aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/test_suite
diff options
context:
space:
mode:
authorEnrico Tassi2019-11-18 17:40:51 +0100
committerEnrico Tassi2020-09-07 16:34:30 +0200
commitbc0a71056c24b29c8289395ee01740bb2ef7ad8d (patch)
tree4afbdf7fd945363b5b68bbd85b9f44bab8762fe4 /mathcomp/test_suite
parent9adc523e89022fc6ac77471fb3fe381ad344d060 (diff)
[test suite] infrastructure to test how some statements are printed
Diffstat (limited to 'mathcomp/test_suite')
-rw-r--r--mathcomp/test_suite/output.v4
-rw-r--r--mathcomp/test_suite/output.v.out48
-rw-r--r--mathcomp/test_suite/output.v.out.8.1248
-rw-r--r--mathcomp/test_suite/output.v.out.8.1349
4 files changed, 149 insertions, 0 deletions
diff --git a/mathcomp/test_suite/output.v b/mathcomp/test_suite/output.v
new file mode 100644
index 0000000..706f15d
--- /dev/null
+++ b/mathcomp/test_suite/output.v
@@ -0,0 +1,4 @@
+From mathcomp Require Import all.
+
+Open Scope group_scope.
+About cyclic_pgroup_Aut_structure. \ No newline at end of file
diff --git a/mathcomp/test_suite/output.v.out b/mathcomp/test_suite/output.v.out
new file mode 100644
index 0000000..bc5d3c8
--- /dev/null
+++ b/mathcomp/test_suite/output.v.out
@@ -0,0 +1,48 @@
+cyclic_pgroup_Aut_structure :
+forall [gT : finGroupType] [p : nat] [G : {group gT}],
+p.-group G ->
+cyclic G ->
+G != 1 :> {set gT} ->
+let q := #|G| in
+let n := (logn p q).-1 in
+let A := Aut G in
+let P := 'O_p(A) in
+let F := 'O_p^'(A) in
+exists m : {perm gT} -> 'Z_q,
+ [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x},
+ m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}},
+ {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit,
+ forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}}
+ & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}],
+ [/\ abelian A, cyclic F, #|F| = p.-1
+ & [faithful F, on 'Ohm_1(G) | [Aut G]]]
+ & if n == 0
+ then A = F
+ else
+ exists t : perm_for_finType gT,
+ [/\ t \in A, #[t] = 2, m t = (-1)%R
+ & if odd p
+ then
+ [/\ cyclic A /\ cyclic P,
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R
+ & P = <[s]>]
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R
+ & 'Ohm_1(P) = <[s0]>]]
+ else
+ if n == 1
+ then A = <[t]>
+ else
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (2 ^ n.-1)%N,
+ m s = (5%:R)%R, <[s]> \x <[t]> = A
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R,
+ m (s0 * t) = ((2 ^ n).-1%:R)%R
+ & 'Ohm_1(<[s]>) = <[s0]>]]]]
+
+cyclic_pgroup_Aut_structure is not universe polymorphic
+Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope
+cyclic_pgroup_Aut_structure is opaque
+Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure
diff --git a/mathcomp/test_suite/output.v.out.8.12 b/mathcomp/test_suite/output.v.out.8.12
new file mode 100644
index 0000000..bc5d3c8
--- /dev/null
+++ b/mathcomp/test_suite/output.v.out.8.12
@@ -0,0 +1,48 @@
+cyclic_pgroup_Aut_structure :
+forall [gT : finGroupType] [p : nat] [G : {group gT}],
+p.-group G ->
+cyclic G ->
+G != 1 :> {set gT} ->
+let q := #|G| in
+let n := (logn p q).-1 in
+let A := Aut G in
+let P := 'O_p(A) in
+let F := 'O_p^'(A) in
+exists m : {perm gT} -> 'Z_q,
+ [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x},
+ m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}},
+ {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit,
+ forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}}
+ & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}],
+ [/\ abelian A, cyclic F, #|F| = p.-1
+ & [faithful F, on 'Ohm_1(G) | [Aut G]]]
+ & if n == 0
+ then A = F
+ else
+ exists t : perm_for_finType gT,
+ [/\ t \in A, #[t] = 2, m t = (-1)%R
+ & if odd p
+ then
+ [/\ cyclic A /\ cyclic P,
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R
+ & P = <[s]>]
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R
+ & 'Ohm_1(P) = <[s0]>]]
+ else
+ if n == 1
+ then A = <[t]>
+ else
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (2 ^ n.-1)%N,
+ m s = (5%:R)%R, <[s]> \x <[t]> = A
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R,
+ m (s0 * t) = ((2 ^ n).-1%:R)%R
+ & 'Ohm_1(<[s]>) = <[s0]>]]]]
+
+cyclic_pgroup_Aut_structure is not universe polymorphic
+Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope
+cyclic_pgroup_Aut_structure is opaque
+Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure
diff --git a/mathcomp/test_suite/output.v.out.8.13 b/mathcomp/test_suite/output.v.out.8.13
new file mode 100644
index 0000000..0546b70
--- /dev/null
+++ b/mathcomp/test_suite/output.v.out.8.13
@@ -0,0 +1,49 @@
+cyclic_pgroup_Aut_structure :
+forall [gT : finGroupType] [p : nat] [G : {group gT}],
+p.-group G ->
+cyclic G ->
+G != 1 :> {set gT} ->
+let q := #|G| in
+let n := (logn p q).-1 in
+let A := Aut G in
+let P := 'O_p(A) in
+let F := 'O_p^'(A) in
+exists m : {perm gT} -> 'Z_q,
+ [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x},
+ m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}},
+ {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit,
+ forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}}
+ & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}],
+ [/\ abelian A, cyclic F, #|F| = p.-1
+ & [faithful F, on 'Ohm_1(G) | [Aut G]]]
+ & if n == 0
+ then A = F
+ else
+ exists t : perm_for_finType gT,
+ [/\ t \in A, #[t] = 2, m t = (-1)%R
+ & if odd p
+ then
+ [/\ cyclic A /\ cyclic P,
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R
+ & P = <[s]>]
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R
+ & 'Ohm_1(P) = <[s0]>]]
+ else
+ if n == 1
+ then A = <[t]>
+ else
+ exists s : perm_for_finType gT,
+ [/\ s \in A, #[s] = (2 ^ n.-1)%N,
+ m s = (5%:R)%R, <[s]> \x <[t]> = A
+ & exists s0 : perm_for_finType gT,
+ [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R,
+ m (s0 * t) = ((2 ^ n).-1%:R)%R
+ & 'Ohm_1(<[s]>) = <[s0]>]]]]
+
+cyclic_pgroup_Aut_structure is not universe polymorphic
+Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope _ _
+ _
+cyclic_pgroup_Aut_structure is opaque
+Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure