diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/ssreflect | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/bigop.v | 8 | ||||
| -rw-r--r-- | mathcomp/ssreflect/binomial.v | 8 | ||||
| -rw-r--r-- | mathcomp/ssreflect/div.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/finfun.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssreflect/finset.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssreflect/fintype.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/generic_quotient.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/path.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssreflect/prime.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/ssrnat.v | 6 |
10 files changed, 26 insertions, 24 deletions
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v index 67454ac..941b488 100644 --- a/mathcomp/ssreflect/bigop.v +++ b/mathcomp/ssreflect/bigop.v @@ -403,7 +403,7 @@ Variable (T : Type) (zero one : T) (mul add : T -> T -> T) (inv : T -> T). Hypothesis mulC : commutative mul. Lemma mulC_id : left_id one mul -> right_id one mul. -Proof. by move=> mul1x x; rewrite mulC. Qed. +Proof. by move=> mul1x x; rewrite mulC. Qed. Lemma mulC_zero : left_zero zero mul -> right_zero zero mul. Proof. by move=> mul0x x; rewrite mulC. Qed. @@ -1596,7 +1596,7 @@ case: (pickP J) => [j0 _ | J0]; first exact: (big_distr_big_dep j0). rewrite {1 4}/index_enum -enumT; case: (enum I) (mem_enum I) => [I0 | i r _]. have f0: I -> J by move=> i; have:= I0 i. rewrite (big_pred1 (finfun f0)) ?big_nil // => g. - by apply/familyP/eqP=> _; first apply/ffunP; move=> i; have:= I0 i. + by apply/familyP/eqP=> _; first apply/ffunP; move => i; have:= I0 i. have Q0 i': Q i' =1 pred0 by move=> j; have:= J0 j. rewrite big_cons /= big_pred0 // mul0m big_pred0 // => f. by apply/familyP=> /(_ i); rewrite [_ \in _]Q0. @@ -1762,7 +1762,7 @@ Proof. apply: (iffP idP) => [dvFm i Pi | dvFm]. by rewrite (bigD1 i) // dvdn_lcm in dvFm; case/andP: dvFm. by elim/big_ind: _ => // p q p_m; rewrite dvdn_lcm p_m. -Qed. +Qed. Lemma biglcmn_sup (I : finType) i0 (P : pred I) F m : P i0 -> m %| F i0 -> m %| \big[lcmn/1%N]_(i | P i) F i. @@ -1777,7 +1777,7 @@ Proof. apply: (iffP idP) => [dvmF i Pi | dvmF]. by rewrite (bigD1 i) // dvdn_gcd in dvmF; case/andP: dvmF. by elim/big_ind: _ => // p q m_p; rewrite dvdn_gcd m_p. -Qed. +Qed. Lemma biggcdn_inf (I : finType) i0 (P : pred I) F m : P i0 -> F i0 %| m -> \big[gcdn/0]_(i | P i) F i %| m. diff --git a/mathcomp/ssreflect/binomial.v b/mathcomp/ssreflect/binomial.v index e42b1fd..98ee64e 100644 --- a/mathcomp/ssreflect/binomial.v +++ b/mathcomp/ssreflect/binomial.v @@ -273,7 +273,7 @@ Qed. Lemma triangular_sum n : \sum_(0 <= i < n) i = 'C(n, 2). Proof. -elim: n => [|n IHn]; first by rewrite big_geq. +elim: n => [|n IHn]; first by rewrite big_geq. by rewrite big_nat_recr // IHn binS bin1. Qed. @@ -307,7 +307,7 @@ suffices{k i} fxx k i: f k.+1 i.+1 = f k i.+1 + f k i. by rewrite big_ord_recl big_ord0 addn0 !bin0 muln1. rewrite {}/f big_ord_recl (big_ord_recl (i.+1)) !bin0 !mul1n. rewrite -addnA -big_split /=; congr (_ + _). -by apply: eq_bigr => j _ ; rewrite -mulnDl. +by apply: eq_bigr => j _; rewrite -mulnDl. Qed. Lemma subn_exp m n k : @@ -504,7 +504,7 @@ Qed. Lemma card_partial_ord_partitions m n : #|[set t : m.-tuple 'I_n.+1 | \sum_(i <- t) i <= n]| = 'C(m + n, m). Proof. -symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. +symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. pose add_mn (i j : In1) : In1 := inord (i + j). pose f_add (t : m.-tuple In1) := [tuple of scanl add_mn x0 t]. rewrite -card_sorted_tuples -!sum1dep_card (reindex f_add) /=. @@ -535,7 +535,7 @@ Qed. Lemma card_ord_partitions m n : #|[set t : m.+1.-tuple 'I_n.+1 | \sum_(i <- t) i == n]| = 'C(m + n, m). Proof. -symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. +symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. pose f_add (t : m.-tuple In1) := [tuple of sub_ord (\sum_(x <- t) x) :: t]. rewrite -card_partial_ord_partitions -!sum1dep_card (reindex f_add) /=. by apply: eq_bigl => t; rewrite big_cons /= addnC (sameP maxn_idPr eqP) maxnE. diff --git a/mathcomp/ssreflect/div.v b/mathcomp/ssreflect/div.v index 723946d..4172430 100644 --- a/mathcomp/ssreflect/div.v +++ b/mathcomp/ssreflect/div.v @@ -200,7 +200,7 @@ rewrite leq_subLR addnA; apply: leq_trans (leq_divDl _ _ _). by rewrite -maxnE leq_div2r ?leq_maxr. Qed. -Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p. +Lemma divnMA m n p : m %/ (n * p) = m %/ n %/ p. Proof. case: n p => [|n] [|p]; rewrite ?muln0 ?div0n //. rewrite {2}(divn_eq m (n.+1 * p.+1)) mulnA mulnAC !divnMDl //. diff --git a/mathcomp/ssreflect/finfun.v b/mathcomp/ssreflect/finfun.v index e00ddef..43ba42a 100644 --- a/mathcomp/ssreflect/finfun.v +++ b/mathcomp/ssreflect/finfun.v @@ -207,7 +207,7 @@ Lemma pffun_onP y D R f : (f \in pffun_on_mem y (mem D) (mem R)). Proof. apply: (iffP (pfamilyP y D (fun _ => R) f)) => [] [-> f_fam]; split=> //. - by move=> _ /imageP[x Ax ->]; apply: f_fam. + by move=> _ /imageP[x Ax ->]; apply: f_fam. by move=> x Ax; apply: f_fam; apply/imageP; exists x. Qed. @@ -267,7 +267,7 @@ apply/imageP/andP=> [[f0 /familyP/=Ff0] [{f}-> ->]| [Fy /familyP/=Ff]]. split; first by have:= Ff0 x0; rewrite /= mem_head. apply/familyP=> x; have:= Ff0 x; rewrite ffunE inE /=. by case: eqP => //= -> _; rewrite ifN ?inE. -exists (g (y, f)). +exists (g (y, f)). by apply/familyP=> x; have:= Ff x; rewrite ffunE /= inE; case: eqP => // ->. congr (_, _); last apply/ffunP=> x; do !rewrite ffunE /= ?eqxx //. by case: eqP => // ->{x}; apply/eqP; have:= Ff x0; rewrite ifN. diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v index a9899b7..dc964b5 100644 --- a/mathcomp/ssreflect/finset.v +++ b/mathcomp/ssreflect/finset.v @@ -746,7 +746,7 @@ Lemma cardsU A B : #|A :|: B| = (#|A| + #|B| - #|A :&: B|)%N. Proof. by rewrite -cardsUI addnK. Qed. Lemma cardsI A B : #|A :&: B| = (#|A| + #|B| - #|A :|: B|)%N. -Proof. by rewrite -cardsUI addKn. Qed. +Proof. by rewrite -cardsUI addKn. Qed. Lemma cardsT : #|[set: T]| = #|T|. Proof. by rewrite cardsE. Qed. @@ -1969,7 +1969,7 @@ Qed. Lemma pblock_equivalence_partition : {in D &, forall x y, (y \in pblock P x) = R x y}. Proof. -have [_ tiP _] := and3P equivalence_partitionP. +have [_ tiP _] := and3P equivalence_partitionP. by move=> x y Dx Dy; rewrite /= (def_pblock tiP (PPx Dx) (Pxx Dx)) inE Dy. Qed. diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index 1171fcb..719a267 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -506,7 +506,7 @@ Lemma cardE A : #|A| = size (enum A). Proof. by rewrite unlock. Qed. Lemma eq_card A B : A =i B -> #|A| = #|B|. -Proof. by move=>eqAB; rewrite !cardE (eq_enum eqAB). Qed. +Proof. by move=> eqAB; rewrite !cardE (eq_enum eqAB). Qed. Lemma eq_card_trans A B n : #|A| = n -> B =i A -> #|B| = n. Proof. by move <-; apply: eq_card. Qed. diff --git a/mathcomp/ssreflect/generic_quotient.v b/mathcomp/ssreflect/generic_quotient.v index 5533832..0aafc34 100644 --- a/mathcomp/ssreflect/generic_quotient.v +++ b/mathcomp/ssreflect/generic_quotient.v @@ -140,7 +140,7 @@ Local Notation "\pi" := (pi_phant (Phant qT)). Definition repr_of := quot_repr (quot_class qT). Lemma repr_ofK : cancel repr_of \pi. -Proof. by rewrite /pi_phant /repr_of /=; case:qT=> [? []]. Qed. +Proof. by rewrite /pi_phant /repr_of /=; case: qT=> [? []]. Qed. Definition QuotType_clone (Q : Type) qT cT of phant_id (quot_class qT) cT := @QuotTypePack Q cT Q. @@ -487,7 +487,7 @@ Lemma equiv_sym : symmetric e. Proof. by case: e => [] ? []. Qed. Lemma equiv_trans : transitive e. Proof. by case: e => [] ? []. Qed. Lemma eq_op_trans (T' : eqType) : transitive (@eq_op T'). -Proof. by move=> x y z; move/eqP->; move/eqP->. Qed. +Proof. by move=> x y z; move/eqP->; move/eqP->. Qed. Lemma equiv_ltrans: left_transitive e. Proof. by apply: left_trans; [apply: equiv_sym|apply: equiv_trans]. Qed. @@ -567,7 +567,7 @@ Qed. Canonical encoded_equiv_equiv_rel := EquivRelPack encoded_equiv_is_equiv. -Lemma encoded_equivP x : e' (DE (ED x)) x. +Lemma encoded_equivP x : e' (DE (ED x)) x. Proof. by rewrite /encoded_equiv /= encModEquivP. Qed. End EncodingModuloEquiv. diff --git a/mathcomp/ssreflect/path.v b/mathcomp/ssreflect/path.v index f5eb77b..6ab7926 100644 --- a/mathcomp/ssreflect/path.v +++ b/mathcomp/ssreflect/path.v @@ -213,7 +213,7 @@ Lemma next_nth p x : if p is y :: p' then nth y p' (index x p) else x else x. Proof. -case: p => //= y0 p. +case: p => //= y0 p. elim: p {2 3 5}y0 => [|y' p IHp] y /=; rewrite (eq_sym y) inE; by case: ifP => // _; apply: IHp. Qed. @@ -542,7 +542,7 @@ have: perm_eq (catss ss ++ s) (merge_sort_pop s ss). by rewrite perm_catC catA perm_catC perm_cat2l -perm_merge. case: s => // x1 [//|x2 s _]; move/ltnW; move/IHn=> {n IHn}IHs. rewrite -{IHs}(perm_eqrP (IHs _)) ifE; set s1 := if_expr _ _ _. -rewrite (catA _ [::_;_] s) {s}perm_cat2r. +rewrite (catA _ [::_; _] s) {s}perm_cat2r. apply: (@perm_eq_trans _ (catss ss ++ s1)). by rewrite perm_cat2l /s1 -ifE; case: ifP; rewrite // (perm_catC [::_]). elim: ss {x1 x2}s1 => /= [|s2 ss IHss] s1; first by rewrite cats0. diff --git a/mathcomp/ssreflect/prime.v b/mathcomp/ssreflect/prime.v index 41243ea..9494353 100644 --- a/mathcomp/ssreflect/prime.v +++ b/mathcomp/ssreflect/prime.v @@ -998,7 +998,7 @@ apply/eqP; rewrite eqn_dvd dvdn_lcm !partn_dvd ?dvdn_lcml ?dvdn_lcmr //. rewrite -(dvdn_pmul2r (part_gt0 pi^' (lcmn m n))) partnC // dvdn_lcm !andbT. rewrite -{1}(partnC pi m_gt0) andbC -{1}(partnC pi n_gt0). by rewrite !dvdn_mul ?partn_dvd ?dvdn_lcml ?dvdn_lcmr. -Qed. +Qed. Lemma partn_gcd pi m n : m > 0 -> n > 0 -> (gcdn m n)`_pi = gcdn m`_pi n`_pi. Proof. @@ -1007,7 +1007,7 @@ apply/eqP; rewrite eqn_dvd dvdn_gcd !partn_dvd ?dvdn_gcdl ?dvdn_gcdr //=. rewrite -(dvdn_pmul2r (part_gt0 pi^' (gcdn m n))) partnC // dvdn_gcd. rewrite -{3}(partnC pi m_gt0) andbC -{3}(partnC pi n_gt0). by rewrite !dvdn_mul ?partn_dvd ?dvdn_gcdl ?dvdn_gcdr. -Qed. +Qed. Lemma partn_biglcm (I : finType) (P : pred I) F pi : (forall i, P i -> F i > 0) -> @@ -1313,7 +1313,7 @@ move=> n_gt0; wlog le_b_a: a b / b <= a. move=> IH; case: (leqP b a) => [|/ltnW] /IH {IH}// IH. by rewrite eq_sym; apply: (iffP IH) => eqab p; move/eqab. rewrite eqn_mod_dvd //; apply: (iffP (dvdn_partP _ n_gt0)) => eqab p /eqab; - by rewrite -eqn_mod_dvd // => /eqP. + by rewrite -eqn_mod_dvd // => /eqP. Qed. (* The Euler totient function *) diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index 8c21ae4..1c16140 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -441,12 +441,14 @@ CoInductive eqn0_xor_gt0 n : bool -> bool -> Set := Lemma posnP n : eqn0_xor_gt0 n (n == 0) (0 < n). Proof. by case: n; constructor. Qed. -CoInductive compare_nat m n : bool -> bool -> bool -> bool -> bool -> bool -> Set := +CoInductive compare_nat m n : + bool -> bool -> bool -> bool -> bool -> bool -> Set := | CompareNatLt of m < n : compare_nat m n true false true false false false | CompareNatGt of m > n : compare_nat m n false true false true false false | CompareNatEq of m = n : compare_nat m n true true false false true true. -Lemma ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) (n < m) (n == m) (m == n). +Lemma ltngtP m n : compare_nat m n (m <= n) (n <= m) (m < n) + (n < m) (n == m) (m == n). Proof. rewrite !ltn_neqAle [_ == m]eq_sym; case: ltnP => [mn|]. by rewrite ltnW // gtn_eqF //; constructor. |
