diff options
| author | Kazuhiko Sakaguchi | 2020-11-25 07:39:09 +0900 |
|---|---|---|
| committer | GitHub | 2020-11-24 23:39:09 +0100 |
| commit | 7189708809e3c79effe40a2c9ecf693f66423cd3 (patch) | |
| tree | ade92936c345056098fd17782cf63714681c4a06 /mathcomp/ssreflect/order.v | |
| parent | 7d41b02be0fa9e317464ac0803aad18fb15981c5 (diff) | |
Transpose `join_idP(l|r)` lemmas to follow the naming convention (#671)
Transpose `join_idP(l|r)` lemmas to follow the naming convention
Diffstat (limited to 'mathcomp/ssreflect/order.v')
| -rw-r--r-- | mathcomp/ssreflect/order.v | 44 |
1 files changed, 17 insertions, 27 deletions
diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v index 97e34a2..5032dfd 100644 --- a/mathcomp/ssreflect/order.v +++ b/mathcomp/ssreflect/order.v @@ -3639,13 +3639,13 @@ Proof. exact: (@leIr _ [latticeType of L^d]). Qed. Lemma leUl x y : x <= x `|` y. Proof. exact: (@leIl _ [latticeType of L^d]). Qed. -Lemma join_idPl {x y} : reflect (x `|` y = y) (x <= y). +Lemma join_idPr {x y} : reflect (x `|` y = y) (x <= y). Proof. exact: (@meet_idPr _ [latticeType of L^d]). Qed. -Lemma join_idPr {x y} : reflect (y `|` x = y) (x <= y). +Lemma join_idPl {x y} : reflect (y `|` x = y) (x <= y). Proof. exact: (@meet_idPl _ [latticeType of L^d]). Qed. -Lemma join_l x y : y <= x -> x `|` y = x. Proof. exact/join_idPr. Qed. -Lemma join_r x y : x <= y -> x `|` y = y. Proof. exact/join_idPl. Qed. +Lemma join_l x y : y <= x -> x `|` y = x. Proof. exact/join_idPl. Qed. +Lemma join_r x y : x <= y -> x `|` y = y. Proof. exact/join_idPr. Qed. Lemma leUidl x y : (x `|` y <= y) = (x <= y). Proof. exact: (@leIidr _ [latticeType of L^d]). Qed. @@ -3667,7 +3667,7 @@ Lemma lcomparableP x y : incomparel x y Proof. by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy; rewrite ?(meetxx, joinxx); - rewrite ?(meet_idPl hxy', meet_idPr hxy', join_idPl hxy', join_idPr hxy'); + rewrite ?(meet_l hxy', meet_r hxy', join_l hxy', join_r hxy'); constructor. Qed. @@ -4378,8 +4378,7 @@ Lemma leBx x y : x `\` y <= x. Proof. by rewrite -{2}[x](joinIB y) lexU2 // lexx orbT. Qed. Hint Resolve leBx : core. -Lemma subxx x : x `\` x = 0. -Proof. by have := subKI x x; rewrite (meet_idPr _). Qed. +Lemma subxx x : x `\` x = 0. Proof. by have := subKI x x; rewrite meet_r. Qed. Lemma leBl z x y : x <= y -> x `\` z <= y `\` z. Proof. @@ -4390,21 +4389,21 @@ Qed. Lemma subKU y x : y `|` (x `\` y) = y `|` x. Proof. apply/eqP; rewrite eq_le leU2 //= leUx leUl. -by apply/meet_idPl; have := joinIB y x; rewrite joinIl (join_idPr _). +by apply/meet_idPl; have := joinIB y x; rewrite joinIl join_l. Qed. Lemma subUK y x : (x `\` y) `|` y = x `|` y. Proof. by rewrite joinC subKU joinC. Qed. Lemma leBKU y x : y <= x -> y `|` (x `\` y) = x. -Proof. by move=> /join_idPl {2}<-; rewrite subKU. Qed. +Proof. by move=> /join_r {2}<-; rewrite subKU. Qed. Lemma leBUK y x : y <= x -> (x `\` y) `|` y = x. Proof. by move=> leyx; rewrite joinC leBKU. Qed. Lemma leBLR x y z : (x `\` y <= z) = (x <= y `|` z). Proof. -apply/idP/idP; first by move=> /join_idPl <-; rewrite joinA subKU joinAC leUr. +apply/idP/idP; first by move=> /join_r <-; rewrite joinA subKU joinAC leUr. by rewrite -{1}[x](joinIB y) => /(leU2r_le (subIK _ _)). Qed. @@ -4424,16 +4423,14 @@ Lemma joinBx x y z : (y `\` z) `|` x = ((y `|` x) `\` z) `|` (z `&` x). Proof. by rewrite ![_ `|` x]joinC ![_ `&` x]meetC joinxB. Qed. Lemma leBr z x y : x <= y -> z `\` y <= z `\` x. -Proof. -by move=> lexy; rewrite leBLR joinxB (meet_idPr _) ?leBUK ?leUr ?lexU2 ?lexy. -Qed. +Proof. by move=> lexy; rewrite leBLR joinxB meet_r ?leBUK ?leUr ?lexUl. Qed. Lemma leB2 x y z t : x <= z -> t <= y -> x `\` y <= z `\` t. Proof. by move=> /(@leBl t) ? /(@leBr x) /le_trans ->. Qed. Lemma meet_eq0E_sub z x y : x <= z -> (x `&` y == 0) = (x <= z `\` y). Proof. -move=> xz; apply/idP/idP; last by move=> /meet_idPr <-; rewrite -meetA meetBI. +move=> xz; apply/idP/idP; last by move=> /meet_r <-; rewrite -meetA meetBI. by move=> /eqP xIy_eq0; rewrite -[x](joinIB y) xIy_eq0 join0x leBl. Qed. @@ -4474,22 +4471,20 @@ Proof. by rewrite ![_ `&` z]meetC meetxB. Qed. Lemma subxI x y z : x `\` (y `&` z) = (x `\` y) `|` (x `\` z). Proof. apply/eqP; rewrite eq_sub leUx !leBx //= joinIl joinA joinCA !subKU. -rewrite joinCA -joinA [_ `|` x]joinC  //. +rewrite joinCA -joinA [_ `|` x]joinC ![x `|` _]join_l //. by rewrite -joinIl leUr /= meetUl {1}[_ `&` z]meetC ?meetBI joinx0. Qed. Lemma subBx x y z : (x `\` y) `\` z = x `\` (y `|` z). Proof. apply/eqP; rewrite eq_sub leBr ?leUl //=. -rewrite subxU joinIr subKU -joinIr (meet_idPl _) ?leUr //=. -by rewrite -meetA subIK meetx0. +by rewrite subxU joinIr subKU -joinIr meet_l ?leUr //= -meetA subIK meetx0. Qed. Lemma subxB x y z : x `\` (y `\` z) = (x `\` y) `|` (x `&` z). Proof. -rewrite -[y in RHS](joinIB z) subxU joinIl subxI -joinA. -rewrite joinBI (join_idPl _) // joinBx [x `|` _](join_idPr _) ?leIl //. -by rewrite meetA meetAC subIK meet0x joinx0 (meet_idPr _). +rewrite -[y in RHS](joinIB z) subxU joinIl subxI -joinA joinBI join_r //. +by rewrite joinBx meetKU meetA meetAC subIK meet0x joinx0 meet_r. Qed. Lemma joinBK x y : (y `|` x) `\` x = (y `\` x). @@ -4499,10 +4494,7 @@ Lemma joinBKC x y : (x `|` y) `\` x = (y `\` x). Proof. by rewrite subUx subxx join0x. Qed. Lemma disj_le x y : x `&` y == 0 -> x <= y = (x == 0). -Proof. -have [->|x_neq0] := eqVneq x 0; first by rewrite le0x. -by apply: contraTF => lexy; rewrite (meet_idPl _). -Qed. +Proof. by rewrite [x == 0]eq_sym -eq_meetl => /eqP ->. Qed. Lemma disj_leC x y : y `&` x == 0 -> x <= y = (x == 0). Proof. by rewrite meetC => /disj_le. Qed. @@ -4514,9 +4506,7 @@ Lemma disj_subr x y : x `&` y == 0 -> y `\` x = y. Proof. by rewrite meetC => /disj_subl. Qed. Lemma lt0B x y : x < y -> 0 < y `\` x. -Proof. -by move=> ?; rewrite lt_leAnge leBRL leBLR le0x meet0x eqxx joinx0 /= lt_geF. -Qed. +Proof. by move=> ?; rewrite lt_leAnge le0x leBLR joinx0 /= lt_geF. Qed. End CBDistrLatticeTheory. End CBDistrLatticeTheory. |
