diff options
| author | Enrico Tassi | 2019-11-18 17:40:51 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2020-09-07 16:34:30 +0200 |
| commit | bc0a71056c24b29c8289395ee01740bb2ef7ad8d (patch) | |
| tree | 4afbdf7fd945363b5b68bbd85b9f44bab8762fe4 /mathcomp/test_suite | |
| parent | 9adc523e89022fc6ac77471fb3fe381ad344d060 (diff) | |
[test suite] infrastructure to test how some statements are printed
Diffstat (limited to 'mathcomp/test_suite')
| -rw-r--r-- | mathcomp/test_suite/output.v | 4 | ||||
| -rw-r--r-- | mathcomp/test_suite/output.v.out | 48 | ||||
| -rw-r--r-- | mathcomp/test_suite/output.v.out.8.12 | 48 | ||||
| -rw-r--r-- | mathcomp/test_suite/output.v.out.8.13 | 49 |
4 files changed, 149 insertions, 0 deletions
diff --git a/mathcomp/test_suite/output.v b/mathcomp/test_suite/output.v new file mode 100644 index 0000000..706f15d --- /dev/null +++ b/mathcomp/test_suite/output.v @@ -0,0 +1,4 @@ +From mathcomp Require Import all. + +Open Scope group_scope. +About cyclic_pgroup_Aut_structure.
\ No newline at end of file diff --git a/mathcomp/test_suite/output.v.out b/mathcomp/test_suite/output.v.out new file mode 100644 index 0000000..bc5d3c8 --- /dev/null +++ b/mathcomp/test_suite/output.v.out @@ -0,0 +1,48 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure diff --git a/mathcomp/test_suite/output.v.out.8.12 b/mathcomp/test_suite/output.v.out.8.12 new file mode 100644 index 0000000..bc5d3c8 --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.12 @@ -0,0 +1,48 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure diff --git a/mathcomp/test_suite/output.v.out.8.13 b/mathcomp/test_suite/output.v.out.8.13 new file mode 100644 index 0000000..0546b70 --- /dev/null +++ b/mathcomp/test_suite/output.v.out.8.13 @@ -0,0 +1,49 @@ +cyclic_pgroup_Aut_structure : +forall [gT : finGroupType] [p : nat] [G : {group gT}], +p.-group G -> +cyclic G -> +G != 1 :> {set gT} -> +let q := #|G| in +let n := (logn p q).-1 in +let A := Aut G in +let P := 'O_p(A) in +let F := 'O_p^'(A) in +exists m : {perm gT} -> 'Z_q, + [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, + m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, + {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, + forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} + & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], + [/\ abelian A, cyclic F, #|F| = p.-1 + & [faithful F, on 'Ohm_1(G) | [Aut G]]] + & if n == 0 + then A = F + else + exists t : perm_for_finType gT, + [/\ t \in A, #[t] = 2, m t = (-1)%R + & if odd p + then + [/\ cyclic A /\ cyclic P, + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R + & P = <[s]>] + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R + & 'Ohm_1(P) = <[s0]>]] + else + if n == 1 + then A = <[t]> + else + exists s : perm_for_finType gT, + [/\ s \in A, #[s] = (2 ^ n.-1)%N, + m s = (5%:R)%R, <[s]> \x <[t]> = A + & exists s0 : perm_for_finType gT, + [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, + m (s0 * t) = ((2 ^ n).-1%:R)%R + & 'Ohm_1(<[s]>) = <[s0]>]]]] + +cyclic_pgroup_Aut_structure is not universe polymorphic +Arguments cyclic_pgroup_Aut_structure [gT] [p]%nat_scope [G]%Group_scope _ _ + _ +cyclic_pgroup_Aut_structure is opaque +Expands to: Constant mathcomp.solvable.extremal.cyclic_pgroup_Aut_structure |
