diff options
| author | Kazuhiko Sakaguchi | 2019-11-29 01:19:33 +0900 |
|---|---|---|
| committer | Kazuhiko Sakaguchi | 2019-12-28 17:45:40 +0900 |
| commit | a06d61a8e226eeabc52f1a22e469dca1e6077065 (patch) | |
| tree | 7a78b4f2f84f360127eecc1883630891d58a8a92 /mathcomp/ssreflect/path.v | |
| parent | 52f106adee9009924765adc1a94de9dc4f23f56d (diff) | |
Refactoring and linting especially polydiv
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`:
The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and
introduces a hypothesis in the form of `x != y` in the second case. Thus,
`case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms
can be replaced with `case: eqVneq`, `case: (eqVneq x)` and
`case: (eqVneq x y)` respectively. This replacement slightly simplifies and
reduces proof scripts.
- use `have [] :=` rather than `case` if it is better.
- `by apply:` -> `exact:`.
- `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`.
- `move/lem1; move/lem2` -> `move/lem1/lem2`.
- Remove `GRing.` prefix if applicable.
- `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
Diffstat (limited to 'mathcomp/ssreflect/path.v')
| -rw-r--r-- | mathcomp/ssreflect/path.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/ssreflect/path.v b/mathcomp/ssreflect/path.v index d9ab11c..2790aa8 100644 --- a/mathcomp/ssreflect/path.v +++ b/mathcomp/ssreflect/path.v @@ -368,7 +368,7 @@ Proof. elim: s => [| h s]; first by case: ifP. rewrite mem2_cons => ->. do 2 rewrite inE (fun_if subseq) !if_arg !sub1seq /=. -by case: eqVneq => [->|]; case: eqVneq. +by have [->|] := eqVneq; case: eqVneq. Qed. Variant split2r x y : seq T -> Type := @@ -916,7 +916,7 @@ Let le_lex_transitive x sT : transitive (le_lex x sT). Proof. move=> ? ? ? /andP [xy /implyP xy'] /andP [yz /implyP yz']. rewrite /= (leT_tr xy yz) /=; apply/implyP => zx. -by apply/ltn_trans: (xy' (leT_tr yz zx)) (yz' (leT_tr zx xy)). +exact: ltn_trans (xy' (leT_tr yz zx)) (yz' (leT_tr zx xy)). Qed. Lemma filter_sort p s : filter p (sort leT s) = sort leT (filter p s). |
