aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
authorChristian Doczkal2020-06-07 11:08:38 +0200
committerChristian Doczkal2020-06-18 16:46:23 +0200
commit555655f227c4d154f72b352b3437a1c275be2920 (patch)
treebcdebcaa58340ef75b5ffde91b07ea4cb101ca95 /mathcomp
parent96efc4fa2a3b643c6c4ea19047c3e633c5af145f (diff)
Apply suggestions from code review
Co-authored-by: Cyril Cohen <CohenCyril@users.noreply.github.com>
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/fingraph.v4
-rw-r--r--mathcomp/ssreflect/fintype.v20
2 files changed, 12 insertions, 12 deletions
diff --git a/mathcomp/ssreflect/fingraph.v b/mathcomp/ssreflect/fingraph.v
index b8231ac..d1376d0 100644
--- a/mathcomp/ssreflect/fingraph.v
+++ b/mathcomp/ssreflect/fingraph.v
@@ -611,7 +611,7 @@ Proof. by apply: same_connect1r x => /=. Qed.
Lemma fcard_gt0P (a : {pred T}) :
fclosed f a -> reflect (exists x, x \in a) (0 < fcard f a).
Proof.
-move => clfA; apply: (iffP card_gt0P) => [[x /andP[]]|[x xA]]; first by exists x.
+move=> clfA; apply: (iffP card_gt0P) => [[x /andP[]]|[x xA]]; first by exists x.
exists (froot f x); rewrite inE roots_root /=; last exact: fconnect_sym.
by rewrite -(closed_connect clfA (connect_root _ x)).
Qed.
@@ -622,7 +622,7 @@ Lemma fcard_gt1P (A : {pred T}) :
(1 < fcard f A).
Proof.
move=> clAf; apply: (iffP card_gt1P) => [|[x] [xA [y yA not_xfy]]].
- move => [x] [y] [/andP [/= rfx xA]] [/andP[/= rfy yA] xDy].
+ move=> [x] [y] [/andP [/= rfx xA]] [/andP[/= rfy yA] xDy].
by exists x; try exists y; rewrite // -root_connect // (eqP rfx) (eqP rfy).
exists (froot f x), (froot f y); rewrite !inE !roots_root ?root_connect //=.
by split => //; rewrite -(closed_connect clAf (connect_root _ _)).
diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v
index 05c5547..986d9fd 100644
--- a/mathcomp/ssreflect/fintype.v
+++ b/mathcomp/ssreflect/fintype.v
@@ -625,7 +625,7 @@ by apply: (iffP idP) => [/eqP/mem_card1[x inA]|[x /eq_card1/eqP//]]; exists x.
Qed.
Lemma card_le1_eqP A :
- reflect {in A&, forall x, all_equal_to x} (#|A| <= 1).
+ reflect {in A &, forall x, all_equal_to x} (#|A| <= 1).
Proof.
apply: (iffP card_le1P) => [Ale1 x y xA yA /=|all_eq x xA y].
by apply/eqP; rewrite -[_ == _]/(y \in pred1 x) -Ale1.
@@ -633,7 +633,7 @@ by rewrite inE; case: (altP (y =P x)) => [->//|]; exact/contra_neqF/all_eq.
Qed.
Lemma fintype_le1P : reflect (forall x : T, all_equal_to x) (#|T| <= 1).
-Proof. apply: (iffP (card_le1_eqP {:T})); [exact: in2T|exact: in2W]. Qed.
+Proof. apply: (iffP (card_le1_eqP {:T})); [exact: in2T | exact: in2W]. Qed.
Lemma fintype1 : #|T| = 1 -> {x : T | all_equal_to x}.
Proof.
@@ -807,10 +807,10 @@ Lemma card_gt1P A :
reflect (exists x y, [/\ x \in A, y \in A & x != y]) (1 < #|A|).
Proof.
apply: (iffP card_geqP) => [[s] []|[x] [y] [xA yA xDy]].
-- case: s => [|a [|b [|]]] //=; rewrite inE andbT => aDb _ subD.
- by exists a; exists b; rewrite aDb !subD ?inE ?eqxx ?orbT.
-- exists [:: x;y]; rewrite /= !inE xDy ; split => // z.
- by rewrite !inE; case/pred2P => ->.
+ case: s => [|a [|b []]]//=; rewrite inE andbT => aDb _ subD.
+ by exists a, b; rewrite aDb !subD ?inE ?eqxx ?orbT.
+exists [:: x; y]; rewrite /= !inE xDy.
+by split=> // z; rewrite !inE => /pred2P[]->.
Qed.
Lemma card_gt2P A :
@@ -818,11 +818,11 @@ Lemma card_gt2P A :
(2 < #|A|).
Proof.
apply: (iffP card_geqP) => [[s] []|[x] [y] [z] [[xD yD zD] [xDy xDz yDz]]].
-- case: s => [|x [|y [|z [|]]]] //=; rewrite !inE !andbT negb_or -andbA.
+ case: s => [|x [|y [|z []]]]//=; rewrite !inE !andbT negb_or -andbA.
case/and3P => xDy xDz yDz _ subA.
- by exists x;exists y;exists z; rewrite xDy yDz eq_sym xDz !subA ?inE ?eqxx ?orbT.
-- exists [:: x;y;z]; rewrite /= !inE negb_or xDy xDz eq_sym yDz; split => // u.
- by rewrite !inE => /or3P [] /eqP->.
+ by exists x, y, z; rewrite xDy yDz eq_sym xDz !subA ?inE ?eqxx ?orbT.
+exists [:: x; y; z]; rewrite /= !inE negb_or xDy xDz eq_sym yDz; split=> // u.
+by rewrite !inE => /or3P [] /eqP->.
Qed.
Lemma disjoint_sym A B : [disjoint A & B] = [disjoint B & A].