aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2020-11-18 08:14:54 +0900
committerKazuhiko Sakaguchi2020-11-19 05:24:58 +0900
commit82db85f541dc9a47fd79b462a63b8b80a8468557 (patch)
tree3edea724446dc0c8c4222d8628f2f5f9833b7db3 /mathcomp/ssreflect
parentcdbb52e7c60883b0beee923fdd96baa3e80a1912 (diff)
Apply suggestions from code review
Co-authored-by: Cyril Cohen <CohenCyril@users.noreply.github.com>
Diffstat (limited to 'mathcomp/ssreflect')
-rw-r--r--mathcomp/ssreflect/path.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/ssreflect/path.v b/mathcomp/ssreflect/path.v
index 42d93f0..5638371 100644
--- a/mathcomp/ssreflect/path.v
+++ b/mathcomp/ssreflect/path.v
@@ -989,7 +989,7 @@ Section Stability_iota.
Variables (leN : rel nat) (leN_total : total leN) (leN_tr : transitive leN).
-Let le_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
+Let lt_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
Local Arguments iota : simpl never.
Local Arguments size : simpl never.
@@ -997,7 +997,7 @@ Local Arguments cat : simpl never.
Let push_invariant := fix push_invariant (ss : seq (seq nat)) :=
if ss is s :: ss' then
- sorted le_lex s && perm_eq s (iota (size (flatten ss')) (size s)) &&
+ sorted lt_lex s && perm_eq s (iota (size (flatten ss')) (size s)) &&
push_invariant ss'
else
true.
@@ -1014,7 +1014,7 @@ by rewrite mem_iota size_cat addnC => /andP [] /(leq_trans n_lt).
Qed.
Let pop_stable s1 ss :
- push_invariant (s1 :: ss) -> sorted le_lex (merge_sort_pop leN s1 ss).
+ push_invariant (s1 :: ss) -> sorted lt_lex (merge_sort_pop leN s1 ss).
Proof.
elim: ss s1 => [s1 /andP [] /andP [] //|s2 ss ihss s1]; rewrite /= -2!andbA.
move=> /and5P [sorted_s1 perm_s1 sorted_s2 perm_s2 hss]; apply: ihss.
@@ -1024,7 +1024,7 @@ rewrite mem_iota (perm_all _ perm_s1) => /andP [_ n_lt]; apply/allP => p.
by rewrite mem_iota size_cat addnC => /andP [] /(leq_trans n_lt).
Qed.
-Lemma sort_iota_stable n : sorted le_lex (sort leN (iota 0 n)).
+Lemma sort_iota_stable n : sorted lt_lex (sort leN (iota 0 n)).
Proof.
rewrite sortE -[0]/(size (@flatten nat [::])).
have: push_invariant [::] by [].
@@ -1056,13 +1056,13 @@ Lemma filter_sort T (leT : rel T) :
Proof.
move=> leT_total leT_tr p s; case Ds: s => // [x s1].
pose leN := relpre (nth x s) leT.
-pose le_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
-have le_lex_tr: transitive le_lex.
- rewrite /le_lex /leN => ? ? ? /= /andP [xy xy'] /andP [yz yz'].
+pose lt_lex := [rel n m | leN n m && (leN m n ==> (n < m))].
+have lt_lex_tr: transitive lt_lex.
+ rewrite /lt_lex /leN => ? ? ? /= /andP [xy xy'] /andP [yz yz'].
rewrite (leT_tr _ _ _ xy yz); apply/implyP => zx; move: xy' yz'.
by rewrite (leT_tr _ _ _ yz zx) (leT_tr _ _ _ zx xy); apply: ltn_trans.
rewrite -{s1}Ds -(mkseq_nth x s) !(filter_map, sort_map); congr map.
-apply/(@irr_sorted_eq _ le_lex); rewrite /le_lex /leN //=.
+apply/(@irr_sorted_eq _ lt_lex); rewrite /lt_lex /leN //=.
- by move=> ?; rewrite /= ltnn implybF andbN.
- exact/sorted_filter/sort_iota_stable.
- exact/sort_stable/sorted_filter/iota_ltn_sorted/ltn_trans/ltn_trans.