diff options
| author | Enrico | 2018-03-03 10:30:33 +0100 |
|---|---|---|
| committer | GitHub | 2018-03-03 10:30:33 +0100 |
| commit | 6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch) | |
| tree | 59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/ssreflect/seq.v | |
| parent | 22692863c2b51cb6b3220e9601d7c237b1830f18 (diff) | |
| parent | fe058c3300cf2385f1079fa906cbd13cd2349286 (diff) | |
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/ssreflect/seq.v')
| -rw-r--r-- | mathcomp/ssreflect/seq.v | 46 |
1 files changed, 23 insertions, 23 deletions
diff --git a/mathcomp/ssreflect/seq.v b/mathcomp/ssreflect/seq.v index 5574892..a562879 100644 --- a/mathcomp/ssreflect/seq.v +++ b/mathcomp/ssreflect/seq.v @@ -780,8 +780,8 @@ End Sequences. Definition rev T (s : seq T) := nosimpl (catrev s [::]). -Implicit Arguments nilP [T s]. -Implicit Arguments all_filterP [T a s]. +Arguments nilP [T s]. +Arguments all_filterP [T a s]. Prenex Implicits size nilP head ohead behead last rcons belast. Prenex Implicits cat take drop rev rot rotr. @@ -875,7 +875,7 @@ Qed. End Rev. -Implicit Arguments revK [[T]]. +Arguments revK {T}. (* Equality and eqType for seq. *) @@ -1287,13 +1287,13 @@ Definition inE := (mem_seq1, in_cons, inE). Prenex Implicits mem_seq1 uniq undup index. -Implicit Arguments eqseqP [T x y]. -Implicit Arguments hasP [T a s]. -Implicit Arguments hasPn [T a s]. -Implicit Arguments allP [T a s]. -Implicit Arguments allPn [T a s]. -Implicit Arguments nseqP [T n x y]. -Implicit Arguments count_memPn [T x s]. +Arguments eqseqP [T x y]. +Arguments hasP [T a s]. +Arguments hasPn [T a s]. +Arguments allP [T a s]. +Arguments allPn [T a s]. +Arguments nseqP [T n x y]. +Arguments count_memPn [T x s]. Prenex Implicits eqseqP hasP hasPn allP allPn nseqP count_memPn. Section NthTheory. @@ -1332,9 +1332,9 @@ Proof. by elim: s n => [|y s' IHs] [|n] /=; auto. Qed. Lemma headI T s (x : T) : rcons s x = head x s :: behead (rcons s x). Proof. by case: s. Qed. -Implicit Arguments nthP [T s x]. -Implicit Arguments has_nthP [T a s]. -Implicit Arguments all_nthP [T a s]. +Arguments nthP [T s x]. +Arguments has_nthP [T a s]. +Arguments all_nthP [T a s]. Prenex Implicits nthP has_nthP all_nthP. Definition bitseq := seq bool. @@ -1576,9 +1576,9 @@ End PermSeq. Notation perm_eql s1 s2 := (perm_eq s1 =1 perm_eq s2). Notation perm_eqr s1 s2 := (perm_eq^~ s1 =1 perm_eq^~ s2). -Implicit Arguments perm_eqP [T s1 s2]. -Implicit Arguments perm_eqlP [T s1 s2]. -Implicit Arguments perm_eqrP [T s1 s2]. +Arguments perm_eqP [T s1 s2]. +Arguments perm_eqlP [T s1 s2]. +Arguments perm_eqrP [T s1 s2]. Prenex Implicits perm_eq perm_eqP perm_eqlP perm_eqrP. Hint Resolve perm_eq_refl. @@ -1853,7 +1853,7 @@ Proof. by case/subseqP=> m _ -> Us2; apply: mask_uniq. Qed. End Subseq. Prenex Implicits subseq. -Implicit Arguments subseqP [T s1 s2]. +Arguments subseqP [T s1 s2]. Hint Resolve subseq_refl. @@ -2029,7 +2029,7 @@ Qed. End FilterSubseq. -Implicit Arguments subseq_uniqP [T s1 s2]. +Arguments subseq_uniqP [T s1 s2]. Section EqMap. @@ -2097,7 +2097,7 @@ Proof. by apply: map_inj_in_uniq; apply: in2W. Qed. End EqMap. -Implicit Arguments mapP [T1 T2 f s y]. +Arguments mapP [T1 T2 f s y]. Prenex Implicits mapP. Lemma map_of_seq (T1 : eqType) T2 (s : seq T1) (fs : seq T2) (y0 : T2) : @@ -2289,7 +2289,7 @@ Qed. End MakeEqSeq. -Implicit Arguments perm_eq_iotaP [[T] [s] [t]]. +Arguments perm_eq_iotaP {T s t}. Section FoldRight. @@ -2663,7 +2663,7 @@ elim: A => /= [|s A /iffP IH_A]; [by right; case | rewrite mem_cat]. have [s_x|s'x] := @idP (x \in s); first by left; exists s; rewrite ?mem_head. by apply: IH_A => [[t] | [t /predU1P[->|]]]; exists t; rewrite // mem_behead. Qed. -Implicit Arguments flattenP [A x]. +Arguments flattenP [A x]. Lemma flatten_mapP (A : S -> seq T) s y : reflect (exists2 x, x \in s & y \in A x) (y \in flatten (map A s)). @@ -2674,8 +2674,8 @@ Qed. End EqFlatten. -Implicit Arguments flattenP [T A x]. -Implicit Arguments flatten_mapP [S T A s y]. +Arguments flattenP [T A x]. +Arguments flatten_mapP [S T A s y]. Lemma perm_undup_count (T : eqType) (s : seq T) : perm_eq (flatten [seq nseq (count_mem x s) x | x <- undup s]) s. |
