aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2020-01-09 18:56:55 +0900
committerKazuhiko Sakaguchi2020-03-15 14:11:47 +0900
commitbdb23c100648a7e1b055d90a76eedbff9eef12f4 (patch)
treef10ac4a79a2ec0d6e751beda2f4b59904ead58a4 /mathcomp
parent85039b4c536a67ce936c079f519a9a8b6c33f1d6 (diff)
Reorder arguments of comparison predicates in order.v as they should
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/ssrnum.v10
-rw-r--r--mathcomp/ssreflect/order.v44
2 files changed, 25 insertions, 29 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index f9b4cb0..0ad7f20 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -3823,17 +3823,13 @@ Lemma oppr_min : {morph -%R : x y / min x y >-> max x y : R}.
Proof. by move=> x y; rewrite -[max _ _]opprK oppr_max !opprK. Qed.
Lemma addr_minl : @left_distributive R R +%R min.
-Proof.
-by move=> x y z; case: leP; case: leP => //; rewrite lter_add2; case: leP.
-Qed.
+Proof. by move=> x y z; case: (leP (_ + _)); rewrite lter_add2; case: leP. Qed.
Lemma addr_minr : @right_distributive R R +%R min.
Proof. by move=> x y z; rewrite !(addrC x) addr_minl. Qed.
Lemma addr_maxl : @left_distributive R R +%R max.
-Proof.
-by move=> x y z; case: leP; case: leP => //; rewrite lter_add2; case: leP.
-Qed.
+Proof. by move=> x y z; case: (leP (_ + _)); rewrite lter_add2; case: leP. Qed.
Lemma addr_maxr : @right_distributive R R +%R max.
Proof. by move=> x y z; rewrite !(addrC x) addr_maxl. Qed.
@@ -3841,7 +3837,7 @@ Proof. by move=> x y z; rewrite !(addrC x) addr_maxl. Qed.
Lemma minr_pmulr x y z : 0 <= x -> x * min y z = min (x * y) (x * z).
Proof.
case: sgrP=> // hx _; first by rewrite hx !mul0r meetxx.
-by case: leP; case: leP => //; rewrite lter_pmul2l //; case: leP.
+by case: (leP (_ * _)); rewrite lter_pmul2l //; case: leP.
Qed.
Lemma minr_nmulr x y z : x <= 0 -> x * min y z = max (x * y) (x * z).
diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v
index b261072..8f3efaf 100644
--- a/mathcomp/ssreflect/order.v
+++ b/mathcomp/ssreflect/order.v
@@ -1216,35 +1216,35 @@ Context {T : latticeType}.
Definition meet : T -> T -> T := Lattice.meet (Lattice.class T).
Definition join : T -> T -> T := Lattice.join (Lattice.class T).
-Variant lel_xor_gt (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
- | LelNotGt of x <= y : lel_xor_gt x y true false x x y y
- | GtlNotLe of y < x : lel_xor_gt x y false true y y x x.
+Variant lel_xor_gt (x y : T) : T -> T -> T -> T -> bool -> bool -> Set :=
+ | LelNotGt of x <= y : lel_xor_gt x y x x y y true false
+ | GtlNotLe of y < x : lel_xor_gt x y y y x x false true.
-Variant ltl_xor_ge (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
- | LtlNotGe of x < y : ltl_xor_ge x y false true x x y y
- | GelNotLt of y <= x : ltl_xor_ge x y true false y y x x.
+Variant ltl_xor_ge (x y : T) : T -> T -> T -> T -> bool -> bool -> Set :=
+ | LtlNotGe of x < y : ltl_xor_ge x y x x y y false true
+ | GelNotLt of y <= x : ltl_xor_ge x y y y x x true false.
Variant comparel (x y : T) :
- bool -> bool -> bool -> bool -> bool -> bool -> T -> T -> T -> T -> Set :=
+ T -> T -> T -> T -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| ComparelLt of x < y : comparel x y
- false false false true false true x x y y
+ x x y y false false false true false true
| ComparelGt of y < x : comparel x y
- false false true false true false y y x x
+ y y x x false false true false true false
| ComparelEq of x = y : comparel x y
- true true true true false false x x x x.
+ x x x x true true true true false false.
Variant incomparel (x y : T) :
- bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool ->
- T -> T -> T -> T -> Set :=
+ T -> T -> T -> T ->
+ bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| InComparelLt of x < y : incomparel x y
- false false false true false true true true x x y y
+ x x y y false false false true false true true true
| InComparelGt of y < x : incomparel x y
- false false true false true false true true y y x x
+ y y x x false false true false true false true true
| InComparel of x >< y : incomparel x y
- false false false false false false false false
(meet x y) (meet x y) (join x y) (join x y)
+ false false false false false false false false
| InComparelEq of x = y : incomparel x y
- true true true true false false true true x x x x.
+ x x x x true true true true false false true true.
End LatticeDef.
@@ -3218,8 +3218,8 @@ Lemma leU2 x y z t : x <= z -> y <= t -> x `|` y <= z `|` t.
Proof. exact: (@leI2 _ [latticeType of L^d]). Qed.
Lemma lcomparableP x y : incomparel x y
- (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
- (y >=< x) (x >=< y) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ (y `&` x) (x `&` y) (y `|` x) (x `|` y)
+ (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) (y >=< x) (x >=< y).
Proof.
by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy;
rewrite ?(meetxx, joinxx, meetC y, joinC y)
@@ -3228,16 +3228,16 @@ by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy;
Qed.
Lemma lcomparable_ltgtP x y : x >=< y ->
- comparel x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
- (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ comparel x y (y `&` x) (x `&` y) (y `|` x) (x `|` y)
+ (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof. by case: (lcomparableP x) => // *; constructor. Qed.
Lemma lcomparable_leP x y : x >=< y ->
- lel_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ lel_xor_gt x y (y `&` x) (x `&` y) (y `|` x) (x `|` y) (x <= y) (y < x).
Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed.
Lemma lcomparable_ltP x y : x >=< y ->
- ltl_xor_ge x y (y <= x) (x < y) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ ltl_xor_ge x y (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y <= x) (x < y).
Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed.
End LatticeTheoryJoin.