diff options
| author | Cyril Cohen | 2019-05-23 17:33:43 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-10-16 11:32:41 +0200 |
| commit | 115a253d125015e7622f94c92fbf3d00f5f77e20 (patch) | |
| tree | 8014bb819a988441199b00322a0dc4915f8e0b4a /mathcomp | |
| parent | 948dec69615691de382278609a5b130ad5a485d3 (diff) | |
renaming new `reindex_` lemmas with prefix `big_`
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/ssreflect/bigop.v | 30 |
1 files changed, 15 insertions, 15 deletions
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v index dc6be74..adb4094 100644 --- a/mathcomp/ssreflect/bigop.v +++ b/mathcomp/ssreflect/bigop.v @@ -1433,7 +1433,7 @@ Lemma reindex_inj (I : finType) (h : I -> I) (P : pred I) F : Proof. by move=> injh; apply: reindex (onW_bij _ (injF_bij injh)). Qed. Arguments reindex_inj [I h P F]. -Lemma reindex_enum_val_cond (I : finType) (A : pred I) (P : pred I) F : +Lemma big_enum_val_cond (I : finType) (A : pred I) (P : pred I) F : \big[op/idx]_(x in A | P x) F x = \big[op/idx]_(i < #|A| | P (enum_val i)) F (enum_val i). Proof. @@ -1444,27 +1444,27 @@ rewrite (reindex (enum_val : 'I_#|A| -> I)). by apply: eq_big => [x|x Px]; rewrite ?enum_valP. by apply: subon_bij (enum_val_bij_in x0A) => y /andP[]. Qed. -Arguments reindex_enum_val_cond [I A] P F. +Arguments big_enum_val_cond [I A] P F. -Lemma reindex_enum_rank_cond (I : finType) (A : pred I) x (xA : x \in A) P F +Lemma big_enum_rank_cond (I : finType) (A : pred I) x (xA : x \in A) P F (h := enum_rank_in xA) : \big[op/idx]_(i < #|A| | P i) F i = \big[op/idx]_(s in A | P (h s)) F (h s). Proof. -rewrite reindex_enum_val_cond {}/h. +rewrite big_enum_val_cond {}/h. by apply: eq_big => [i|i Pi]; rewrite ?enum_valK_in. Qed. -Arguments reindex_enum_rank_cond [I A x] xA P F. +Arguments big_enum_rank_cond [I A x] xA P F. -Lemma reindex_enum_val (I : finType) (A : pred I) F : +Lemma big_enum_val (I : finType) (A : pred I) F : \big[op/idx]_(x in A) F x = \big[op/idx]_(i < #|A|) F (enum_val i). -Proof. by rewrite -(reindex_enum_val_cond predT) big_mkcondr. Qed. -Arguments reindex_enum_val [I A] F. +Proof. by rewrite -(big_enum_val_cond predT) big_mkcondr. Qed. +Arguments big_enum_val [I A] F. -Lemma reindex_enum_rank (I : finType) (A : pred I) x (xA : x \in A) F +Lemma big_enum_rank (I : finType) (A : pred I) x (xA : x \in A) F (h := enum_rank_in xA) : \big[op/idx]_(i < #|A|) F i = \big[op/idx]_(s in A) F (h s). -Proof. by rewrite (reindex_enum_rank_cond xA) big_mkcondr. Qed. -Arguments reindex_enum_rank [I A x] xA F. +Proof. by rewrite (big_enum_rank_cond xA) big_mkcondr. Qed. +Arguments big_enum_rank [I A x] xA F. Lemma big_nat_rev m n P F : \big[*%M/1]_(m <= i < n | P i) F i @@ -1588,10 +1588,10 @@ Arguments partition_big [R idx op I J P] p Q [F]. Arguments reindex_onto [R idx op I J] h h' [P F]. Arguments reindex [R idx op I J] h [P F]. Arguments reindex_inj [R idx op I h P F]. -Arguments reindex_enum_val_cond [R idx op I A] P F. -Arguments reindex_enum_rank_cond [R idx op I A x] xA P F. -Arguments reindex_enum_val [R idx op I A] F. -Arguments reindex_enum_rank [R idx op I A x] xA F. +Arguments big_enum_val_cond [R idx op I A] P F. +Arguments big_enum_rank_cond [R idx op I A x] xA P F. +Arguments big_enum_val [R idx op I A] F. +Arguments big_enum_rank [R idx op I A x] xA F. Arguments pair_big_dep [R idx op I J]. Arguments pair_big [R idx op I J]. Arguments big_allpairs_dep [R idx op I1 I2 J h r1 r2 F]. |
