diff options
| author | Enrico | 2018-03-03 10:30:33 +0100 |
|---|---|---|
| committer | GitHub | 2018-03-03 10:30:33 +0100 |
| commit | 6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch) | |
| tree | 59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/ssreflect/finset.v | |
| parent | 22692863c2b51cb6b3220e9601d7c237b1830f18 (diff) | |
| parent | fe058c3300cf2385f1079fa906cbd13cd2349286 (diff) | |
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/ssreflect/finset.v')
| -rw-r--r-- | mathcomp/ssreflect/finset.v | 94 |
1 files changed, 47 insertions, 47 deletions
diff --git a/mathcomp/ssreflect/finset.v b/mathcomp/ssreflect/finset.v index dc964b5..3f99e9f 100644 --- a/mathcomp/ssreflect/finset.v +++ b/mathcomp/ssreflect/finset.v @@ -243,7 +243,7 @@ End BasicSetTheory. Definition inE := (in_set, inE). -Implicit Arguments set0 [T]. +Arguments set0 [T]. Prenex Implicits set0. Hint Resolve in_setT. @@ -827,7 +827,7 @@ Proof. apply: (iffP subsetP) => [sAB | <- x /setIP[] //]. by apply/setP=> x; rewrite inE; apply/andb_idr/sAB. Qed. -Implicit Arguments setIidPl [A B]. +Arguments setIidPl [A B]. Lemma setIidPr A B : reflect (A :&: B = B) (B \subset A). Proof. by rewrite setIC; apply: setIidPl. Qed. @@ -955,26 +955,26 @@ Proof. by rewrite setDE disjoints_subset => /properI/andP[-> /proper_sub]. Qed. End setOps. -Implicit Arguments set1P [T x a]. -Implicit Arguments set1_inj [T]. -Implicit Arguments set2P [T x a b]. -Implicit Arguments setIdP [T x pA pB]. -Implicit Arguments setIP [T x A B]. -Implicit Arguments setU1P [T x a B]. -Implicit Arguments setD1P [T x A b]. -Implicit Arguments setUP [T x A B]. -Implicit Arguments setDP [T x A B]. -Implicit Arguments cards1P [T A]. -Implicit Arguments setCP [T x A]. -Implicit Arguments setIidPl [T A B]. -Implicit Arguments setIidPr [T A B]. -Implicit Arguments setUidPl [T A B]. -Implicit Arguments setUidPr [T A B]. -Implicit Arguments setDidPl [T A B]. -Implicit Arguments subsetIP [T A B C]. -Implicit Arguments subUsetP [T A B C]. -Implicit Arguments subsetDP [T A B C]. -Implicit Arguments subsetD1P [T A B x]. +Arguments set1P [T x a]. +Arguments set1_inj [T]. +Arguments set2P [T x a b]. +Arguments setIdP [T x pA pB]. +Arguments setIP [T x A B]. +Arguments setU1P [T x a B]. +Arguments setD1P [T x A b]. +Arguments setUP [T x A B]. +Arguments setDP [T A B x]. +Arguments cards1P [T A]. +Arguments setCP [T x A]. +Arguments setIidPl [T A B]. +Arguments setIidPr [T A B]. +Arguments setUidPl [T A B]. +Arguments setUidPr [T A B]. +Arguments setDidPl [T A B]. +Arguments subsetIP [T A B C]. +Arguments subUsetP [T A B C]. +Arguments subsetDP [T A B C]. +Arguments subsetD1P [T A B x]. Prenex Implicits set1 set1_inj. Prenex Implicits set1P set2P setU1P setD1P setIdP setIP setUP setDP. Prenex Implicits cards1P setCP setIidPl setIidPr setUidPl setUidPr setDidPl. @@ -1018,7 +1018,7 @@ Proof. by rewrite cardsE cardX. Qed. End CartesianProd. -Implicit Arguments setXP [x1 x2 fT1 fT2 A1 A2]. +Arguments setXP [fT1 fT2 A1 A2 x1 x2]. Prenex Implicits setXP. Local Notation imset_def := @@ -1365,8 +1365,8 @@ Proof. by move=> sAB1 sAB2; rewrite -!imset2_pair imset2S. Qed. End FunImage. -Implicit Arguments imsetP [aT rT f D y]. -Implicit Arguments imset2P [aT aT2 rT f2 D1 D2 y]. +Arguments imsetP [aT rT f D y]. +Arguments imset2P [aT aT2 rT f2 D1 D2 y]. Prenex Implicits imsetP imset2P. Section BigOps. @@ -1439,11 +1439,11 @@ Proof. by apply: partition_big => i Ai; apply/imsetP; exists i. Qed. End BigOps. -Implicit Arguments big_setID [R idx aop I A]. -Implicit Arguments big_setD1 [R idx aop I A F]. -Implicit Arguments big_setU1 [R idx aop I A F]. -Implicit Arguments big_imset [R idx aop h I J A]. -Implicit Arguments partition_big_imset [R idx aop I J]. +Arguments big_setID [R idx aop I A]. +Arguments big_setD1 [R idx aop I] a [A F]. +Arguments big_setU1 [R idx aop I] a [A F]. +Arguments big_imset [R idx aop I J h A]. +Arguments partition_big_imset [R idx aop I J]. Section Fun2Set1. @@ -1499,7 +1499,7 @@ Proof. by move=> fK gK; apply: can2_in_imset_pre; apply: in1W. Qed. End CardFunImage. -Implicit Arguments imset_injP [aT rT f D]. +Arguments imset_injP [aT rT f D]. Lemma on_card_preimset (aT rT : finType) (f : aT -> rT) (R : pred rT) : {on R, bijective f} -> #|f @^-1: R| = #|R|. @@ -1701,14 +1701,14 @@ Proof. by apply: setC_inj; rewrite !setC_bigcap bigcup_seq. Qed. End BigSetOps. -Implicit Arguments bigcup_sup [T I P F]. -Implicit Arguments bigcup_max [T I U P F]. -Implicit Arguments bigcupP [T I x P F]. -Implicit Arguments bigcupsP [T I U P F]. -Implicit Arguments bigcap_inf [T I P F]. -Implicit Arguments bigcap_min [T I U P F]. -Implicit Arguments bigcapP [T I x P F]. -Implicit Arguments bigcapsP [T I U P F]. +Arguments bigcup_sup [T I] j [P F]. +Arguments bigcup_max [T I] j [U P F]. +Arguments bigcupP [T I x P F]. +Arguments bigcupsP [T I U P F]. +Arguments bigcap_inf [T I] j [P F]. +Arguments bigcap_min [T I] j [U P F]. +Arguments bigcapP [T I x P F]. +Arguments bigcapsP [T I U P F]. Prenex Implicits bigcupP bigcupsP bigcapP bigcapsP. Section ImsetCurry. @@ -2088,11 +2088,11 @@ End Transversals. End Partitions. -Implicit Arguments trivIsetP [T P]. -Implicit Arguments big_trivIset_cond [T R idx op K E]. -Implicit Arguments set_partition_big_cond [T R idx op D K E]. -Implicit Arguments big_trivIset [T R idx op E]. -Implicit Arguments set_partition_big [T R idx op D E]. +Arguments trivIsetP [T P]. +Arguments big_trivIset_cond [T R idx op] P [K E]. +Arguments set_partition_big_cond [T R idx op] P [D K E]. +Arguments big_trivIset [T R idx op] P [E]. +Arguments set_partition_big [T R idx op] P [D E]. Prenex Implicits cover trivIset partition pblock trivIsetP. @@ -2141,7 +2141,7 @@ apply: (iffP forallP) => [minA | [PA minA] B]. by move=> B PB sBA; have:= minA B; rewrite PB sBA /= eqb_id => /eqP. by apply/implyP=> sBA; apply/eqP; apply/eqP/idP=> [-> // | /minA]; apply. Qed. -Implicit Arguments minsetP [P A]. +Arguments minsetP [P A]. Lemma minsetp P A : minset P A -> P A. Proof. by case/minsetP. Qed. @@ -2212,7 +2212,7 @@ Qed. End MaxSetMinSet. -Implicit Arguments minsetP [T P A]. -Implicit Arguments maxsetP [T P A]. +Arguments minsetP [T P A]. +Arguments maxsetP [T P A]. Prenex Implicits minset maxset minsetP maxsetP. |
