diff options
| author | Cyril Cohen | 2020-08-25 00:18:20 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2020-09-03 03:18:37 +0200 |
| commit | 3dd5febb100b7e72c0203640309d188c27801bc8 (patch) | |
| tree | 6f37dd5e36d84f1dfa4d2c2513ecb20c1225d979 /mathcomp/ssreflect | |
| parent | 56f5dd148ca2728ef69db7ec2f12bc462a73711e (diff) | |
Expliciting relation between split and [lr]shift
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/fintype.v | 29 |
1 files changed, 26 insertions, 3 deletions
diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index 7e440ab..88d0f92 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -2108,6 +2108,23 @@ Proof. by move=> ? ? /(f_equal val) /= /val_inj. Qed. Lemma rshift_inj m n : injective (@rshift m n). Proof. by move=> ? ? /(f_equal val) /addnI /val_inj. Qed. +Lemma eq_lshift m n i j : (@lshift m n i == @lshift m n j) = (i == j). +Proof. by rewrite (inj_eq (@lshift_inj _ _)). Qed. + +Lemma eq_rshift m n i j : (@rshift m n i == @rshift m n j) = (i == j). +Proof. by rewrite (inj_eq (@rshift_inj _ _)). Qed. + +Lemma eq_lrshift m n i j : (@lshift m n i == @rshift m n j) = false. +Proof. +apply/eqP=> /(congr1 val)/= def_i; have := ltn_ord i. +by rewrite def_i -ltn_subRL subnn. +Qed. + +Lemma eq_rlshift m n i j : (@rshift m n i == @lshift m n j) = false. +Proof. by rewrite eq_sym eq_lrshift. Qed. + +Definition eq_shift := (eq_lshift, eq_rshift, eq_lrshift, eq_rlshift). + Lemma split_subproof m n (i : 'I_(m + n)) : i >= m -> i - m < n. Proof. by move/subSn <-; rewrite leq_subLR. Qed. @@ -2131,6 +2148,13 @@ set lt_i_m := i < m; rewrite /split. by case: _ _ _ _ {-}_ lt_i_m / ltnP; [left | right; rewrite subnKC]. Qed. +Variant split_ord_spec m n (i : 'I_(m + n)) : 'I_m + 'I_n -> bool -> Type := + | SplitOrdLo (j : 'I_m) of i = lshift _ j : split_ord_spec i (inl _ j) true + | SplitOrdHi (k : 'I_n) of i = rshift _ k : split_ord_spec i (inr _ k) false. + +Lemma split_ordP m n (i : 'I_(m + n)) : split_ord_spec i (split i) (i < m). +Proof. by case: splitP; [left|right]; apply: val_inj. Qed. + Definition unsplit {m n} (jk : 'I_m + 'I_n) := match jk with inl j => lshift n j | inr k => rshift m k end. @@ -2138,12 +2162,11 @@ Lemma ltn_unsplit m n (jk : 'I_m + 'I_n) : (unsplit jk < m) = jk. Proof. by case: jk => [j|k]; rewrite /= ?ltn_ord // ltnNge leq_addr. Qed. Lemma splitK {m n} : cancel (@split m n) unsplit. -Proof. by move=> i; apply: val_inj; case: splitP. Qed. +Proof. by move=> i; case: split_ordP. Qed. Lemma unsplitK {m n} : cancel (@unsplit m n) split. Proof. -move=> jk; have:= ltn_unsplit jk. -by do [case: splitP; case: jk => //= i j] => [|/addnI] => /ord_inj->. +by move=> [j|k]; case: split_ordP => ? /eqP; rewrite eq_shift// => /eqP->. Qed. Section OrdinalPos. |
