aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/ssrfun.v
diff options
context:
space:
mode:
authorChristian Doczkal2020-09-10 18:30:42 +0200
committerChristian Doczkal2020-09-29 11:10:31 +0200
commit94e1bf37bbdabe3f2cf300e60a8c4eb856aa4819 (patch)
tree8e7872c008b95319b483ec82c181f0b194038bd3 /mathcomp/ssreflect/ssrfun.v
parent5b31a9e767694ce134fdff4461a876411eba0f2d (diff)
new mem_imset lemmas
Diffstat (limited to 'mathcomp/ssreflect/ssrfun.v')
-rw-r--r--mathcomp/ssreflect/ssrfun.v5
1 files changed, 5 insertions, 0 deletions
diff --git a/mathcomp/ssreflect/ssrfun.v b/mathcomp/ssreflect/ssrfun.v
index f189dcb..c789e67 100644
--- a/mathcomp/ssreflect/ssrfun.v
+++ b/mathcomp/ssreflect/ssrfun.v
@@ -21,3 +21,8 @@ Proof. by case. Qed.
Lemma inj_compr A B C (f : B -> A) (h : C -> B) :
injective (f \o h) -> injective h.
Proof. by move=> fh_inj x y /(congr1 f) /fh_inj. Qed.
+
+Definition injective2 (rT aT1 aT2 : Type) (f : aT1 -> aT2 -> rT) :=
+ forall (x1 x2 : aT1) (y1 y2 : aT2), f x1 y1 = f x2 y2 -> (x1 = x2) * (y1 = y2).
+
+Arguments injective2 [rT aT1 aT2] f.