diff options
| author | Christian Doczkal | 2020-10-01 17:15:40 +0200 |
|---|---|---|
| committer | Christian Doczkal | 2020-11-02 11:33:58 +0100 |
| commit | e13e96e00c681d1b9109302e0f5ea0979442bd0a (patch) | |
| tree | 192a207a9c32ebefeadfcb1650df130eb5155c02 /mathcomp/ssreflect | |
| parent | a180734646304c9dbb4dedc01240b41f46958e24 (diff) | |
lemmas for reasoing about "rot n (rot m s)"
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 30 |
1 files changed, 23 insertions, 7 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index 7cdc422..1e9e1c9 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -1854,17 +1854,33 @@ move=> Hn Hm; case: leqP => [/rotD // | /ltnW Hmn]; symmetry. by rewrite -{2}(rotK n s) /rotr -rotD size_rot addnBA ?subnK ?addnK. Qed. -Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s). +Lemma rot_minn n s : rot n s = rot (minn n (size s)) s. +Proof. +by case: (leqP n (size s)) => // /leqW ?; rewrite rot_size rot_oversize. +Qed. + +Definition rot_add s n m (k := size s) (p := minn m k + minn n k) := + locked (if p <= k then p else p - k). + +Lemma leq_rot_add n m s : rot_add s n m <= size s. Proof. -case: (ltnP (size s) m) => Hm. - by rewrite !(@rot_oversize T m) ?size_rot 1?ltnW. -case: (ltnP (size s) n) => Hn. - by rewrite !(@rot_oversize T n) ?size_rot 1?ltnW. -by rewrite !rot_add_mod 1?addnC. +by unlock rot_add; case: ifP; rewrite // leq_subLR leq_add // geq_minr. Qed. +Lemma rot_addC n m s : rot_add s n m = rot_add s m n. +Proof. by unlock rot_add; rewrite ![minn n _ + _]addnC. Qed. + +Lemma rot_rot_add n m s : rot m (rot n s) = rot (rot_add s n m) s. +Proof. +unlock rot_add. +by rewrite (rot_minn n) (rot_minn m) rot_add_mod ?size_rot ?geq_minr. +Qed. + +Lemma rot_rot m n s : rot m (rot n s) = rot n (rot m s). +Proof. by rewrite rot_rot_add rot_addC -rot_rot_add. Qed. + Lemma rot_rotr m n s : rot m (rotr n s) = rotr n (rot m s). -Proof. by rewrite {2}/rotr size_rot rot_rot. Qed. +Proof. by rewrite [RHS]/rotr size_rot rot_rot. Qed. Lemma rotr_rotr m n s : rotr m (rotr n s) = rotr n (rotr m s). Proof. by rewrite /rotr !size_rot rot_rot. Qed. |
