aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
authorCyril Cohen2020-03-18 12:39:52 +0100
committerGitHub2020-03-18 12:39:52 +0100
commit0f6039deec22723266023a12ccc1d2f6b392e0d7 (patch)
treecb58acf49c8ecedf233d45a339c54d5ba7f85513 /mathcomp
parent41a995ad5cb0c5c99e2629bae0699bdf13e73e22 (diff)
parent9ff5576733fbb34f07142e17fa6835af1ab708de (diff)
Merge pull request #459 from CohenCyril/sub_sorted
Link between subrelations and path/sorted
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/ssreflect/path.v47
1 files changed, 32 insertions, 15 deletions
diff --git a/mathcomp/ssreflect/path.v b/mathcomp/ssreflect/path.v
index 2790aa8..bccafa8 100644
--- a/mathcomp/ssreflect/path.v
+++ b/mathcomp/ssreflect/path.v
@@ -167,16 +167,16 @@ Section HomoPath.
Variables (T T' : Type) (f : T -> T') (leT : rel T) (leT' : rel T').
+Lemma path_map x s : path leT' (f x) (map f s) = path (relpre f leT') x s.
+Proof. by elim: s x => //= y s <-. Qed.
+
Lemma homo_path x s : {homo f : x y / leT x y >-> leT' x y} ->
path leT x s -> path leT' (f x) (map f s).
-Proof.
-move=> f_homo; elim: s => //= y s IHs in x *.
-by move=> /andP[le_xy path_y_s]; rewrite f_homo//= IHs.
-Qed.
+Proof. by move=> f_homo xs; rewrite path_map (sub_path _ xs). Qed.
Lemma mono_path x s : {mono f : x y / leT x y >-> leT' x y} ->
path leT' (f x) (map f s) = path leT x s.
-Proof. by move=> f_mon; elim: s => //= y s IHs in x *; rewrite f_mon IHs. Qed.
+Proof. by move=> f_mon; rewrite path_map; apply: eq_path. Qed.
End HomoPath.
@@ -412,21 +412,24 @@ Section EqHomoPath.
Variables (T : eqType) (T' : Type) (f : T -> T') (leT : rel T) (leT' : rel T').
-Lemma homo_path_in x s : {in x :: s &, {homo f : x y / leT x y >-> leT' x y}} ->
- path leT x s -> path leT' (f x) (map f s).
+Lemma sub_path_in (e e' : rel T) x s : {in x :: s &, subrel e e'} ->
+ path e x s -> path e' x s.
Proof.
-move=> f_homo; elim: s => //= y s IHs in x f_homo *; move=> /andP[x_y y_s].
-rewrite f_homo ?(in_cons, mem_head, eqxx, orbT) ?IHs//= => z t z_mem t_mem.
-by apply: f_homo; rewrite in_cons ?(z_mem, t_mem, orbT).
+elim: s x => //= y s IHs x ee' /andP[/ee'->//=]; rewrite ?(eqxx,in_cons,orbT)//.
+by apply: IHs => z t zys tys; apply: ee'; rewrite in_cons (zys, tys) orbT.
Qed.
+Lemma eq_path_in (e e' : rel T) x s : {in x :: s &, e =2 e'} ->
+ path e x s = path e' x s.
+Proof. by move=> ee'; apply/idP/idP => /sub_path_in->// y z /ee' P/P->. Qed.
+
+Lemma homo_path_in x s : {in x :: s &, {homo f : x y / leT x y >-> leT' x y}} ->
+ path leT x s -> path leT' (f x) (map f s).
+Proof. by move=> f_homo xs; rewrite path_map (sub_path_in _ xs). Qed.
+
Lemma mono_path_in x s : {in x :: s &, {mono f : x y / leT x y >-> leT' x y}} ->
path leT' (f x) (map f s) = path leT x s.
-Proof.
-move=> f_mono; elim: s => //= y s IHs in x f_mono *.
-rewrite f_mono ?(in_cons, mem_head, eqxx, orbT) ?IHs//= => z t z_mem t_mem.
-by rewrite f_mono// in_cons ?(z_mem, t_mem, orbT).
-Qed.
+Proof. by move=> f_mono; rewrite path_map; apply: eq_path_in. Qed.
End EqHomoPath.
@@ -535,6 +538,12 @@ Qed.
Hypothesis leT_tr : transitive leT.
+Lemma path_sortedE x s : path leT x s = all (leT x) s && sorted s.
+Proof.
+apply/idP/idP => [xs|/andP[/path_min_sorted<-//]].
+by rewrite order_path_min//; apply: path_sorted xs.
+Qed.
+
Lemma sorted_merge s t : sorted (s ++ t) -> merge s t = s ++ t.
Proof.
elim: s => //= x s; case: t; rewrite ?cats0 //= => y t ih hp.
@@ -632,6 +641,10 @@ Proof. exact/esym/map_sort. Qed.
Lemma sorted_map s : sorted leT (map f s) = sorted leTf s.
Proof. exact: mono_sorted. Qed.
+Lemma sub_sorted (leT' : rel T) :
+ subrel leT leT' -> forall s, sorted leT s -> sorted leT' s.
+Proof. by move=> leTT'; case => //; apply: sub_path. Qed.
+
End SortMap.
Arguments homo_sorted {T T' f leT' leT}.
@@ -651,6 +664,10 @@ Section EqSortSeq.
Variable T : eqType.
Variable leT : rel T.
+Lemma sub_sorted_in (leT' : rel T) (s : seq T) :
+ {in s &, subrel leT leT'} -> sorted leT s -> sorted leT' s.
+Proof. by case: s => //; apply: sub_path_in. Qed.
+
Local Notation merge := (merge leT).
Local Notation sort := (sort leT).
Local Notation sorted := (sorted leT).