diff options
| author | Anton Trunov | 2018-11-26 14:48:50 +0100 |
|---|---|---|
| committer | Anton Trunov | 2018-12-11 12:13:06 +0100 |
| commit | 2e6e0001f8215e3c42f2557df42e0d6486035c07 (patch) | |
| tree | 10e3129f0584233d7fb825973794b517371c6024 /mathcomp/ssreflect | |
| parent | 316cca94aef28c2023cd823c588b140e13d0aded (diff) | |
Fix some new warnings emitted by Coq 8.10:
```
Warning: Adding and removing hints in the core database implicitly is
deprecated. Please specify a hint database.
[implicit-core-hint-db,deprecated]
```
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/bigop.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/div.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/fingraph.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/finset.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/fintype.v | 6 | ||||
| -rw-r--r-- | mathcomp/ssreflect/generic_quotient.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssreflect/prime.v | 10 | ||||
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 8 | ||||
| -rw-r--r-- | mathcomp/ssreflect/ssrnat.v | 8 |
10 files changed, 25 insertions, 25 deletions
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v index 2db8927..f108ff9 100644 --- a/mathcomp/ssreflect/bigop.v +++ b/mathcomp/ssreflect/bigop.v @@ -558,7 +558,7 @@ Qed. Lemma mem_index_enum T i : i \in index_enum T. Proof. by rewrite -[index_enum T]enumT mem_enum. Qed. -Hint Resolve mem_index_enum. +Hint Resolve mem_index_enum : core. Lemma filter_index_enum T P : filter P (index_enum T) = enum P. Proof. by []. Qed. diff --git a/mathcomp/ssreflect/div.v b/mathcomp/ssreflect/div.v index ed1eedf..80c9312 100644 --- a/mathcomp/ssreflect/div.v +++ b/mathcomp/ssreflect/div.v @@ -327,7 +327,7 @@ Proof. by case/dvdnP=> n' ->; rewrite /dvdn mulnA modnMl. Qed. Lemma dvdn_mulr d m n : d %| m -> d %| m * n. Proof. by move=> d_m; rewrite mulnC dvdn_mull. Qed. -Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr. +Hint Resolve dvdn0 dvd1n dvdnn dvdn_mull dvdn_mulr : core. Lemma dvdn_mul d1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2. Proof. @@ -462,7 +462,7 @@ case: m => //= m; elim: n => //= n IHn; rewrite ltnS leq_eqVlt. by case/predU1P=> [-> | /IHn]; [apply: dvdn_mulr | apply: dvdn_mull]. Qed. -Hint Resolve dvdn_add dvdn_sub dvdn_exp. +Hint Resolve dvdn_add dvdn_sub dvdn_exp : core. Lemma eqn_mod_dvd d m n : n <= m -> (m == n %[mod d]) = (d %| m - n). Proof. diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 6ed4b97..dc3daf0 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -196,7 +196,7 @@ Notation eqxx := eq_refl. Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x). Proof. exact/eqP/eqP. Qed. -Hint Resolve eq_refl eq_sym. +Hint Resolve eq_refl eq_sym : core. Section Contrapositives. diff --git a/mathcomp/ssreflect/fingraph.v b/mathcomp/ssreflect/fingraph.v index c534b7b..5358dc7 100644 --- a/mathcomp/ssreflect/fingraph.v +++ b/mathcomp/ssreflect/fingraph.v @@ -216,7 +216,7 @@ Definition closure_mem m_a : pred T := End Connect. -Hint Resolve connect0. +Hint Resolve connect0 : core. Notation n_comp e a := (n_comp_mem e (mem a)). Notation closed e a := (closed_mem e (mem a)). diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v index 4ad02c6..9ca96c8 100644 --- a/mathcomp/ssreflect/finset.v +++ b/mathcomp/ssreflect/finset.v @@ -244,7 +244,7 @@ End BasicSetTheory. Definition inE := (in_set, inE). Arguments set0 {T}. -Hint Resolve in_setT. +Hint Resolve in_setT : core. Notation "[ 'set' : T ]" := (setTfor (Phant T)) (at level 0, format "[ 'set' : T ]") : set_scope. @@ -348,7 +348,7 @@ Proof. by apply/subsetP=> x; rewrite inE. Qed. Lemma subsetT_hint mA : subset mA (mem [set: T]). Proof. by rewrite unlock; apply/pred0P=> x; rewrite !inE. Qed. -Hint Resolve subsetT_hint. +Hint Resolve subsetT_hint : core. Lemma subTset A : (setT \subset A) = (A == setT). Proof. by rewrite eqEsubset subsetT. Qed. @@ -975,7 +975,7 @@ Arguments subUsetP {T A B C}. Arguments subsetDP {T A B C}. Arguments subsetD1P {T A B x}. Prenex Implicits set1. -Hint Resolve subsetT_hint. +Hint Resolve subsetT_hint : core. Section setOpsAlgebra. diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index 8be2eb0..441fc12 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -626,7 +626,7 @@ Lemma subxx_hint (mA : mem_pred T) : subset mA mA. Proof. by case: mA => A; have:= introT (subsetP A A); rewrite !unlock => ->. Qed. -Hint Resolve subxx_hint. +Hint Resolve subxx_hint : core. (* The parametrization by predType makes it easier to apply subxx. *) Lemma subxx (pT : predType T) (pA : pT) : pA \subset pA. @@ -818,7 +818,7 @@ Proof. by rewrite !disjoint_has has_cat negb_or. Qed. End OpsTheory. -Hint Resolve subxx_hint. +Hint Resolve subxx_hint : core. Arguments pred0P {T P}. Arguments pred0Pn {T P}. @@ -1585,7 +1585,7 @@ End OrdinalSub. Notation "''I_' n" := (ordinal n) (at level 8, n at level 2, format "''I_' n"). -Hint Resolve ltn_ord. +Hint Resolve ltn_ord : core. Section OrdinalEnum. diff --git a/mathcomp/ssreflect/generic_quotient.v b/mathcomp/ssreflect/generic_quotient.v index f30c3a1..b7a8444 100644 --- a/mathcomp/ssreflect/generic_quotient.v +++ b/mathcomp/ssreflect/generic_quotient.v @@ -491,7 +491,7 @@ Proof. by apply: right_trans; [apply: equiv_sym|apply: equiv_trans]. Qed. End EquivRel. -Hint Resolve equiv_refl. +Hint Resolve equiv_refl : core. Notation EquivRel r er es et := (@EquivRelPack _ r (EquivClass er es et)). Notation "[ 'equiv_rel' 'of' e ]" := (@equiv_pack _ _ e _ id) diff --git a/mathcomp/ssreflect/prime.v b/mathcomp/ssreflect/prime.v index 02064c3..2a07d17 100644 --- a/mathcomp/ssreflect/prime.v +++ b/mathcomp/ssreflect/prime.v @@ -358,7 +358,7 @@ Proof. by case/primeP. Qed. Lemma prime_gt0 p : prime p -> 0 < p. Proof. by move/prime_gt1; apply: ltnW. Qed. -Hint Resolve prime_gt1 prime_gt0. +Hint Resolve prime_gt1 prime_gt0 : core. Lemma prod_prime_decomp n : n > 0 -> n = \prod_(f <- prime_decomp n) f.1 ^ f.2. @@ -494,7 +494,7 @@ Proof. by case: n => [|[|n]] //; rewrite prime_gt0 ?pdiv_prime. Qed. Lemma max_pdiv_gt0 n : 0 < max_pdiv n. Proof. by case: n => [|[|n]] //; rewrite prime_gt0 ?max_pdiv_prime. Qed. -Hint Resolve pdiv_gt0 max_pdiv_gt0. +Hint Resolve pdiv_gt0 max_pdiv_gt0 : core. Lemma pdiv_min_dvd m d : 1 < d -> d %| m -> pdiv m <= d. Proof. @@ -636,7 +636,7 @@ Proof. by rewrite lognE dvdn1 /= andbC; case: eqP => // ->. Qed. Lemma pfactor_gt0 p n : 0 < p ^ logn p n. Proof. by rewrite expn_gt0 lognE; case: (posnP p) => // ->. Qed. -Hint Resolve pfactor_gt0. +Hint Resolve pfactor_gt0 : core. Lemma pfactor_dvdn p n m : prime p -> m > 0 -> (p ^ n %| m) = (n <= logn p m). Proof. @@ -858,7 +858,7 @@ Qed. Lemma part_gt0 pi n : 0 < n`_pi. Proof. exact: prodn_gt0. Qed. -Hint Resolve part_gt0. +Hint Resolve part_gt0 : core. Lemma sub_in_partn pi1 pi2 n : {in \pi(n), {subset pi1 <= pi2}} -> n`_pi1 %| n`_pi2. @@ -1219,7 +1219,7 @@ Lemma odd_2'nat n : odd n = 2^'.-nat n. Proof. by case: n => // n; rewrite p'natE // dvdn2 negbK. Qed. End PnatTheory. -Hint Resolve part_gt0. +Hint Resolve part_gt0 : core. (************************************) (* Properties of the divisors list. *) diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index ba1f969..2c9fd64 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -1422,7 +1422,7 @@ Qed. Lemma perm_eq_refl s : perm_eq s s. Proof. exact/perm_eqP. Qed. -Hint Resolve perm_eq_refl. +Hint Resolve perm_eq_refl : core. Lemma perm_eq_sym : symmetric perm_eq. Proof. by move=> s1 s2; apply/perm_eqP/perm_eqP=> ? ?. Qed. @@ -1601,7 +1601,7 @@ Arguments perm_eqP {T s1 s2}. Arguments perm_eqlP {T s1 s2}. Arguments perm_eqrP {T s1 s2}. Prenex Implicits perm_eq. -Hint Resolve perm_eq_refl. +Hint Resolve perm_eq_refl : core. Section RotrLemmas. @@ -1827,7 +1827,7 @@ Qed. Lemma subseq_refl s : subseq s s. Proof. by elim: s => //= x s IHs; rewrite eqxx. Qed. -Hint Resolve subseq_refl. +Hint Resolve subseq_refl : core. Lemma cat_subseq s1 s2 s3 s4 : subseq s1 s3 -> subseq s2 s4 -> subseq (s1 ++ s2) (s3 ++ s4). @@ -1876,7 +1876,7 @@ End Subseq. Prenex Implicits subseq. Arguments subseqP {T s1 s2}. -Hint Resolve subseq_refl. +Hint Resolve subseq_refl : core. Section Rem. diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index b8388f0..581a7ee 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -316,11 +316,11 @@ Lemma leq0n n : 0 <= n. Proof. by []. Qed. Lemma ltn0Sn n : 0 < n.+1. Proof. by []. Qed. Lemma ltn0 n : n < 0 = false. Proof. by []. Qed. Lemma leqnn n : n <= n. Proof. by elim: n. Qed. -Hint Resolve leqnn. +Hint Resolve leqnn : core. Lemma ltnSn n : n < n.+1. Proof. by []. Qed. Lemma eq_leq m n : m = n -> m <= n. Proof. by move->. Qed. Lemma leqnSn n : n <= n.+1. Proof. by elim: n. Qed. -Hint Resolve leqnSn. +Hint Resolve leqnSn : core. Lemma leq_pred n : n.-1 <= n. Proof. by case: n => /=. Qed. Lemma leqSpred n : n <= n.-1.+1. Proof. by case: n => /=. Qed. @@ -344,7 +344,7 @@ Lemma lt0n n : (0 < n) = (n != 0). Proof. by case: n. Qed. Lemma lt0n_neq0 n : 0 < n -> n != 0. Proof. by case: n. Qed. Lemma eqn0Ngt n : (n == 0) = ~~ (n > 0). Proof. by case: n. Qed. Lemma neq0_lt0n n : (n == 0) = false -> 0 < n. Proof. by case: n. Qed. -Hint Resolve lt0n_neq0 neq0_lt0n. +Hint Resolve lt0n_neq0 neq0_lt0n : core. Lemma eqn_leq m n : (m == n) = (m <= n <= m). Proof. by elim: m n => [|m IHm] []. Qed. @@ -375,7 +375,7 @@ Proof. by move=> Hmn; apply: leq_trans. Qed. Lemma ltnW m n : m < n -> m <= n. Proof. exact: leq_trans. Qed. -Hint Resolve ltnW. +Hint Resolve ltnW : core. Lemma leqW m n : m <= n -> m <= n.+1. Proof. by move=> le_mn; apply: ltnW. Qed. |
