aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect
diff options
context:
space:
mode:
authoraffeldt-aist2020-06-06 10:09:23 +0200
committerGitHub2020-06-06 10:09:23 +0200
commit258f7f981174f0681bd089476706675fbd331a88 (patch)
tree7e376f55fccf99a5a45b67ce346c9351c92ae3f0 /mathcomp/ssreflect
parent43459547cbcd9d7987a083829171a589ba98bf81 (diff)
parentccea59192ab383a9a0009d5ac5873e53f115c867 (diff)
Merge pull request #516 from CohenCyril/maxr
Generalizing max and min to porderType
Diffstat (limited to 'mathcomp/ssreflect')
-rw-r--r--mathcomp/ssreflect/bigop.v4
-rw-r--r--mathcomp/ssreflect/fintype.v254
-rw-r--r--mathcomp/ssreflect/order.v1007
3 files changed, 815 insertions, 450 deletions
diff --git a/mathcomp/ssreflect/bigop.v b/mathcomp/ssreflect/bigop.v
index e35d2c8..de03369 100644
--- a/mathcomp/ssreflect/bigop.v
+++ b/mathcomp/ssreflect/bigop.v
@@ -1888,7 +1888,7 @@ Arguments bigmax_sup [I] i0 [P m F].
Lemma bigmax_eq_arg (I : finType) i0 (P : pred I) F :
P i0 -> \max_(i | P i) F i = F [arg max_(i > i0 | P i) F i].
Proof.
-move=> Pi0; case: arg_maxP => //= i Pi maxFi.
+move=> Pi0; case: arg_maxnP => //= i Pi maxFi.
by apply/eqP; rewrite eqn_leq leq_bigmax_cond // andbT; apply/bigmax_leqP.
Qed.
Arguments bigmax_eq_arg [I] i0 [P F].
@@ -1897,7 +1897,7 @@ Lemma eq_bigmax_cond (I : finType) (A : pred I) F :
#|A| > 0 -> {i0 | i0 \in A & \max_(i in A) F i = F i0}.
Proof.
case: (pickP A) => [i0 Ai0 _ | ]; last by move/eq_card0->.
-by exists [arg max_(i > i0 in A) F i]; [case: arg_maxP | apply: bigmax_eq_arg].
+by exists [arg max_(i > i0 in A) F i]; [case: arg_maxnP | apply: bigmax_eq_arg].
Qed.
Lemma eq_bigmax (I : finType) F : #|I| > 0 -> {i0 : I | \max_i F i = F i0}.
diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v
index 67f88a6..abed211 100644
--- a/mathcomp/ssreflect/fintype.v
+++ b/mathcomp/ssreflect/fintype.v
@@ -1007,108 +1007,6 @@ Notation "'exists_in_ view" := (exists_inPP _ (fun _ => view))
Notation "'forall_in_ view" := (forall_inPP _ (fun _ => view))
(at level 4, right associativity, format "''forall_in_' view").
-Section Extrema.
-
-Variant extremum_spec {T : eqType} (ord : rel T) {I : finType}
- (P : pred I) (F : I -> T) : I -> Type :=
- ExtremumSpec (i : I) of P i & (forall j : I, P j -> ord (F i) (F j)) :
- extremum_spec ord P F i.
-
-Let arg_pred {T : eqType} ord {I : finType} (P : pred I) (F : I -> T) :=
- [pred i | P i & [forall (j | P j), ord (F i) (F j)]].
-
-Section Extremum.
-
-Context {T : eqType} {I : finType} (ord : rel T).
-Context (i0 : I) (P : pred I) (F : I -> T).
-
-Hypothesis ord_refl : reflexive ord.
-Hypothesis ord_trans : transitive ord.
-Hypothesis ord_total : total ord.
-
-Definition extremum := odflt i0 (pick (arg_pred ord P F)).
-
-Hypothesis Pi0 : P i0.
-
-Lemma extremumP : extremum_spec ord P F extremum.
-Proof.
-rewrite /extremum; case: pickP => [i /andP[Pi /'forall_implyP/= min_i] | no_i].
- by split=> // j; apply/implyP.
-have := sort_sorted ord_total [seq F i | i <- enum P].
-set s := sort _ _ => ss; have s_gt0 : size s > 0
- by rewrite size_sort size_map -cardE; apply/card_gt0P; exists i0.
-pose t0 := nth (F i0) s 0; have: t0 \in s by rewrite mem_nth.
-rewrite mem_sort => /mapP/sig2_eqW[it0]; rewrite mem_enum => it0P def_t0.
-have /negP[/=] := no_i it0; rewrite [P _]it0P/=; apply/'forall_implyP=> j Pj.
-have /(nthP (F i0))[k g_lt <-] : F j \in s by rewrite mem_sort map_f ?mem_enum.
-by rewrite -def_t0 sorted_le_nth.
-Qed.
-
-End Extremum.
-
-Notation "[ 'arg[' ord ]_( i < i0 | P ) F ]" :=
- (extremum ord i0 (fun i => P%B) (fun i => F))
- (at level 0, ord, i, i0 at level 10,
- format "[ 'arg[' ord ]_( i < i0 | P ) F ]") : nat_scope.
-
-Notation "[ 'arg[' ord ]_( i < i0 'in' A ) F ]" :=
- [arg[ord]_(i < i0 | i \in A) F]
- (at level 0, ord, i, i0 at level 10,
- format "[ 'arg[' ord ]_( i < i0 'in' A ) F ]") : nat_scope.
-
-Notation "[ 'arg[' ord ]_( i < i0 ) F ]" := [arg[ord]_(i < i0 | true) F]
- (at level 0, ord, i, i0 at level 10,
- format "[ 'arg[' ord ]_( i < i0 ) F ]") : nat_scope.
-
-Section ArgMinMax.
-
-Variables (I : finType) (i0 : I) (P : pred I) (F : I -> nat) (Pi0 : P i0).
-
-Definition arg_min := extremum leq i0 P F.
-Definition arg_max := extremum geq i0 P F.
-
-Lemma arg_minP : extremum_spec leq P F arg_min.
-Proof. by apply: extremumP => //; [apply: leq_trans|apply: leq_total]. Qed.
-
-Lemma arg_maxP : extremum_spec geq P F arg_max.
-Proof.
-apply: extremumP => //; first exact: leqnn.
- by move=> n m p mn np; apply: leq_trans mn.
-by move=> ??; apply: leq_total.
-Qed.
-
-End ArgMinMax.
-
-End Extrema.
-
-Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
- (arg_min i0 (fun i => P%B) (fun i => F))
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : nat_scope.
-
-Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
- [arg min_(i < i0 | i \in A) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : nat_scope.
-
-Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 ) F ]") : nat_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
- (arg_max i0 (fun i => P%B) (fun i => F))
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : nat_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
- [arg max_(i > i0 | i \in A) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : nat_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 ) F ]") : nat_scope.
-
(**********************************************************************)
(* *)
(* Boolean injectivity test for functions with a finType domain *)
@@ -1614,6 +1512,20 @@ Definition adhoc_seq_sub_finType :=
End SeqSubType.
+Section SeqReplace.
+Variables (T : eqType).
+Implicit Types (s : seq T).
+
+Lemma seq_sub_default s : size s > 0 -> seq_sub s.
+Proof. by case: s => // x s _; exists x; rewrite mem_head. Qed.
+
+Lemma seq_subE s (s_gt0 : size s > 0) :
+ s = map val (map (insubd (seq_sub_default s_gt0)) s : seq (seq_sub s)).
+Proof. by rewrite -map_comp map_id_in// => x x_in_s /=; rewrite insubdK. Qed.
+
+End SeqReplace.
+Notation in_sub_seq s_gt0 := (insubd (seq_sub_default s_gt0)).
+
Section SeqFinType.
Variables (T : choiceType) (s : seq T).
@@ -1634,6 +1546,144 @@ Qed.
End SeqFinType.
+Section Extrema.
+
+Variant extremum_spec {T : eqType} (ord : rel T) {I : finType}
+ (P : pred I) (F : I -> T) : I -> Type :=
+ ExtremumSpec (i : I) of P i & (forall j : I, P j -> ord (F i) (F j)) :
+ extremum_spec ord P F i.
+
+Let arg_pred {T : eqType} ord {I : finType} (P : pred I) (F : I -> T) :=
+ [pred i | P i & [forall (j | P j), ord (F i) (F j)]].
+
+Section Extremum.
+
+Context {T : eqType} {I : finType} (ord : rel T).
+Context (i0 : I) (P : pred I) (F : I -> T).
+
+Definition extremum := odflt i0 (pick (arg_pred ord P F)).
+
+Hypothesis ord_refl : reflexive ord.
+Hypothesis ord_trans : transitive ord.
+Hypothesis ord_total : total ord.
+Hypothesis Pi0 : P i0.
+
+Lemma extremumP : extremum_spec ord P F extremum.
+Proof.
+rewrite /extremum; case: pickP => [i /andP[Pi /'forall_implyP/= min_i] | no_i].
+ by split=> // j; apply/implyP.
+have := sort_sorted ord_total [seq F i | i <- enum P].
+set s := sort _ _ => ss; have s_gt0 : size s > 0
+ by rewrite size_sort size_map -cardE; apply/card_gt0P; exists i0.
+pose t0 := nth (F i0) s 0; have: t0 \in s by rewrite mem_nth.
+rewrite mem_sort => /mapP/sig2_eqW[it0]; rewrite mem_enum => it0P def_t0.
+have /negP[/=] := no_i it0; rewrite [P _]it0P/=; apply/'forall_implyP=> j Pj.
+have /(nthP (F i0))[k g_lt <-] : F j \in s by rewrite mem_sort map_f ?mem_enum.
+by rewrite -def_t0 sorted_le_nth.
+Qed.
+
+End Extremum.
+
+Section ExtremumIn.
+
+Context {T : eqType} {I : finType} (ord : rel T).
+Context (i0 : I) (P : pred I) (F : I -> T).
+
+Hypothesis ord_refl : {in P, reflexive (relpre F ord)}.
+Hypothesis ord_trans : {in P & P & P, transitive (relpre F ord)}.
+Hypothesis ord_total : {in P &, total (relpre F ord)}.
+Hypothesis Pi0 : P i0.
+
+Lemma extremum_inP : extremum_spec ord P F (extremum ord i0 P F).
+Proof.
+rewrite /extremum; case: pickP => [i /andP[Pi /'forall_implyP/= min_i] | no_i].
+ by split=> // j; apply/implyP.
+pose TP := seq_sub [seq F i | i <- enum P].
+have FPP (iP : {i | P i}) : F (proj1_sig iP) \in [seq F i | i <- enum P].
+ by rewrite map_f// mem_enum; apply: valP.
+pose FP := SeqSub (FPP _).
+have []//= := @extremumP _ _ (relpre val ord) (exist P i0 Pi0) xpredT FP.
+- by move=> [/= _/mapP[i iP ->]]; apply: ord_refl; rewrite mem_enum in iP.
+- move=> [/= _/mapP[j jP ->]] [/= _/mapP[i iP ->]] [/= _/mapP[k kP ->]].
+ by apply: ord_trans; rewrite !mem_enum in iP jP kP.
+- move=> [/= _/mapP[i iP ->]] [/= _/mapP[j jP ->]].
+ by apply: ord_total; rewrite !mem_enum in iP jP.
+- rewrite /FP => -[/= i Pi] _ /(_ (exist _ _ _))/= ordF.
+ have /negP/negP/= := no_i i; rewrite Pi/= negb_forall => /existsP/sigW[j].
+ by rewrite negb_imply => /andP[Pj]; rewrite ordF.
+Qed.
+
+End ExtremumIn.
+
+Notation "[ 'arg[' ord ]_( i < i0 | P ) F ]" :=
+ (extremum ord i0 (fun i => P%B) (fun i => F))
+ (at level 0, ord, i, i0 at level 10,
+ format "[ 'arg[' ord ]_( i < i0 | P ) F ]") : nat_scope.
+
+Notation "[ 'arg[' ord ]_( i < i0 'in' A ) F ]" :=
+ [arg[ord]_(i < i0 | i \in A) F]
+ (at level 0, ord, i, i0 at level 10,
+ format "[ 'arg[' ord ]_( i < i0 'in' A ) F ]") : nat_scope.
+
+Notation "[ 'arg[' ord ]_( i < i0 ) F ]" := [arg[ord]_(i < i0 | true) F]
+ (at level 0, ord, i, i0 at level 10,
+ format "[ 'arg[' ord ]_( i < i0 ) F ]") : nat_scope.
+
+Section ArgMinMax.
+
+Variables (I : finType) (i0 : I) (P : pred I) (F : I -> nat) (Pi0 : P i0).
+
+Definition arg_min := extremum leq i0 P F.
+Definition arg_max := extremum geq i0 P F.
+
+Lemma arg_minnP : extremum_spec leq P F arg_min.
+Proof. by apply: extremumP => //; [apply: leq_trans|apply: leq_total]. Qed.
+
+Lemma arg_maxnP : extremum_spec geq P F arg_max.
+Proof.
+apply: extremumP => //; first exact: leqnn.
+ by move=> n m p mn np; apply: leq_trans mn.
+by move=> ??; apply: leq_total.
+Qed.
+
+End ArgMinMax.
+
+End Extrema.
+
+Notation "@ 'arg_minP'" :=
+ (deprecate arg_minP arg_minnP) (at level 10, only parsing) : fun_scope.
+Notation arg_minP := (@arg_minP _ _ _) (only parsing).
+Notation "@ 'arg_maxP'" :=
+ (deprecate arg_maxP arg_maxnP) (at level 10, only parsing) : fun_scope.
+Notation arg_maxP := (@arg_maxP _ _ _) (only parsing).
+
+Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
+ (arg_min i0 (fun i => P%B) (fun i => F))
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : nat_scope.
+
+Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
+ [arg min_(i < i0 | i \in A) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : nat_scope.
+
+Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 ) F ]") : nat_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
+ (arg_max i0 (fun i => P%B) (fun i => F))
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : nat_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
+ [arg max_(i > i0 | i \in A) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : nat_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 ) F ]") : nat_scope.
(**********************************************************************)
(* *)
diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v
index b907527..10a26f1 100644
--- a/mathcomp/ssreflect/order.v
+++ b/mathcomp/ssreflect/order.v
@@ -74,6 +74,8 @@ From mathcomp Require Import path fintype tuple bigop finset div prime.
(* For x, y of type T, where T is canonically a porderType d: *)
(* x <= y <-> x is less than or equal to y. *)
(* x < y <-> x is less than y (:= (y != x) && (x <= y)). *)
+(* min x y <-> if x < y then x else y *)
+(* max x y <-> if x < y then y else x *)
(* x >= y <-> x is greater than or equal to y (:= y <= x). *)
(* x > y <-> x is greater than y (:= y < x). *)
(* x <= y ?= iff C <-> x is less than y, or equal iff C is true. *)
@@ -186,24 +188,25 @@ From mathcomp Require Import path fintype tuple bigop finset div prime.
(* input for the inference. *)
(* *)
(* Existing displays are either dual_display d (where d is a display), *)
-(* dvd_display (both explained above), total_display (to overload meet and *)
-(* join using min and max) ring_display (from algebra/ssrnum to change the *)
-(* scope of the usual notations to ring_scope). We also provide lexi_display *)
-(* and prod_display for lexicographic and product order respectively. *)
+(* dvd_display (both explained above), ring_display (from algebra/ssrnum *)
+(* to change the scope of the usual notations to ring_scope). We also provide *)
+(* lexi_display and prod_display for lexicographic and product order *)
+(* respectively. *)
(* The default display is tt and users can define their own as explained *)
(* above. *)
(* *)
-(* For orderType we provide the following operations (in total_display) *)
-(* [arg minr_(i < i0 | P) M] == a value i : T minimizing M : R, subject to *)
+(* For porderType we provide the following operations *)
+(* [arg min_(i < i0 | P) M] == a value i : T minimizing M : R, subject to *)
(* the condition P (i may appear in P and M), and *)
(* provided P holds for i0. *)
-(* [arg maxr_(i > i0 | P) M] == a value i maximizing M subject to P and *)
+(* [arg max_(i > i0 | P) M] == a value i maximizing M subject to P and *)
(* provided P holds for i0. *)
(* [arg min_(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. *)
(* [arg max_(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. *)
(* [arg min_(i < i0) M] == an i : T minimizing M, given i0 : T. *)
(* [arg max_(i > i0) M] == an i : T maximizing M, given i0 : T. *)
(* with head symbols Order.arg_min and Order.arg_max *)
+(* The user may use extremumP or extremum_inP to eliminate them. *)
(* *)
(* In order to build the above structures, one must provide the appropriate *)
(* mixin to the following structure constructors. The list of possible mixins *)
@@ -715,6 +718,43 @@ Reserved Notation "\min_ ( i 'in' A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \min_ ( i 'in' A ) '/ ' F ']'").
+Reserved Notation "\max_ i F"
+ (at level 41, F at level 41, i at level 0,
+ format "'[' \max_ i '/ ' F ']'").
+Reserved Notation "\max_ ( i <- r | P ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \max_ ( i <- r | P ) '/ ' F ']'").
+Reserved Notation "\max_ ( i <- r ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \max_ ( i <- r ) '/ ' F ']'").
+Reserved Notation "\max_ ( m <= i < n | P ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \max_ ( m <= i < n | P ) '/ ' F ']'").
+Reserved Notation "\max_ ( m <= i < n ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \max_ ( m <= i < n ) '/ ' F ']'").
+Reserved Notation "\max_ ( i | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ format "'[' \max_ ( i | P ) '/ ' F ']'").
+Reserved Notation "\max_ ( i : t | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\max_ ( i : t ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\max_ ( i < n | P ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \max_ ( i < n | P ) '/ ' F ']'").
+Reserved Notation "\max_ ( i < n ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \max_ ( i < n ) F ']'").
+Reserved Notation "\max_ ( i 'in' A | P ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \max_ ( i 'in' A | P ) '/ ' F ']'").
+Reserved Notation "\max_ ( i 'in' A ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \max_ ( i 'in' A ) '/ ' F ']'").
+
Reserved Notation "\meet^d_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \meet^d_ i '/ ' F ']'").
@@ -789,6 +829,80 @@ Reserved Notation "\join^d_ ( i 'in' A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \join^d_ ( i 'in' A ) '/ ' F ']'").
+Reserved Notation "\min^d_ i F"
+ (at level 41, F at level 41, i at level 0,
+ format "'[' \min^d_ i '/ ' F ']'").
+Reserved Notation "\min^d_ ( i <- r | P ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \min^d_ ( i <- r | P ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( i <- r ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \min^d_ ( i <- r ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( m <= i < n | P ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \min^d_ ( m <= i < n | P ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( m <= i < n ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \min^d_ ( m <= i < n ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( i | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ format "'[' \min^d_ ( i | P ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( i : t | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\min^d_ ( i : t ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\min^d_ ( i < n | P ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \min^d_ ( i < n | P ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( i < n ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \min^d_ ( i < n ) F ']'").
+Reserved Notation "\min^d_ ( i 'in' A | P ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \min^d_ ( i 'in' A | P ) '/ ' F ']'").
+Reserved Notation "\min^d_ ( i 'in' A ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \min^d_ ( i 'in' A ) '/ ' F ']'").
+
+Reserved Notation "\max^d_ i F"
+ (at level 41, F at level 41, i at level 0,
+ format "'[' \max^d_ i '/ ' F ']'").
+Reserved Notation "\max^d_ ( i <- r | P ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \max^d_ ( i <- r | P ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( i <- r ) F"
+ (at level 41, F at level 41, i, r at level 50,
+ format "'[' \max^d_ ( i <- r ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( m <= i < n | P ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \max^d_ ( m <= i < n | P ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( m <= i < n ) F"
+ (at level 41, F at level 41, i, m, n at level 50,
+ format "'[' \max^d_ ( m <= i < n ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( i | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ format "'[' \max^d_ ( i | P ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( i : t | P ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\max^d_ ( i : t ) F"
+ (at level 41, F at level 41, i at level 50,
+ only parsing).
+Reserved Notation "\max^d_ ( i < n | P ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \max^d_ ( i < n | P ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( i < n ) F"
+ (at level 41, F at level 41, i, n at level 50,
+ format "'[' \max^d_ ( i < n ) F ']'").
+Reserved Notation "\max^d_ ( i 'in' A | P ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \max^d_ ( i 'in' A | P ) '/ ' F ']'").
+Reserved Notation "\max^d_ ( i 'in' A ) F"
+ (at level 41, F at level 41, i, A at level 50,
+ format "'[' \max^d_ ( i 'in' A ) '/ ' F ']'").
+
Reserved Notation "\meet^p_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \meet^p_ i '/ ' F ']'").
@@ -863,80 +977,6 @@ Reserved Notation "\join^p_ ( i 'in' A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \join^p_ ( i 'in' A ) '/ ' F ']'").
-Reserved Notation "\min^l_ i F"
- (at level 41, F at level 41, i at level 0,
- format "'[' \min^l_ i '/ ' F ']'").
-Reserved Notation "\min^l_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \min^l_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \min^l_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \min^l_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \min^l_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \min^l_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\min^l_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\min^l_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \min^l_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \min^l_ ( i < n ) F ']'").
-Reserved Notation "\min^l_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \min^l_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\min^l_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \min^l_ ( i 'in' A ) '/ ' F ']'").
-
-Reserved Notation "\max^l_ i F"
- (at level 41, F at level 41, i at level 0,
- format "'[' \max^l_ i '/ ' F ']'").
-Reserved Notation "\max^l_ ( i <- r | P ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \max^l_ ( i <- r | P ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( i <- r ) F"
- (at level 41, F at level 41, i, r at level 50,
- format "'[' \max^l_ ( i <- r ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( m <= i < n | P ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \max^l_ ( m <= i < n | P ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( m <= i < n ) F"
- (at level 41, F at level 41, i, m, n at level 50,
- format "'[' \max^l_ ( m <= i < n ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( i | P ) F"
- (at level 41, F at level 41, i at level 50,
- format "'[' \max^l_ ( i | P ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( i : t | P ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\max^l_ ( i : t ) F"
- (at level 41, F at level 41, i at level 50,
- only parsing).
-Reserved Notation "\max^l_ ( i < n | P ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \max^l_ ( i < n | P ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( i < n ) F"
- (at level 41, F at level 41, i, n at level 50,
- format "'[' \max^l_ ( i < n ) F ']'").
-Reserved Notation "\max^l_ ( i 'in' A | P ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \max^l_ ( i 'in' A | P ) '/ ' F ']'").
-Reserved Notation "\max^l_ ( i 'in' A ) F"
- (at level 41, F at level 41, i, A at level 50,
- format "'[' \max^l_ ( i 'in' A ) '/ ' F ']'").
-
Module Order.
(**************)
@@ -1032,39 +1072,52 @@ Definition leif (x y : T) C : Prop := ((x <= y) * ((x == y) = C))%type.
Definition le_of_leif x y C (le_xy : @leif x y C) := le_xy.1 : le x y.
-Variant le_xor_gt (x y : T) : bool -> bool -> Set :=
- | LeNotGt of x <= y : le_xor_gt x y true false
- | GtNotLe of y < x : le_xor_gt x y false true.
+Variant le_xor_gt (x y : T) :
+ T -> T -> T -> T -> bool -> bool -> Set :=
+ | LeNotGt of x <= y : le_xor_gt x y x x y y true false
+ | GtNotLe of y < x : le_xor_gt x y y y x x false true.
-Variant lt_xor_ge (x y : T) : bool -> bool -> Set :=
- | LtNotGe of x < y : lt_xor_ge x y false true
- | GeNotLt of y <= x : lt_xor_ge x y true false.
+Variant lt_xor_ge (x y : T) :
+ T -> T -> T -> T -> bool -> bool -> Set :=
+ | LtNotGe of x < y : lt_xor_ge x y x x y y false true
+ | GeNotLt of y <= x : lt_xor_ge x y y y x x true false.
+
+Definition min x y := if x < y then x else y.
+Definition max x y := if x < y then y else x.
Variant compare (x y : T) :
- bool -> bool -> bool -> bool -> bool -> bool -> Set :=
+ T -> T -> T -> T ->
+ bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| CompareLt of x < y : compare x y
- false false false true false true
+ x x y y false false false true false true
| CompareGt of y < x : compare x y
- false false true false true false
+ y y x x false false true false true false
| CompareEq of x = y : compare x y
- true true true true false false.
+ x x x x true true true true false false.
Variant incompare (x y : T) :
+ T -> T -> T -> T ->
bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| InCompareLt of x < y : incompare x y
- false false false true false true true true
+ x x y y false false false true false true true true
| InCompareGt of y < x : incompare x y
- false false true false true false true true
- | InCompare of x >< y : incompare x y
- false false false false false false false false
+ y y x x false false true false true false true true
+ | InCompare of x >< y : incompare x y
+ x y y x false false false false false false false false
| InCompareEq of x = y : incompare x y
- true true true true false false true true.
+ x x x x true true true true false false true true.
+
+Definition arg_min {I : finType} := @extremum T I le.
+Definition arg_max {I : finType} := @extremum T I ge.
End POrderDef.
Prenex Implicits lt le leif.
Arguments ge {_ _}.
Arguments gt {_ _}.
+Arguments min {_ _}.
+Arguments max {_ _}.
+Arguments comparable {_ _}.
Module Import POSyntax.
@@ -1116,6 +1169,34 @@ Notation ">< x" := (fun y => ~~ (comparable x y)) : order_scope.
Notation ">< x :> T" := (>< (x : T)) (only parsing) : order_scope.
Notation "x >< y" := (~~ (comparable x y)) : order_scope.
+Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
+ (arg_min i0 (fun i => P%B) (fun i => F))
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : order_scope.
+
+Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
+ [arg min_(i < i0 | i \in A) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : order_scope.
+
+Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'min_' ( i < i0 ) F ]") : order_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
+ (arg_max i0 (fun i => P%B) (fun i => F))
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : order_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
+ [arg max_(i > i0 | i \in A) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : order_scope.
+
+Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
+ (at level 0, i, i0 at level 10,
+ format "[ 'arg' 'max_' ( i > i0 ) F ]") : order_scope.
+
End POSyntax.
Module POCoercions.
@@ -1202,35 +1283,38 @@ Context {T : latticeType}.
Definition meet : T -> T -> T := Lattice.meet (Lattice.class T).
Definition join : T -> T -> T := Lattice.join (Lattice.class T).
-Variant lel_xor_gt (x y : T) : T -> T -> T -> T -> bool -> bool -> Set :=
- | LelNotGt of x <= y : lel_xor_gt x y x x y y true false
- | GtlNotLe of y < x : lel_xor_gt x y y y x x false true.
+Variant lel_xor_gt (x y : T) :
+ T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set :=
+ | LelNotGt of x <= y : lel_xor_gt x y x x y y x x y y true false
+ | GtlNotLe of y < x : lel_xor_gt x y y y x x y y x x false true.
-Variant ltl_xor_ge (x y : T) : T -> T -> T -> T -> bool -> bool -> Set :=
- | LtlNotGe of x < y : ltl_xor_ge x y x x y y false true
- | GelNotLt of y <= x : ltl_xor_ge x y y y x x true false.
+Variant ltl_xor_ge (x y : T) :
+ T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set :=
+ | LtlNotGe of x < y : ltl_xor_ge x y x x y y x x y y false true
+ | GelNotLt of y <= x : ltl_xor_ge x y y y x x y y x x true false.
Variant comparel (x y : T) :
- T -> T -> T -> T -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
+ T -> T -> T -> T -> T -> T -> T -> T ->
+ bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| ComparelLt of x < y : comparel x y
- x x y y false false false true false true
+ x x y y x x y y false false false true false true
| ComparelGt of y < x : comparel x y
- y y x x false false true false true false
+ y y x x y y x x false false true false true false
| ComparelEq of x = y : comparel x y
- x x x x true true true true false false.
+ x x x x x x x x true true true true false false.
Variant incomparel (x y : T) :
- T -> T -> T -> T ->
+ T -> T -> T -> T -> T -> T -> T -> T ->
bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| InComparelLt of x < y : incomparel x y
- x x y y false false false true false true true true
+ x x y y x x y y false false false true false true true true
| InComparelGt of y < x : incomparel x y
- y y x x false false true false true false true true
+ y y x x y y x x false false true false true false true true
| InComparel of x >< y : incomparel x y
- (meet x y) (meet x y) (join x y) (join x y)
+ x y y x (meet y x) (meet x y) (join y x) (join x y)
false false false false false false false false
| InComparelEq of x = y : incomparel x y
- x x x x true true true true false false true true.
+ x x x x x x x x true true true true false false true true.
End LatticeDef.
@@ -1928,105 +2012,6 @@ End Exports.
End Total.
Import Total.Exports.
-Section TotalDef.
-Context {disp : unit} {T : orderType disp} {I : finType}.
-Definition arg_min := @extremum T I <=%O.
-Definition arg_max := @extremum T I >=%O.
-End TotalDef.
-
-Module Import TotalSyntax.
-
-Fact total_display : unit. Proof. exact: tt. Qed.
-
-Notation max := (@join total_display _).
-Notation "@ 'max' T" :=
- (@join total_display T) (at level 10, T at level 8, only parsing) : fun_scope.
-Notation min := (@meet total_display _).
-Notation "@ 'min' T" :=
- (@meet total_display T) (at level 10, T at level 8, only parsing) : fun_scope.
-
-Notation "\max_ ( i <- r | P ) F" :=
- (\big[max/0%O]_(i <- r | P%B) F%O) : order_scope.
-Notation "\max_ ( i <- r ) F" :=
- (\big[max/0%O]_(i <- r) F%O) : order_scope.
-Notation "\max_ ( i | P ) F" :=
- (\big[max/0%O]_(i | P%B) F%O) : order_scope.
-Notation "\max_ i F" :=
- (\big[max/0%O]_i F%O) : order_scope.
-Notation "\max_ ( i : I | P ) F" :=
- (\big[max/0%O]_(i : I | P%B) F%O) (only parsing) :
- order_scope.
-Notation "\max_ ( i : I ) F" :=
- (\big[max/0%O]_(i : I) F%O) (only parsing) : order_scope.
-Notation "\max_ ( m <= i < n | P ) F" :=
- (\big[max/0%O]_(m <= i < n | P%B) F%O) : order_scope.
-Notation "\max_ ( m <= i < n ) F" :=
- (\big[max/0%O]_(m <= i < n) F%O) : order_scope.
-Notation "\max_ ( i < n | P ) F" :=
- (\big[max/0%O]_(i < n | P%B) F%O) : order_scope.
-Notation "\max_ ( i < n ) F" :=
- (\big[max/0%O]_(i < n) F%O) : order_scope.
-Notation "\max_ ( i 'in' A | P ) F" :=
- (\big[max/0%O]_(i in A | P%B) F%O) : order_scope.
-Notation "\max_ ( i 'in' A ) F" :=
- (\big[max/0%O]_(i in A) F%O) : order_scope.
-
-Notation "\min_ ( i <- r | P ) F" :=
- (\big[min/1%O]_(i <- r | P%B) F%O) : order_scope.
-Notation "\min_ ( i <- r ) F" :=
- (\big[min/1%O]_(i <- r) F%O) : order_scope.
-Notation "\min_ ( i | P ) F" :=
- (\big[min/1%O]_(i | P%B) F%O) : order_scope.
-Notation "\min_ i F" :=
- (\big[min/1%O]_i F%O) : order_scope.
-Notation "\min_ ( i : I | P ) F" :=
- (\big[min/1%O]_(i : I | P%B) F%O) (only parsing) :
- order_scope.
-Notation "\min_ ( i : I ) F" :=
- (\big[min/1%O]_(i : I) F%O) (only parsing) : order_scope.
-Notation "\min_ ( m <= i < n | P ) F" :=
- (\big[min/1%O]_(m <= i < n | P%B) F%O) : order_scope.
-Notation "\min_ ( m <= i < n ) F" :=
- (\big[min/1%O]_(m <= i < n) F%O) : order_scope.
-Notation "\min_ ( i < n | P ) F" :=
- (\big[min/1%O]_(i < n | P%B) F%O) : order_scope.
-Notation "\min_ ( i < n ) F" :=
- (\big[min/1%O]_(i < n) F%O) : order_scope.
-Notation "\min_ ( i 'in' A | P ) F" :=
- (\big[min/1%O]_(i in A | P%B) F%O) : order_scope.
-Notation "\min_ ( i 'in' A ) F" :=
- (\big[min/1%O]_(i in A) F%O) : order_scope.
-
-Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
- (arg_min i0 (fun i => P%B) (fun i => F))
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : order_scope.
-
-Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
- [arg min_(i < i0 | i \in A) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : order_scope.
-
-Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'min_' ( i < i0 ) F ]") : order_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
- (arg_max i0 (fun i => P%B) (fun i => F))
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : order_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
- [arg max_(i > i0 | i \in A) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : order_scope.
-
-Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
- (at level 0, i, i0 at level 10,
- format "[ 'arg' 'max_' ( i > i0 ) F ]") : order_scope.
-
-End TotalSyntax.
-
(**********)
(* FINITE *)
(**********)
@@ -2577,13 +2562,15 @@ Notation "><^d x" := (fun y => ~~ (>=<^d%O x y)) : order_scope.
Notation "><^d x :> T" := (><^d (x : T)) (only parsing) : order_scope.
Notation "x ><^d y" := (~~ (><^d%O x y)) : order_scope.
-Notation "x `&^d` y" := (@meet (dual_display _) _ x y) : order_scope.
-Notation "x `|^d` y" := (@join (dual_display _) _ x y) : order_scope.
-
Notation dual_bottom := (@bottom (dual_display _)).
Notation dual_top := (@top (dual_display _)).
Notation dual_join := (@join (dual_display _) _).
Notation dual_meet := (@meet (dual_display _) _).
+Notation dual_max := (@max (dual_display _) _).
+Notation dual_min := (@min (dual_display _) _).
+
+Notation "x `&^d` y" := (@meet (dual_display _) _ x y) : order_scope.
+Notation "x `|^d` y" := (@join (dual_display _) _ x y) : order_scope.
Notation "\join^d_ ( i <- r | P ) F" :=
(\big[join/0]_(i <- r | P%B) F%O) : order_scope.
@@ -2648,7 +2635,7 @@ Context {disp : unit}.
Local Notation porderType := (porderType disp).
Context {T : porderType}.
-Implicit Types x y : T.
+Implicit Types (x y : T) (s : seq T).
Lemma geE x y : ge x y = (y <= x). Proof. by []. Qed.
Lemma gtE x y : gt x y = (y < x). Proof. by []. Qed.
@@ -2746,8 +2733,7 @@ Proof. by rewrite andbC lt_le_asym. Qed.
Definition lte_anti := (=^~ eq_le, lt_asym, lt_le_asym, le_lt_asym).
-Lemma lt_sorted_uniq_le (s : seq T) :
- sorted lt s = uniq s && sorted le s.
+Lemma lt_sorted_uniq_le s : sorted lt s = uniq s && sorted le s.
Proof.
case: s => //= n s; elim: s n => //= m s IHs n.
rewrite inE lt_neqAle negb_or IHs -!andbA.
@@ -2756,12 +2742,11 @@ rewrite andbF; apply/and5P=> [[ne_nm lenm _ _ le_ms]]; case/negP: ne_nm.
by rewrite eq_le lenm /=; apply: (allP (order_path_min le_trans le_ms)).
Qed.
-Lemma eq_sorted_lt (s1 s2 : seq T) :
- sorted lt s1 -> sorted lt s2 -> s1 =i s2 -> s1 = s2.
+Lemma eq_sorted_lt s1 s2 : sorted lt s1 -> sorted lt s2 -> s1 =i s2 -> s1 = s2.
Proof. by apply: eq_sorted_irr => //; apply: lt_trans. Qed.
-Lemma eq_sorted_le (s1 s2 : seq T) :
- sorted le s1 -> sorted le s2 -> perm_eq s1 s2 -> s1 = s2.
+Lemma eq_sorted_le s1 s2 : sorted le s1 -> sorted le s2 ->
+ perm_eq s1 s2 -> s1 = s2.
Proof. by apply: eq_sorted; [apply: le_trans|apply: le_anti]. Qed.
Lemma comparable_leNgt x y : x >=< y -> (x <= y) = ~~ (y < x).
@@ -2777,19 +2762,22 @@ by rewrite lt_neqAle eq_le; move: c_xy => /orP [] -> //; rewrite andbT.
Qed.
Lemma comparable_ltgtP x y : x >=< y ->
- compare x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
+ compare x y (min y x) (min x y) (max y x) (max x y)
+ (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof.
-rewrite />=<%O !le_eqVlt [y == x]eq_sym.
+rewrite /min /max />=<%O !le_eqVlt [y == x]eq_sym.
have := (eqVneq x y, (boolP (x < y), boolP (y < x))).
move=> [[->//|neq_xy /=] [[] xy [] //=]] ; do ?by rewrite ?ltxx; constructor.
by rewrite ltxx in xy.
by rewrite le_gtF // ltW.
Qed.
-Lemma comparable_leP x y : x >=< y -> le_xor_gt x y (x <= y) (y < x).
+Lemma comparable_leP x y : x >=< y ->
+ le_xor_gt x y (min y x) (min x y) (max y x) (max x y) (x <= y) (y < x).
Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
-Lemma comparable_ltP x y : x >=< y -> lt_xor_ge x y (y <= x) (x < y).
+Lemma comparable_ltP x y : x >=< y ->
+ lt_xor_ge x y (min y x) (min x y) (max y x) (max x y) (y <= x) (x < y).
Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
Lemma comparable_sym x y : (y >=< x) = (x >=< y).
@@ -2808,13 +2796,14 @@ Lemma incomparable_ltF x y : (x >< y) -> (x < y) = false.
Proof. by rewrite lt_neqAle => /incomparable_leF ->; rewrite andbF. Qed.
Lemma comparableP x y : incompare x y
+ (min y x) (min x y) (max y x) (max x y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
(y >=< x) (x >=< y).
Proof.
rewrite ![y >=< _]comparable_sym; have [c_xy|i_xy] := boolP (x >=< y).
by case: (comparable_ltgtP c_xy) => ?; constructor.
-by rewrite ?incomparable_eqF ?incomparable_leF ?incomparable_ltF //
- 1?comparable_sym //; constructor.
+by rewrite /min /max ?incomparable_eqF ?incomparable_leF;
+ rewrite ?incomparable_ltF// 1?comparable_sym //; constructor.
Qed.
Lemma le_comparable (x y : T) : x <= y -> x >=< y.
@@ -2869,6 +2858,280 @@ Proof. by move=> /leifP; case: C comparableP => [] []. Qed.
Lemma eqTleif x y C : x <= y ?= iff C -> C -> x = y.
Proof. by move=> /eq_leif<-/eqP. Qed.
+(* min and max *)
+
+Lemma minElt x y : min x y = if x < y then x else y. Proof. by []. Qed.
+Lemma maxElt x y : max x y = if x < y then y else x. Proof. by []. Qed.
+
+Lemma minEle x y : min x y = if x <= y then x else y.
+Proof. by case: comparableP. Qed.
+
+Lemma maxEle x y : max x y = if x <= y then y else x.
+Proof. by case: comparableP. Qed.
+
+Lemma comparable_minEgt x y : x >=< y -> min x y = if x > y then y else x.
+Proof. by case: comparableP. Qed.
+Lemma comparable_maxEgt x y : x >=< y -> max x y = if x > y then x else y.
+Proof. by case: comparableP. Qed.
+Lemma comparable_minEge x y : x >=< y -> min x y = if x >= y then y else x.
+Proof. by case: comparableP. Qed.
+Lemma comparable_maxEge x y : x >=< y -> max x y = if x >= y then x else y.
+Proof. by case: comparableP. Qed.
+
+Lemma min_l x y : x <= y -> min x y = x. Proof. by case: comparableP. Qed.
+Lemma min_r x y : y <= x -> min x y = y. Proof. by case: comparableP. Qed.
+Lemma max_l x y : y <= x -> max x y = x. Proof. by case: comparableP. Qed.
+Lemma max_r x y : x <= y -> max x y = y. Proof. by case: comparableP. Qed.
+
+Lemma minxx : idempotent (min : T -> T -> T).
+Proof. by rewrite /min => x; rewrite ltxx. Qed.
+
+Lemma maxxx : idempotent (max : T -> T -> T).
+Proof. by rewrite /max => x; rewrite ltxx. Qed.
+
+Lemma eq_minl x y : (min x y == x) = (x <= y).
+Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
+
+Lemma eq_maxr x y : (max x y == y) = (x <= y).
+Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
+
+Lemma min_idPl x y : reflect (min x y = x) (x <= y).
+Proof. by apply: (iffP idP); rewrite (rwP eqP) eq_minl. Qed.
+
+Lemma max_idPr x y : reflect (max x y = y) (x <= y).
+Proof. by apply: (iffP idP); rewrite (rwP eqP) eq_maxr. Qed.
+
+Lemma min_minKx x y : min (min x y) y = min x y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP. Qed.
+
+Lemma min_minxK x y : min x (min x y) = min x y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP. Qed.
+
+Lemma max_maxKx x y : max (max x y) y = max x y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP. Qed.
+
+Lemma max_maxxK x y : max x (max x y) = max x y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP. Qed.
+
+Lemma comparable_minl x y z : x >=< z -> y >=< z -> min x y >=< z.
+Proof. by move=> cmp_xz cmp_yz; rewrite /min; case: ifP. Qed.
+
+Lemma comparable_minr x y z : z >=< x -> z >=< y -> z >=< min x y.
+Proof. by move=> cmp_xz cmp_yz; rewrite /min; case: ifP. Qed.
+
+Lemma comparable_maxl x y z : x >=< z -> y >=< z -> max x y >=< z.
+Proof. by move=> cmp_xz cmp_yz; rewrite /max; case: ifP. Qed.
+
+Lemma comparable_maxr x y z : z >=< x -> z >=< y -> z >=< max x y.
+Proof. by move=> cmp_xz cmp_yz; rewrite /max; case: ifP. Qed.
+
+Section Comparable2.
+Variables (z x y : T) (cmp_xy : x >=< y).
+
+Lemma comparable_minC : min x y = min y x.
+Proof. by case: comparableP cmp_xy. Qed.
+
+Lemma comparable_maxC : max x y = max y x.
+Proof. by case: comparableP cmp_xy. Qed.
+
+Lemma comparable_eq_minr : (min x y == y) = (y <= x).
+Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
+
+Lemma comparable_eq_maxl : (max x y == x) = (y <= x).
+Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
+
+Lemma comparable_min_idPr : reflect (min x y = y) (y <= x).
+Proof. by apply: (iffP idP); rewrite (rwP eqP) comparable_eq_minr. Qed.
+
+Lemma comparable_max_idPl : reflect (max x y = x) (y <= x).
+Proof. by apply: (iffP idP); rewrite (rwP eqP) comparable_eq_maxl. Qed.
+
+Lemma comparable_le_minr : (z <= min x y) = (z <= x) && (z <= y).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?andbb//; last rewrite andbC;
+ by case: (comparableP z) => // [/lt_trans xlt/xlt|->] /ltW.
+Qed.
+
+Lemma comparable_le_minl : (min x y <= z) = (x <= z) || (y <= z).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?orbb//; last rewrite orbC;
+ by move=> xy _; apply/idP/idP => [->|/orP[]]//; apply/le_trans/ltW.
+Qed.
+
+Lemma comparable_lt_minr : (z < min x y) = (z < x) && (z < y).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?andbb//; last rewrite andbC;
+ by case: (comparableP z) => // /lt_trans xlt/xlt.
+Qed.
+
+Lemma comparable_lt_minl : (min x y < z) = (x < z) || (y < z).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?orbb//; last rewrite orbC;
+ by move=> xy _; apply/idP/idP => [->|/orP[]]//; apply/lt_trans.
+Qed.
+
+Lemma comparable_le_maxr : (z <= max x y) = (z <= x) || (z <= y).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?orbb//; first rewrite orbC;
+ by move=> xy _; apply/idP/idP => [->|/orP[]]// /le_trans->//; apply/ltW.
+Qed.
+
+Lemma comparable_le_maxl : (max x y <= z) = (x <= z) && (y <= z).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?andbb//; first rewrite andbC;
+ by case: (comparableP z) => // [ylt /lt_trans /(_ _)/ltW|->/ltW]->.
+Qed.
+
+Lemma comparable_lt_maxr : (z < max x y) = (z < x) || (z < y).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?orbb//; first rewrite orbC;
+ by move=> xy _; apply/idP/idP => [->|/orP[]]// /lt_trans->.
+Qed.
+
+Lemma comparable_lt_maxl : (max x y < z) = (x < z) && (y < z).
+Proof.
+case: comparableP cmp_xy => // [||<-//]; rewrite ?andbb//; first rewrite andbC;
+by case: (comparableP z) => // ylt /lt_trans->.
+Qed.
+
+Lemma comparable_minxK : max (min x y) y = y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP cmp_xy. Qed.
+
+Lemma comparable_minKx : max x (min x y) = x.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP cmp_xy. Qed.
+
+Lemma comparable_maxxK : min (max x y) y = y.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP cmp_xy. Qed.
+
+Lemma comparable_maxKx : min x (max x y) = x.
+Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: comparableP cmp_xy. Qed.
+
+End Comparable2.
+
+Section Comparable3.
+Variables (x y z : T) (cmp_xy : x >=< y) (cmp_xz : x >=< z) (cmp_yz : y >=< z).
+Let P := comparableP.
+
+Lemma comparable_minA : min x (min y z) = min (min x y) z.
+Proof.
+move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=.
+move: (P x y) (P x z) (P y z) => [xy|xy|xy|<-] [xz|xz|xz|<-]// []//= yz.
+- by have := lt_trans xy (lt_trans yz xz); rewrite ltxx.
+- by have := lt_trans xy (lt_trans xz yz); rewrite ltxx.
+- by have := lt_trans xy xz; rewrite yz ltxx.
+Qed.
+
+Lemma comparable_maxA : max x (max y z) = max (max x y) z.
+Proof.
+move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=.
+move: (P x y) (P x z) (P y z) => [xy|xy|xy|<-] [xz|xz|xz|<-]// []//= yz.
+- by have := lt_trans xy (lt_trans yz xz); rewrite ltxx.
+- by have := lt_trans xy (lt_trans xz yz); rewrite ltxx.
+- by have := lt_trans xy xz; rewrite yz ltxx.
+Qed.
+
+Lemma comparable_max_minl : max (min x y) z = min (max x z) (max y z).
+Proof.
+move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=.
+move: (P x y) (P x z) (P y z).
+move=> [xy|xy|xy|<-] [xz|xz|xz|<-] [yz|yz|yz|//->]//= _; rewrite ?ltxx//.
+- by have := lt_trans xy (lt_trans yz xz); rewrite ltxx.
+- by have := lt_trans xy (lt_trans xz yz); rewrite ltxx.
+Qed.
+
+Lemma comparable_min_maxl : min (max x y) z = max (min x z) (min y z).
+Proof.
+move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=.
+move: (P x y) (P x z) (P y z).
+move=> [xy|xy|xy|<-] [xz|xz|xz|<-] []yz//= _; rewrite ?ltxx//.
+- by have := lt_trans xy (lt_trans yz xz); rewrite ltxx.
+- by have := lt_trans xy yz; rewrite ltxx.
+- by have := lt_trans xy (lt_trans xz yz); rewrite ltxx.
+- by have := lt_trans xy xz; rewrite yz ltxx.
+Qed.
+
+End Comparable3.
+
+Lemma comparable_minAC x y z : x >=< y -> x >=< z -> y >=< z ->
+ min (min x y) z = min (min x z) y.
+Proof.
+move=> xy xz yz; rewrite -comparable_minA// [min y z]comparable_minC//.
+by rewrite comparable_minA// 1?comparable_sym.
+Qed.
+
+Lemma comparable_maxAC x y z : x >=< y -> x >=< z -> y >=< z ->
+ max (max x y) z = max (max x z) y.
+Proof.
+move=> xy xz yz; rewrite -comparable_maxA// [max y z]comparable_maxC//.
+by rewrite comparable_maxA// 1?comparable_sym.
+Qed.
+
+Lemma comparable_minCA x y z : x >=< y -> x >=< z -> y >=< z ->
+ min x (min y z) = min y (min x z).
+Proof.
+move=> xy xz yz; rewrite comparable_minA// [min x y]comparable_minC//.
+by rewrite -comparable_minA// 1?comparable_sym.
+Qed.
+
+Lemma comparable_maxCA x y z : x >=< y -> x >=< z -> y >=< z ->
+ max x (max y z) = max y (max x z).
+Proof.
+move=> xy xz yz; rewrite comparable_maxA// [max x y]comparable_maxC//.
+by rewrite -comparable_maxA// 1?comparable_sym.
+Qed.
+
+Lemma comparable_minACA x y z t :
+ x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t ->
+ min (min x y) (min z t) = min (min x z) (min y t).
+Proof.
+move=> xy xz xt yz yt zt; rewrite comparable_minA// ?comparable_minl//.
+rewrite [min _ z]comparable_minAC// -comparable_minA// ?comparable_minl//.
+by rewrite comparable_sym.
+Qed.
+
+Lemma comparable_maxACA x y z t :
+ x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t ->
+ max (max x y) (max z t) = max (max x z) (max y t).
+Proof.
+move=> xy xz xt yz yt zt; rewrite comparable_maxA// ?comparable_maxl//.
+rewrite [max _ z]comparable_maxAC// -comparable_maxA// ?comparable_maxl//.
+by rewrite comparable_sym.
+Qed.
+
+Lemma comparable_max_minr x y z : x >=< y -> x >=< z -> y >=< z ->
+ max x (min y z) = min (max x y) (max x z).
+Proof.
+move=> xy xz yz; rewrite ![max x _]comparable_maxC// ?comparable_minr//.
+by rewrite comparable_max_minl// 1?comparable_sym.
+Qed.
+
+Lemma comparable_min_maxr x y z : x >=< y -> x >=< z -> y >=< z ->
+ min x (max y z) = max (min x y) (min x z).
+Proof.
+move=> xy xz yz; rewrite ![min x _]comparable_minC// ?comparable_maxr//.
+by rewrite comparable_min_maxl// 1?comparable_sym.
+Qed.
+
+Section ArgExtremum.
+
+Context (I : finType) (i0 : I) (P : {pred I}) (F : I -> T) (Pi0 : P i0).
+Hypothesis F_comparable : {in P &, forall i j, F i >=< F j}.
+
+Lemma comparable_arg_minP: extremum_spec <=%O P F (arg_min i0 P F).
+Proof.
+by apply: extremum_inP => // [x _|y x z _ _ _]; [apply: lexx|apply: le_trans].
+Qed.
+
+Lemma comparable_arg_maxP: extremum_spec >=%O P F (arg_max i0 P F).
+Proof.
+apply: extremum_inP => // [x _|y x z _ _ _|]; [exact: lexx|exact: ge_trans|].
+by move=> x y xP yP; rewrite orbC [_ || _]F_comparable.
+Qed.
+
+End ArgExtremum.
+
+(* monotonicity *)
+
Lemma mono_in_leif (A : {pred T}) (f : T -> T) C :
{in A &, {mono f : x y / x <= y}} ->
{in A &, forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C)}.
@@ -2975,6 +3238,10 @@ Arguments mono_in_leif [disp T A f C].
Arguments nmono_in_leif [disp T A f C].
Arguments mono_leif [disp T f C].
Arguments nmono_leif [disp T f C].
+Arguments min_idPl {disp T x y}.
+Arguments max_idPr {disp T x y}.
+Arguments comparable_min_idPr {disp T x y _}.
+Arguments comparable_max_idPl {disp T x y _}.
Module Import DualPOrder.
Section DualPOrder.
@@ -3204,31 +3471,38 @@ Lemma leU2 x y z t : x <= z -> y <= t -> x `|` y <= z `|` t.
Proof. exact: (@leI2 _ [latticeType of L^d]). Qed.
Lemma lcomparableP x y : incomparel x y
+ (min y x) (min x y) (max y x) (max x y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) (y >=< x) (x >=< y).
Proof.
by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy;
- rewrite ?(meetxx, joinxx, meetC y, joinC y)
- ?(meet_idPl hxy', meet_idPr hxy', join_idPl hxy', join_idPr hxy');
- constructor.
+ rewrite ?(meetxx, joinxx);
+ rewrite ?(meet_idPl hxy', meet_idPr hxy', join_idPl hxy', join_idPr hxy');
+ constructor.
Qed.
Lemma lcomparable_ltgtP x y : x >=< y ->
- comparel x y (y `&` x) (x `&` y) (y `|` x) (x `|` y)
+ comparel x y (min y x) (min x y) (max y x) (max x y)
+ (y `&` x) (x `&` y) (y `|` x) (x `|` y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof. by case: (lcomparableP x) => // *; constructor. Qed.
Lemma lcomparable_leP x y : x >=< y ->
- lel_xor_gt x y (y `&` x) (x `&` y) (y `|` x) (x `|` y) (x <= y) (y < x).
+ lel_xor_gt x y (min y x) (min x y) (max y x) (max x y)
+ (y `&` x) (x `&` y) (y `|` x) (x `|` y) (x <= y) (y < x).
Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed.
Lemma lcomparable_ltP x y : x >=< y ->
- ltl_xor_ge x y (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y <= x) (x < y).
+ ltl_xor_ge x y (min y x) (min x y) (max y x) (max x y)
+ (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y <= x) (x < y).
Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed.
End LatticeTheoryJoin.
End LatticeTheoryJoin.
+Arguments meet_idPl {disp L x y}.
+Arguments join_idPl {disp L x y}.
+
Module Import DistrLatticeTheory.
Section DistrLatticeTheory.
Context {disp : unit}.
@@ -3262,7 +3536,7 @@ Section TotalTheory.
Context {disp : unit}.
Local Notation orderType := (orderType disp).
Context {T : orderType}.
-Implicit Types (x y z t : T).
+Implicit Types (x y z t : T) (s : seq T).
Lemma le_total : total (<=%O : rel T). Proof. by case: T => [? [?]]. Qed.
Hint Resolve le_total : core.
@@ -3274,13 +3548,14 @@ Hint Resolve ge_total : core.
Lemma comparableT x y : x >=< y. Proof. exact: le_total. Qed.
Hint Resolve comparableT : core.
-Lemma sort_le_sorted (s : seq T) : sorted <=%O (sort <=%O s).
+Lemma sort_le_sorted s : sorted <=%O (sort <=%O s).
Proof. exact: sort_sorted. Qed.
+Hint Resolve sort_le_sorted : core.
-Lemma sort_lt_sorted (s : seq T) : sorted lt (sort le s) = uniq s.
+Lemma sort_lt_sorted s : sorted lt (sort le s) = uniq s.
Proof. by rewrite lt_sorted_uniq_le sort_uniq sort_le_sorted andbT. Qed.
-Lemma sort_le_id (s : seq T) : sorted le s -> sort le s = s.
+Lemma sort_le_id s : sorted le s -> sort le s = s.
Proof.
by move=> ss; apply: eq_sorted_le; rewrite ?sort_le_sorted // perm_sort.
Qed.
@@ -3324,21 +3599,106 @@ Lemma eq_ltRL x y z t :
(x < y -> z < t) -> (y <= x -> t <= z) -> (z < t) = (x < y).
Proof. by move=> *; symmetry; apply: eq_ltLR. Qed.
-(* interaction with lattice operations *)
+(* max and min is join and meet *)
+
+Lemma meetEtotal x y : x `&` y = min x y. Proof. by case: leP. Qed.
+Lemma joinEtotal x y : x `|` y = max x y. Proof. by case: leP. Qed.
+
+(* max and min theory *)
+
+Lemma minEgt x y : min x y = if x > y then y else x. Proof. by case: ltP. Qed.
+Lemma maxEgt x y : max x y = if x > y then x else y. Proof. by case: ltP. Qed.
+Lemma minEge x y : min x y = if x >= y then y else x. Proof. by case: leP. Qed.
+Lemma maxEge x y : max x y = if x >= y then x else y. Proof. by case: leP. Qed.
+
+Lemma minC : commutative (min : T -> T -> T).
+Proof. by move=> x y; apply: comparable_minC. Qed.
+
+Lemma maxC : commutative (max : T -> T -> T).
+Proof. by move=> x y; apply: comparable_maxC. Qed.
+
+Lemma minA : associative (min : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_minA. Qed.
+
+Lemma maxA : associative (max : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_maxA. Qed.
+
+Lemma minAC : right_commutative (min : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_minAC. Qed.
+
+Lemma maxAC : right_commutative (max : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_maxAC. Qed.
+
+Lemma minCA : left_commutative (min : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_minCA. Qed.
+
+Lemma maxCA : left_commutative (max : T -> T -> T).
+Proof. by move=> x y z; apply: comparable_maxCA. Qed.
+
+Lemma minACA : interchange (min : T -> T -> T) min.
+Proof. by move=> x y z t; apply: comparable_minACA. Qed.
+
+Lemma maxACA : interchange (max : T -> T -> T) max.
+Proof. by move=> x y z t; apply: comparable_maxACA. Qed.
+
+Lemma eq_minr x y : (min x y == y) = (y <= x).
+Proof. exact: comparable_eq_minr. Qed.
+
+Lemma eq_maxl x y : (max x y == x) = (y <= x).
+Proof. exact: comparable_eq_maxl. Qed.
+
+Lemma min_idPr x y : reflect (min x y = y) (y <= x).
+Proof. exact: comparable_min_idPr. Qed.
+
+Lemma max_idPl x y : reflect (max x y = x) (y <= x).
+Proof. exact: comparable_max_idPl. Qed.
+
+Lemma le_minr z x y : (z <= min x y) = (z <= x) && (z <= y).
+Proof. exact: comparable_le_minr. Qed.
+
+Lemma le_minl z x y : (min x y <= z) = (x <= z) || (y <= z).
+Proof. exact: comparable_le_minl. Qed.
+
+Lemma lt_minr z x y : (z < min x y) = (z < x) && (z < y).
+Proof. exact: comparable_lt_minr. Qed.
+
+Lemma lt_minl z x y : (min x y < z) = (x < z) || (y < z).
+Proof. exact: comparable_lt_minl. Qed.
+
+Lemma le_maxr z x y : (z <= max x y) = (z <= x) || (z <= y).
+Proof. exact: comparable_le_maxr. Qed.
+
+Lemma le_maxl z x y : (max x y <= z) = (x <= z) && (y <= z).
+Proof. exact: comparable_le_maxl. Qed.
+
+Lemma lt_maxr z x y : (z < max x y) = (z < x) || (z < y).
+Proof. exact: comparable_lt_maxr. Qed.
+
+Lemma lt_maxl z x y : (max x y < z) = (x < z) && (y < z).
+Proof. exact: comparable_lt_maxl. Qed.
+
+Lemma minxK x y : max (min x y) y = y. Proof. exact: comparable_minxK. Qed.
+Lemma minKx x y : max x (min x y) = x. Proof. exact: comparable_minKx. Qed.
+Lemma maxxK x y : min (max x y) y = y. Proof. exact: comparable_maxxK. Qed.
+Lemma maxKx x y : min x (max x y) = x. Proof. exact: comparable_maxKx. Qed.
+
+Lemma max_minl : left_distributive (max : T -> T -> T) min.
+Proof. by move=> x y z; apply: comparable_max_minl. Qed.
+
+Lemma min_maxl : left_distributive (min : T -> T -> T) max.
+Proof. by move=> x y z; apply: comparable_min_maxl. Qed.
+
+Lemma max_minr : right_distributive (max : T -> T -> T) min.
+Proof. by move=> x y z; apply: comparable_max_minr. Qed.
+
+Lemma min_maxr : right_distributive (min : T -> T -> T) max.
+Proof. by move=> x y z; apply: comparable_min_maxr. Qed.
Lemma leIx x y z : (meet y z <= x) = (y <= x) || (z <= x).
-Proof.
-by case: (leP y z) => hyz; case: leP => ?;
- rewrite ?(orbT, orbF) //=; apply/esym/negbTE;
- rewrite -ltNge ?(lt_le_trans _ hyz) ?(lt_trans _ hyz).
-Qed.
+Proof. by rewrite meetEtotal le_minl. Qed.
Lemma lexU x y z : (x <= join y z) = (x <= y) || (x <= z).
-Proof.
-by case: (leP y z) => hyz; case: leP => ?;
- rewrite ?(orbT, orbF) //=; apply/esym/negbTE;
- rewrite -ltNge ?(le_lt_trans hyz) ?(lt_trans hyz).
-Qed.
+Proof. by rewrite joinEtotal le_maxr. Qed.
Lemma ltxI x y z : (x < meet y z) = (x < y) && (x < z).
Proof. by rewrite !ltNge leIx negb_or. Qed.
@@ -3361,9 +3721,6 @@ Section ArgExtremum.
Context (I : finType) (i0 : I) (P : {pred I}) (F : I -> T) (Pi0 : P i0).
-Definition arg_minnP := arg_minP.
-Definition arg_maxnP := arg_maxP.
-
Lemma arg_minP: extremum_spec <=%O P F (arg_min i0 P F).
Proof. by apply: extremumP => //; apply: le_trans. Qed.
@@ -3373,6 +3730,10 @@ Proof. by apply: extremumP => //; [apply: ge_refl | apply: ge_trans]. Qed.
End ArgExtremum.
End TotalTheory.
+
+Arguments min_idPr {disp T x y}.
+Arguments max_idPl {disp T x y}.
+
Section TotalMonotonyTheory.
Context {disp : unit} {disp' : unit}.
@@ -4034,14 +4395,16 @@ Implicit Types (x y z : T).
Let comparableT x y : x >=< y := m x y.
Fact ltgtP x y :
- compare x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
+ compare x y (min y x) (min x y) (max y x) (max x y)
+ (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof. exact: comparable_ltgtP. Qed.
-Fact leP x y : le_xor_gt x y (x <= y) (y < x).
+Fact leP x y : le_xor_gt x y
+ (min y x) (min x y) (max y x) (max x y) (x <= y) (y < x).
Proof. exact: comparable_leP. Qed.
-Definition meet x y := if x <= y then x else y.
-Definition join x y := if y <= x then x else y.
+Definition meet := @min _ T.
+Definition join := @max _ T.
Fact meetC : commutative meet.
Proof. by move=> x y; rewrite /meet; have [] := ltgtP. Qed.
@@ -4051,25 +4414,31 @@ Proof. by move=> x y; rewrite /join; have [] := ltgtP. Qed.
Fact meetA : associative meet.
Proof.
-move=> x y z; rewrite /meet; case: (leP y z) => yz; case: (leP x y) => xy //=.
-- by rewrite (le_trans xy).
-- by rewrite yz.
-by rewrite !lt_geF // (lt_trans yz).
+move=> x y z; rewrite /meet /min !(fun_if, if_arg).
+case: (leP z y) (leP y x) (leP z x) => [] zy [] yx [] zx//=.
+ by have := le_lt_trans (le_trans zy yx) zx; rewrite ltxx.
+by apply/eqP; rewrite eq_le zx ltW// (lt_trans yx).
Qed.
Fact joinA : associative join.
Proof.
-move=> x y z; rewrite /join; case: (leP z y) => yz; case: (leP y x) => xy //=.
-- by rewrite (le_trans yz).
-- by rewrite yz.
-by rewrite !lt_geF // (lt_trans xy).
+move=> x y z; rewrite /meet /min !(fun_if, if_arg).
+case: (leP z y) (leP y x) (leP z x) => [] zy [] yx [] zx//=.
+ by have := le_lt_trans (le_trans zy yx) zx; rewrite ltxx.
+by apply/eqP; rewrite eq_le zx ltW// (lt_trans yx).
Qed.
Fact joinKI y x : meet x (join x y) = x.
-Proof. by rewrite /meet /join; case: (leP y x) => yx; rewrite ?lexx ?ltW. Qed.
+Proof.
+rewrite /meet /join /min /max !(fun_if, if_arg).
+by have []// := ltgtP x y; rewrite ltxx.
+Qed.
Fact meetKU y x : join x (meet x y) = x.
-Proof. by rewrite /meet /join; case: (leP x y) => yx; rewrite ?lexx ?ltW. Qed.
+Proof.
+rewrite /meet /join /min /max !(fun_if, if_arg).
+by have []// := ltgtP x y; rewrite ltxx.
+Qed.
Fact leEmeet x y : (x <= y) = (meet x y == x).
Proof. by rewrite /meet; case: leP => ?; rewrite ?eqxx ?lt_eqF. Qed.
@@ -4079,8 +4448,7 @@ Definition latticeMixin :=
meetC joinC meetA joinA joinKI meetKU leEmeet.
Definition totalLatticeMixin :
- totalLatticeMixin (LatticeType T latticeMixin) :=
- m.
+ totalLatticeMixin (LatticeType T latticeMixin) := m.
End TotalPOrderMixin.
@@ -4219,8 +4587,8 @@ Record of_ := Build {
meet : T -> T -> T;
join : T -> T -> T;
lt_def : forall x y, lt x y = (y != x) && le x y;
- meet_def : forall x y, meet x y = if le x y then x else y;
- join_def : forall x y, join x y = if le y x then x else y;
+ meet_def : forall x y, meet x y = if lt x y then x else y;
+ join_def : forall x y, join x y = if lt x y then y else x;
le_anti : antisymmetric le;
le_trans : transitive le;
le_total : total le;
@@ -4294,7 +4662,7 @@ Record of_ := Build {
join : T -> T -> T;
le_def : forall x y, le x y = (x == y) || lt x y;
meet_def : forall x y, meet x y = if lt x y then x else y;
- join_def : forall x y, join x y = if lt y x then x else y;
+ join_def : forall x y, join x y = if lt x y then y else x;
lt_irr : irreflexive lt;
lt_trans : transitive lt;
lt_total : forall x y, x != y -> lt x y || lt y x;
@@ -4305,11 +4673,11 @@ Variables (m : of_).
Fact lt_def x y : lt m x y = (y != x) && le m x y.
Proof. by rewrite le_def; case: eqVneq => //= ->; rewrite lt_irr. Qed.
-Fact meet_def_le x y : meet m x y = if le m x y then x else y.
-Proof. by rewrite meet_def le_def; case: eqP => //= ->; rewrite lt_irr. Qed.
+Fact meet_def_le x y : meet m x y = if lt m x y then x else y.
+Proof. by rewrite meet_def lt_def; case: eqP. Qed.
-Fact join_def_le x y : join m x y = if le m y x then x else y.
-Proof. by rewrite join_def le_def; case: eqP => //= ->; rewrite lt_irr. Qed.
+Fact join_def_le x y : join m x y = if lt m x y then y else x.
+Proof. by rewrite join_def lt_def; case: eqP. Qed.
Fact le_anti : antisymmetric (le m).
Proof.
@@ -4534,9 +4902,8 @@ Import SubOrder.Exports.
(******************************************************************************)
(* The Module NatOrder defines leq as the canonical order on the type nat, *)
-(* i.e. without creating a "copy". We use the predefined total_display, which *)
-(* is designed to parse and print meet and join as minn and maxn. This looks *)
-(* like standard canonical structure declaration, except we use a display. *)
+(* i.e. without creating a "copy". We define and use nat_display and proceed *)
+(* like standard canonical structure declaration, except we use this display. *)
(* We also use a single factory LeOrderMixin to instantiate three different *)
(* canonical declarations porderType, distrLatticeType, orderType *)
(* We finish by providing theorems to convert the operations of ordered and *)
@@ -4546,19 +4913,16 @@ Import SubOrder.Exports.
Module NatOrder.
Section NatOrder.
-Lemma minnE x y : minn x y = if (x <= y)%N then x else y.
-Proof. by case: leqP. Qed.
-
-Lemma maxnE x y : maxn x y = if (y <= x)%N then x else y.
-Proof. by case: leqP. Qed.
+Lemma nat_display : unit. Proof. exact: tt. Qed.
Lemma ltn_def x y : (x < y)%N = (y != x) && (x <= y)%N.
Proof. by rewrite ltn_neqAle eq_sym. Qed.
Definition orderMixin :=
- LeOrderMixin ltn_def minnE maxnE anti_leq leq_trans leq_total.
+ LeOrderMixin ltn_def (fun _ _ => erefl) (fun _ _ => erefl)
+ anti_leq leq_trans leq_total.
-Canonical porderType := POrderType total_display nat orderMixin.
+Canonical porderType := POrderType nat_display nat orderMixin.
Canonical latticeType := LatticeType nat orderMixin.
Canonical bLatticeType := BLatticeType nat (BLatticeMixin leq0n).
Canonical distrLatticeType := DistrLatticeType nat orderMixin.
@@ -4567,8 +4931,8 @@ Canonical orderType := OrderType nat orderMixin.
Lemma leEnat : le = leq. Proof. by []. Qed.
Lemma ltEnat : lt = ltn. Proof. by []. Qed.
-Lemma meetEnat : meet = minn. Proof. by []. Qed.
-Lemma joinEnat : join = maxn. Proof. by []. Qed.
+Lemma minEnat : min = minn. Proof. by []. Qed.
+Lemma maxEnat : max = maxn. Proof. by []. Qed.
Lemma botEnat : 0%O = 0%N :> nat. Proof. by []. Qed.
End NatOrder.
@@ -4582,8 +4946,8 @@ Canonical bDistrLatticeType.
Canonical orderType.
Definition leEnat := leEnat.
Definition ltEnat := ltEnat.
-Definition meetEnat := meetEnat.
-Definition joinEnat := joinEnat.
+Definition minEnat := minEnat.
+Definition maxEnat := maxEnat.
Definition botEnat := botEnat.
End Exports.
End NatOrder.
@@ -4850,10 +5214,12 @@ Module BoolOrder.
Section BoolOrder.
Implicit Types (x y : bool).
-Fact andbE x y : x && y = if (x <= y)%N then x else y.
+Fact bool_display : unit. Proof. exact: tt. Qed.
+
+Fact andbE x y : x && y = if (x < y)%N then x else y.
Proof. by case: x y => [] []. Qed.
-Fact orbE x y : x || y = if (y <= x)%N then x else y.
+Fact orbE x y : x || y = if (x < y)%N then y else x.
Proof. by case: x y => [] []. Qed.
Fact ltn_def x y : (x < y)%N = (y != x) && (x <= y)%N.
@@ -4870,7 +5236,7 @@ Lemma joinIB x y : (x && y) || sub x y = x. Proof. by case: x y => [] []. Qed.
Definition orderMixin :=
LeOrderMixin ltn_def andbE orbE anti leq_trans leq_total.
-Canonical porderType := POrderType total_display bool orderMixin.
+Canonical porderType := POrderType bool_display bool orderMixin.
Canonical latticeType := LatticeType bool orderMixin.
Canonical bLatticeType :=
BLatticeType bool (@BLatticeMixin _ _ false leq0n).
@@ -5095,61 +5461,11 @@ Notation "><^l x" := (fun y => ~~ (>=<^l%O x y)) : order_scope.
Notation "><^l x :> T" := (><^l (x : T)) (only parsing) : order_scope.
Notation "x ><^l y" := (~~ (><^l%O x y)) : order_scope.
-Notation minlexi := (@meet lexi_display _).
-Notation maxlexi := (@join lexi_display _).
-
-Notation "x `&^l` y" := (minlexi x y) : order_scope.
-Notation "x `|^l` y" := (maxlexi x y) : order_scope.
-
-Notation "\max^l_ ( i <- r | P ) F" :=
- (\big[maxlexi/0]_(i <- r | P%B) F%O) : order_scope.
-Notation "\max^l_ ( i <- r ) F" :=
- (\big[maxlexi/0]_(i <- r) F%O) : order_scope.
-Notation "\max^l_ ( i | P ) F" :=
- (\big[maxlexi/0]_(i | P%B) F%O) : order_scope.
-Notation "\max^l_ i F" :=
- (\big[maxlexi/0]_i F%O) : order_scope.
-Notation "\max^l_ ( i : I | P ) F" :=
- (\big[maxlexi/0]_(i : I | P%B) F%O) (only parsing) : order_scope.
-Notation "\max^l_ ( i : I ) F" :=
- (\big[maxlexi/0]_(i : I) F%O) (only parsing) : order_scope.
-Notation "\max^l_ ( m <= i < n | P ) F" :=
- (\big[maxlexi/0]_(m <= i < n | P%B) F%O) : order_scope.
-Notation "\max^l_ ( m <= i < n ) F" :=
- (\big[maxlexi/0]_(m <= i < n) F%O) : order_scope.
-Notation "\max^l_ ( i < n | P ) F" :=
- (\big[maxlexi/0]_(i < n | P%B) F%O) : order_scope.
-Notation "\max^l_ ( i < n ) F" :=
- (\big[maxlexi/0]_(i < n) F%O) : order_scope.
-Notation "\max^l_ ( i 'in' A | P ) F" :=
- (\big[maxlexi/0]_(i in A | P%B) F%O) : order_scope.
-Notation "\max^l_ ( i 'in' A ) F" :=
- (\big[maxlexi/0]_(i in A) F%O) : order_scope.
-
-Notation "\min^l_ ( i <- r | P ) F" :=
- (\big[minlexi/1]_(i <- r | P%B) F%O) : order_scope.
-Notation "\min^l_ ( i <- r ) F" :=
- (\big[minlexi/1]_(i <- r) F%O) : order_scope.
-Notation "\min^l_ ( i | P ) F" :=
- (\big[minlexi/1]_(i | P%B) F%O) : order_scope.
-Notation "\min^l_ i F" :=
- (\big[minlexi/1]_i F%O) : order_scope.
-Notation "\min^l_ ( i : I | P ) F" :=
- (\big[minlexi/1]_(i : I | P%B) F%O) (only parsing) : order_scope.
-Notation "\min^l_ ( i : I ) F" :=
- (\big[minlexi/1]_(i : I) F%O) (only parsing) : order_scope.
-Notation "\min^l_ ( m <= i < n | P ) F" :=
- (\big[minlexi/1]_(m <= i < n | P%B) F%O) : order_scope.
-Notation "\min^l_ ( m <= i < n ) F" :=
- (\big[minlexi/1]_(m <= i < n) F%O) : order_scope.
-Notation "\min^l_ ( i < n | P ) F" :=
- (\big[minlexi/1]_(i < n | P%B) F%O) : order_scope.
-Notation "\min^l_ ( i < n ) F" :=
- (\big[minlexi/1]_(i < n) F%O) : order_scope.
-Notation "\min^l_ ( i 'in' A | P ) F" :=
- (\big[minlexi/1]_(i in A | P%B) F%O) : order_scope.
-Notation "\min^l_ ( i 'in' A ) F" :=
- (\big[minlexi/1]_(i in A) F%O) : order_scope.
+Notation meetlexi := (@meet lexi_display _).
+Notation joinlexi := (@join lexi_display _).
+
+Notation "x `&^l` y" := (meetlexi x y) : order_scope.
+Notation "x `|^l` y" := (joinlexi x y) : order_scope.
End LexiSyntax.
@@ -6690,7 +7006,6 @@ Export BLatticeSyntax.
Export TBLatticeSyntax.
Export CBDistrLatticeSyntax.
Export CTBDistrLatticeSyntax.
-Export TotalSyntax.
Export DualSyntax.
Export DvdSyntax.
End Syntax.