.
-split=> [s1_le|[m _ /allP/(_ _ _)/eqP s1ms2 x]]; last first.
- have [xs1|/count_memPn->//] := boolP (x \in s1).
- by rewrite s1ms2 ?mem_cat ?xs1// leq_count_mask.
+split=> [s1_le|[m _ /permP s1ms2 x]]; last by rewrite s1ms2 leq_count_mask.
suff [m mP]: exists m, perm_eq s1 (mask m s2).
by have [m' sm' eqm] := resize_mask m s2; exists m'; rewrite -?eqm.
elim: s2 => [|x s2 IHs]//= in s1 s1_le *.