aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/test_suite
diff options
context:
space:
mode:
authorCyril Cohen2020-11-09 13:01:18 +0100
committerCyril Cohen2020-11-11 23:22:12 +0100
commitd84c26fa2eeeeb0029a56bac37bf1bae9f10882a (patch)
treeab048c326c8357ca5dd59bf00db26dca64442263 /mathcomp/test_suite
parentd0449f7e13f06ab7295f6919d1701e8adfa72d61 (diff)
Intro pattern extensions for dup, swap and apply
Diffstat (limited to 'mathcomp/test_suite')
-rw-r--r--mathcomp/test_suite/test_intro_rw.v23
1 files changed, 23 insertions, 0 deletions
diff --git a/mathcomp/test_suite/test_intro_rw.v b/mathcomp/test_suite/test_intro_rw.v
new file mode 100644
index 0000000..dd1486f
--- /dev/null
+++ b/mathcomp/test_suite/test_intro_rw.v
@@ -0,0 +1,23 @@
+From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Lemma test_dup1 : forall n : nat, odd n.
+Proof. move=> /[dup] m n; suff: odd n by []. Abort.
+
+Lemma test_dup2 : let n := 1 in False.
+Proof. move=> /[dup] m n; have : m = n := erefl. Abort.
+
+Lemma test_swap1 : forall (n : nat) (b : bool), odd n = b.
+Proof. move=> /[swap] b n; suff: odd n = b by []. Abort.
+
+Lemma test_swap1 : let n := 1 in let b := true in False.
+Proof. move=> /[swap] b n; have : odd n = b := erefl. Abort.
+
+Lemma test_apply A B : forall (f : A -> B) (a : A), False.
+Proof.
+move=> /[apply] b.
+Check (b : B).
+Abort.