diff options
| author | Anton Trunov | 2019-05-29 12:38:48 +0300 |
|---|---|---|
| committer | Anton Trunov | 2019-05-29 12:38:48 +0300 |
| commit | c7c344f2f08f3910c884d9c3bb1bd5cfe3c2a1d7 (patch) | |
| tree | a264f6e292e048c0890d9c71ec7849e3a66224d4 /mathcomp/ssreflect | |
| parent | eac1d28204c93f082771dedb90fc5a1edec6e6f8 (diff) | |
Rename eqsP to eqPsym as suggested by @CohenCyril
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 6 |
2 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 895a86e..1f700fa 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -200,10 +200,10 @@ Variant eq_xor_neq_sym (T : eqType) (x y : T) : bool -> bool -> Set := | EqNotNeqSym of x = y : eq_xor_neq_sym x y true true | NeqNotEqSym of x <> y : eq_xor_neq_sym x y false false. -Lemma eqsP (T : eqType) (x y : T) : eq_xor_neq_sym x y (y == x) (x == y). +Lemma eqPsym (T : eqType) (x y : T) : eq_xor_neq_sym x y (y == x) (x == y). Proof. by rewrite eq_sym; case: eqP; constructor. Qed. -Arguments eqsP {T x y}. +Arguments eqPsym {T x y}. Section Contrapositives. diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index 516dc95..2ed0ee1 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -1191,7 +1191,7 @@ Proof. by rewrite -has_pred1 has_count -eqn0Ngt; apply: eqP. Qed. Lemma count_uniq_mem s x : uniq s -> count_mem x s = (x \in s). Proof. elim: s => //= y s IHs /andP[/negbTE s'y /IHs-> {IHs}]. -by rewrite in_cons; case: eqsP => // <-; rewrite s'y. +by rewrite in_cons; case: eqPsym => // <-; rewrite s'y. Qed. Lemma filter_pred1_uniq s x : uniq s -> x \in s -> filter (pred1 x) s = [:: x]. @@ -1303,7 +1303,7 @@ Lemma rot_to s x : x \in s -> rot_to_spec s x. Proof. move=> s_x; pose i := index x s; exists i (drop i.+1 s ++ take i s). rewrite -cat_cons {}/i; congr cat; elim: s s_x => //= y s IHs. -by rewrite in_cons; case: eqsP => // -> _; rewrite drop0. +by rewrite in_cons; case: eqPsym => // -> _; rewrite drop0. Qed. End EqSeq. @@ -2167,7 +2167,7 @@ Lemma nth_index_map s x0 x : {in s &, injective f} -> x \in s -> nth x0 s (index (f x) (map f s)) = x. Proof. elim: s => //= y s IHs inj_f s_x; rewrite (inj_in_eq inj_f) ?mem_head //. -move: s_x; rewrite inE; case: eqsP => [-> | _] //=; apply: IHs. +move: s_x; rewrite inE; case: eqPsym => [-> | _] //=; apply: IHs. by apply: sub_in2 inj_f => z; apply: predU1r. Qed. |
