diff options
| author | Cyril Cohen | 2020-11-11 22:20:51 +0100 |
|---|---|---|
| committer | GitHub | 2020-11-11 22:20:51 +0100 |
| commit | 1890cc8cfc1725c99606b92f7a38217bd0e42bec (patch) | |
| tree | 9058d45a259f8ebefc004a39d324478a573d764e /mathcomp | |
| parent | cf74596ed9f29ba4e6c125a7916f6c631366a6f3 (diff) | |
| parent | b408b52bcb89468c7d61c4c56c2e7c02d8f458a8 (diff) | |
Merge pull request #604 from chdoc/subseq
lemmas on `subseq` and `rot`
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 96 |
1 files changed, 95 insertions, 1 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index ed0b998..a9ddb5e 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -1395,6 +1395,57 @@ Proof. by move=> x; rewrite -[s in RHS](cat_take_drop n0) !mem_cat /= orbC. Qed. Lemma eqseq_rot s1 s2 : (rot n0 s1 == rot n0 s2) = (s1 == s2). Proof. exact/inj_eq/rot_inj. Qed. +(* lemmas about the pivot pattern [_ ++ _ :: _] *) + +Lemma index_pivot x s1 s2 (s := s1 ++ x :: s2) : x \notin s1 -> + index x s = size s1. +Proof. by rewrite index_cat/= eqxx addn0; case: ifPn. Qed. + +Lemma take_pivot x s2 s1 (s := s1 ++ x :: s2) : x \notin s1 -> + take (index x s) s = s1. +Proof. by move=> /index_pivot->; rewrite take_size_cat. Qed. + +Lemma rev_pivot x s1 s2 : rev (s1 ++ x :: s2) = rev s2 ++ x :: rev s1. +Proof. by rewrite rev_cat rev_cons cat_rcons. Qed. + +Lemma eqseq_pivot2l x s1 s2 s3 s4 : x \notin s1 -> x \notin s3 -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. +move=> xNs1 xNs3; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. +suff S : size s1 = size s3 by rewrite eqseq_cat// eqseq_cons eqxx in E. +by rewrite -(index_pivot s2 xNs1) (eqP E) index_pivot. +Qed. + +Lemma eqseq_pivot2r x s1 s2 s3 s4 : x \notin s2 -> x \notin s4 -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. +move=> xNs2 xNs4; rewrite -(can_eq revK) !rev_pivot. +by rewrite eqseq_pivot2l ?mem_rev // !(can_eq revK) andbC. +Qed. + +Lemma eqseq_pivotl x s1 s2 s3 s4 : x \notin s1 -> x \notin s2 -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. +move=> xNs1 xNs2; apply/idP/idP => [E|/andP[/eqP-> /eqP->]//]. +rewrite -(@eqseq_pivot2l x)//; have /eqP/(congr1 (count_mem x)) := E. +rewrite !count_cat/= eqxx !addnS (count_memPn _ _ xNs1) (count_memPn _ _ xNs2). +by move=> -[/esym/eqP]; rewrite addn_eq0 => /andP[/eqP/count_memPn]. +Qed. + +Lemma eqseq_pivotr x s1 s2 s3 s4 : x \notin s3 -> x \notin s4 -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. by move=> *; rewrite eq_sym eqseq_pivotl//; case: eqVneq => /=. Qed. + +Lemma uniq_eqseq_pivotl x s1 s2 s3 s4 : uniq (s1 ++ x :: s2) -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. +by rewrite uniq_catC/= mem_cat => /andP[/norP[? ?] _]; rewrite eqseq_pivotl. +Qed. + +Lemma uniq_eqseq_pivotr x s1 s2 s3 s4 : uniq (s3 ++ x :: s4) -> + (s1 ++ x :: s2 == s3 ++ x :: s4) = (s1 == s3) && (s2 == s4). +Proof. by move=> ?; rewrite eq_sym uniq_eqseq_pivotl//; case: eqVneq => /=. Qed. + End EqSeq. Section RotIndex. @@ -1474,7 +1525,7 @@ Definition bitseq := seq bool. Canonical bitseq_eqType := Eval hnf in [eqType of bitseq]. Canonical bitseq_predType := Eval hnf in [predType of bitseq]. -(* Generalized versions of splitP (from path.v): split_find_nth and split_find *) +(* Generalizations of splitP (from path.v): split_find_nth and split_find *) Section FindNth. Variables (T : Type). Implicit Types (x : T) (p : pred T) (s : seq T). @@ -1926,6 +1977,10 @@ Lemma mask_cat m1 m2 s1 s2 : size m1 = size s1 -> mask (m1 ++ m2) (s1 ++ s2) = mask m1 s1 ++ mask m2 s2. Proof. by move: m1 s1; apply: seq_ind2 => // -[] m1 x1 s1 /= _ ->. Qed. +Lemma mask_rcons b m x s : size m = size s -> + mask (rcons m b) (rcons s x) = mask m s ++ nseq b x. +Proof. by move=> ms; rewrite -!cats1 mask_cat//; case: b. Qed. + Lemma all_mask a m s : all a s -> all a (mask m s). Proof. by elim: s m => [|x s IHs] [|[] m]//= /andP[ax /IHs->]; rewrite ?ax. Qed. @@ -1936,6 +1991,12 @@ Proof. by case: b. Qed. Lemma has_mask a m s : has a (mask m s) -> has a s. Proof. by apply/contraTT; rewrite -!all_predC; apply: all_mask. Qed. +Lemma rev_mask m s : size m = size s -> rev (mask m s) = mask (rev m) (rev s). +Proof. +move: m s; apply: seq_ind2 => //= b x m s eq_size_sm IH. +by case: b; rewrite !rev_cons mask_rcons ?IH ?size_rev// (cats1, cats0). +Qed. + Lemma mask_rot m s : size m = size s -> mask (rot n0 m) (rot n0 s) = rot (count id (take n0 m)) (mask m s). Proof. @@ -2108,6 +2169,27 @@ elim: s => //= x s; case: (_ \in _); last by rewrite eqxx. by case: (undup s) => //= y u; case: (_ == _) => //=; apply: cons_subseq. Qed. +Lemma subseq_rev s1 s2 : subseq (rev s1) (rev s2) = subseq s1 s2. +Proof. +wlog suff W : s1 s2 / subseq s1 s2 -> subseq (rev s1) (rev s2). + by apply/idP/idP => /W //; rewrite !revK. +by case/subseqP => m size_m ->; rewrite rev_mask // mask_subseq. +Qed. + +Lemma subseq_cat2l s s1 s2 : subseq (s ++ s1) (s ++ s2) = subseq s1 s2. +Proof. by elim: s => // x s IHs; rewrite !cat_cons /= eqxx. Qed. + +Lemma subseq_cat2r s s1 s2 : subseq (s1 ++ s) (s2 ++ s) = subseq s1 s2. +Proof. by rewrite -subseq_rev !rev_cat subseq_cat2l subseq_rev. Qed. + +Lemma subseq_rot p s n : + subseq p s -> exists2 k, k <= n & subseq (rot k p) (rot n s). +Proof. +move=> /subseqP[m size_m ->]. +exists (count id (take n m)); last by rewrite -mask_rot // mask_subseq. +by rewrite (leq_trans (count_size _ _))// size_take; case: ltnP. +Qed. + End Subseq. Prenex Implicits subseq. @@ -2300,6 +2382,18 @@ rewrite uniq_perm ?filter_uniq ?(subseq_uniq ss12) // => x. by rewrite mem_filter; apply: andb_idr; apply: (mem_subseq ss12). Qed. +Lemma uniq_subseq_pivot x (s1 s2 s3 s4 : seq T) (s := s3 ++ x :: s4) : + uniq s -> subseq (s1 ++ x :: s2) s = (subseq s1 s3 && subseq s2 s4). +Proof. +move=> uniq_s; apply/idP/idP => [sub_s'_s|/andP[? ?]]; last first. + by rewrite cat_subseq //= eqxx. +have uniq_s' := subseq_uniq sub_s'_s uniq_s. +have/eqP {sub_s'_s uniq_s} := subseq_uniqP _ uniq_s sub_s'_s. +rewrite !filter_cat /= mem_cat inE eqxx orbT /=. +rewrite uniq_eqseq_pivotl // => /andP [/eqP -> /eqP ->]. +by rewrite !filter_subseq. +Qed. + Lemma perm_to_subseq s1 s2 : subseq s1 s2 -> {s3 | perm_eq s2 (s1 ++ s3)}. Proof. |
